Lecture 3(a) Geometry at linear programming
Aim: to solve LPs with two variables by drawing
Recap quiz $\mu^{(3,-2)\binom{x_{1}}{x_{2}}=5}$
$3 x_{1}-2 x_{2}=5$ is line in \mathbb{R}^{2}.
Find a vecter perpendicular to this line $\binom{3}{-2}$
Geometrically what happens to the line it we replace 5 with 6 ? It remains parallel but moves in the direction $\binom{3}{-2}$

Given an LP, what is a
(i) feasible solution?

Any assignment of values to the variables that satisfies all constraints and sigh restrictions.
(ii) optimal solution?

Any feasible solution that achieves the goal i.e. maximire/minimise cbjective function.

Example
Consider follaring LP
maximise $x_{1}+2 x_{2}$
subject to

$$
\begin{align*}
x_{2} & \leqslant 5 \tag{1}\\
x_{1}+x_{2} & \leqslant 8 \tag{2}\\
2 x_{1}+\frac{1}{2} x_{2} & \leqslant 12 \tag{3}\\
x_{1}, x_{2} & \geqslant 0 \tag{4}
\end{align*}
$$

e.g. $\binom{x_{1}}{x_{2}}=\binom{4}{2}$
feasible

$$
\binom{x_{1}}{x_{2}}=\binom{6}{2} \quad \text { not } \text { feasible }
$$

(3) Vidated

$$
2 \times 6+\frac{1}{2} \times 2=13 \neq 12
$$

(i) Sketch the region of all feasible solutions (called the feasible region)
(ii) Use this to find an optimal solution.

(2) $x_{1}+x_{2}=8$
i.e. $(1,1)\binom{x_{1}}{x_{2}}=8$
line \perp to $\binom{1}{1}$
passes through $\binom{8}{0},\binom{0}{8}$
Every point below the line $x_{1}+x_{2}=8$ (i.e. other side of norma() satisfies $x_{1}+x_{2} \leqslant 8$
(3)

$$
\begin{aligned}
& 2 x_{1}+\frac{1}{2} x_{2}=12 \\
& \left(2, \frac{1}{2}\right)\binom{x_{1}}{x_{2}}=12
\end{aligned}
$$

line \perp to $\binom{2}{1 / 2}$ goes through $\binom{6}{0}\binom{4}{8}$
(1)

$$
\begin{aligned}
& x_{2}=5 \\
& (0,1)\binom{x_{1}}{x_{2}}=5
\end{aligned}
$$

(4) $x_{1}, x_{2} \geqslant 0$
means top right quadiout

Every point in shaded region satisties all constraints and sign restrictions

Consider following $\angle P$

$$
\text { maximise } x_{1}+2 x_{2}
$$

subject to $\quad x_{2} \leqslant 5$

$$
\begin{aligned}
x_{2} & \leqslant 5 \\
2 x_{1}+x_{2} & \leqslant 8 \\
2 x_{1}+x_{2} & \leqslant 12
\end{aligned}
$$

$$
\begin{equation*}
x_{1}, x_{2} \geqslant 0 \tag{4}
\end{equation*}
$$

Write $\left.f\left(x_{1}\right) x_{2}\right)=x_{1}+2 x_{2}$ objective function
$f\left(x_{1}, x_{2}\right)=0$ is the line $x_{1}+2 x_{2}=0$

$$
\text { ie. }(1,2)\binom{x_{1}}{x_{2}}=0
$$

line $\perp\binom{1}{2}$ goes though $\binom{0}{0}$
$f\left(x_{1}, x_{2}\right)=b$ is a line parallel to $\left.f\left(x_{1}\right) x_{2}\right)=0$ and moves in the direction of the normal as b increase
Wont largest b such that $f\left(x_{1}, x_{2}\right)=b$ intersects feasible region.
Any paint on that line in feasible region is optimal solution
Fran picture $\binom{3}{5}$ is optimal solution.

