
QUEEN MARY UNIVERSITY OF LONDON
MTH5120 Statistical Modelling I
Solution to Exercise Sheet 2

1.

(a) > x<- c(3.4,1.8,4.6,2.3,3.1,5.5,0.7,3.0,
2.6,4.3,2.1,1.1,6.1,4.8,3.8)
> y<- c(26.2,17.8,31.3,23.1,27.5,36.0,14.1,
22.3,19.6,31.3,24.0,17.3,43.2,36.4,26.1)
> plot(x,y, main="Plot of Y versus X")
> fire<-lm(y~x)
> summary(fire)
Call:
lm(formula = y ~ x)
Residuals:

Min 1Q Median 3Q Max
-3.4682 -1.4705 -0.1311 1.7915 3.3915
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 10.2779 1.4203 7.237 6.59e-06 ***
x 4.9193 0.3927 12.525 1.25e-08 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.316 on 13 degrees of freedom
Multiple R-squared: 0.9235,Adjusted R-squared: 0.9176
F-statistic: 156.9 on 1 and 13 DF, p-value: 1.248e-08

> plot(x,y, main="Fitted Line Plot")
> (abline(fire))
NULL
> stdres<- rstandard(fire)
> print(stdres)

1 2 3 4 5
-0.35920557 -0.61671822 -0.73812880 0.68389288 0.88172686

6 7 8 9 10
-0.64739155 0.18972092 -1.22407120 -1.56097482 -0.05952374

11 12 13 14 15
1.54912299 0.77909572 1.49866138 1.16347978 -1.28850409

> plot(x,stdres, main="Std residuals versus x")
> fits<- fitted(fire)
> plot(fits,stdres, main="Std residuals versus fits")
> qqnorm(stdres, main="Q-Q Plot")
> qqline(stdres)



The plot of the data, the standardized residuals are shown in Figure 1.1, while
the plots of the standardized residuals versus the fits and of the QQ-Norm in Fig-
ure 1.2. In particular, the relationship does seem linear. There are a couple of
points off the Q-Q line but not enough to cause much concern. The variance
seems constant.
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Figure 1.1: Plot of the data versus the fitted regression line (left) and standardized residuals
versus x (right).
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Figure 1.2: Plot of the data versus the standardized residuals versus fitted values (left) and
QQ Norm (right).

(b) Report should cover the following points:

- The values of the intercept (10.28