$$
\text { Here objective function }=f(3,5)=3+2 \times 5=13
$$

To sketch CP in two variables
(1) Sketch feasible region
(i) For each constraint $a_{1} x_{1}+a_{2} x_{2} \leq b$ sketch the line $a_{1} x_{1}+a_{2} x_{2}=b$ with normal vector $\binom{a_{1}}{a_{2}}$
If inequality of the form $a_{1} x_{1}+a_{2} x_{2} \geqslant b$ first multiply inequality by -1
(ii) The feasible region is tue region banded by those lines that is opposite to the normals and inside the quadrant given by the sign restrictions
e.g. $x_{11} x_{2} \geqslant 0$ means top right quadrant.
(2) Assume $L P$ asks to maximize $c_{1} x_{1}+c_{2} x_{2}$

Draw the line $c_{1} x_{1}+c_{2} x_{2}=0$ (call it L_{1})
Find any parallel line L_{2} that intersects feasible region
Move L_{2} in dinection of nama $\binom{l_{1}}{c_{2}}$ beeping it parallel until the last tine it hits the feasible region. The last point (s) that it hits give the optimal solutions.
Q: how do you change (2) if asked to minimise?
Move L_{2} in apposite direction to norma ([or consider max $-c_{1} x_{1}-c_{2} x_{2} \leftarrow$ normal $\binom{-c_{1}}{-c_{2}}$]

Q: How would you change objective function so that there ave infinitely mary optimal solutions. Change objective function 50 that red live is parallel to one of the constraints

$$
f\left(x_{1}, x_{2}\right)=x_{1}+x_{2} .
$$

As we mare the red line in divection of normal its final intersection with feasible region is the trick red line ISC infinitely many points).
Hence infinitely mary optimal solutions
Q: Can there be exactly 2 optimal solutions? No! Use Week (6).

A redundant constraint is are that does not affect the feasible region i.e. one we could remove from the linear program with cut affecting feasible region.

Add

$$
\begin{array}{ll}
\text { e.g. } & x_{1}+x_{2} \leqslant 10 \\
& x_{1}-x_{2} \geqslant-6 \text { i.e. }-x_{1}+x_{2} \leqslant 6 \\
&
\end{array}
$$

From picture, adding these constraints to the picture does not change feasible region.

Q: con an $\angle P$ have zero optimal solutions?
yes. Two possibilities.
Deft A linear program is called infeasible if it has no feasible solutions.
e.9. maximise $x_{1}+x_{2}$
subject to $x_{1} \leqslant 1$
$x_{2} \leqslant 1$

$$
\begin{gather*}
-x_{1}-x_{2} \leqslant-3 \tag{1}\\
x_{1}, x_{2} \geqslant 0 \tag{4}
\end{gather*}
$$

$$
-x_{1}-x_{2}=-3
$$

$$
(-1,-1)\binom{x_{1}}{x_{2}}=-3
$$

(1),(2) and (4) imply all feasible points are inside tue unit square.
(3) says all feasible points ane to the right of the diagonal line
No point in \mathbb{R}^{2} satisfies all of these hence LP is infeasible.
Q: Change RHS of (3) so LP becomes feasible. Replace (3) with e.g. $-x_{1}-x_{2} \leqslant 1$

Det $A_{n} L P$ in standard inequality form
maximise $s^{\top} \underline{x}$
subject to $A \underline{x} \leq \underline{b}$
$x \geqslant 0$
is called unbounded it for $k \in \mathbb{R}$ there is sone feasible solution $\underline{c}^{\top} \underline{2} \geqslant k$
e.9. maximise $x_{1}+x_{2}$
subject tc $\quad x_{1}-x_{2} \leqslant 1$

$$
x_{1,} x_{2} \geq 0
$$

objective
function
The line $x_{1}+x_{2}=k$ (tor any $k \geqslant 0$) intersects the feasible region so there is a feasibu solution for which the objective function $x_{1}+x_{2}$ equals $\forall k \geqslant 0$. Hence this $\angle p$ is unbounded Hence no optimal solution.
How may feasible solutions are there

$$
\begin{aligned}
& \text { for which } x_{1}+x_{2}=0 \text { ? } \\
& \text { for which } x_{1}+x_{2}=10 c ? \infty \\
& \text { for which } x_{1}+x_{2}=-100 ? 0
\end{aligned}
$$

Deft An LP in standard inequality form maximise $s^{\top} \underline{x}$
subject to $A \underline{x} \leqslant \underline{b}$

$$
\underline{x} \geqslant 0
$$

is called unbounded it for $k \in \mathbb{R}$ there is sone feasible solution $c^{\top} \underline{x} \geqslant k$
e.9. maximise $x_{1}+x_{2}$
subject tc $\quad x_{1}-x_{2} \leq 1$

$$
x_{1}, x_{2} \geq 0
$$

Q: Change the objective function so that the linear program is not unbounded.
e.9. either replace maximise by minimise or replace $x_{1}+x_{2}$ with $-x_{1}-x_{2}$
In bath cases the optimal solution is $\binom{x_{1}}{x_{2}}=\binom{0}{0}$ and is unique. (This $\angle P$ is not unbounded)
So the LP being unbounded is not the save as the feasible region being unbounded.

Notice in all our examples if our LP has an optimal solution, then one of the "corners" of our feasible region is an optimal sdution (although there could be infinitely many others).
wont to formalise this.
Detu Given two vectors $\underline{x}, \underline{y} \in \mathbb{R}^{n}$ a convex combination of x and y is a vector of the form $\lambda \underline{x}+(1-\lambda) y$ Where $\lambda \in[0,1]$.

Notice that if $\lambda=0, \quad \lambda \underline{x}+(1-\lambda) \underline{y}=\underline{y}$

$$
\lambda=1 \quad \lambda \underline{x}+(1-\lambda) \underline{y}=\underline{x}
$$

$\lambda=\frac{1}{2}$ gives $\frac{1}{2} \underline{x}+\frac{1}{2} y$ the paint half way

Deter Given on LP, a feasible solution x is called on internal solution it there exists feasible solutions y and z such that \underline{x} is a convex combination of \underline{y} and z (ie $\underline{x}=\lambda \underline{y}+(1-\lambda) \underline{f}$ for sane $\lambda \in[0,1]$) and $y \neq \underline{x} \leq \neq x$
(Note: every vector con be written as a convey combination of itself $\underline{x}=\lambda \underline{x}+(1-\lambda) \underline{x}$)

A feasible solution x is called an extreme point solution if it is not on internal solution (extreme point solutions are

(2) internal
(4) internal
(1) extreme point
(3) internal
(5) extreme paint.

This is a geometric detivition of "corner." Later we give algebraic definition,

Consider $L P$ maximise $x_{1}+x_{2}$
subject to $\quad x_{1} \leqslant 1$
$x_{2} \leqslant 1$

$x_{1}, x_{2} \geqslant 0$

Show that $\binom{1}{1}$ is an extreme point solution.

Solution (not discussed in lecture)
First ($\binom{1}{1}$ is feasible since it satisfies constraints and sign restrictions.

If $\binom{1}{1}$ is internal then
$\binom{1}{1}=\lambda \underline{a}+(1-\lambda) \underline{b}$ for $\underline{a}, \underline{b}$ feasible where $\underline{a} \neq\binom{ 1}{1}$ and $\underline{b} \neq\binom{ 1}{1}$
Assume $a=\binom{a_{1}}{a_{2}} \quad b=\binom{b_{1}}{b_{2}}$
so $\binom{1}{1}=\lambda\binom{a_{1}}{a_{2}}+(1-\lambda)\binom{b_{1}}{b_{2}}=\binom{\lambda a_{1}+(1-\lambda) b_{1}}{\lambda a_{2}+(1-\lambda) b_{2}}$
We know $a_{1}, a_{2}, b_{1}, b_{2} s_{1}$. If $a_{1}<1$ or $b_{1}<1$ then

$$
\lambda a_{1}+(1-\lambda) b_{1}<\lambda \cdot 1+(1-\lambda) \cdot 1=1
$$

sc $a_{1}=b_{1}=1$
Similarly $a_{2}=b_{2}=1$
so extreme point soln.

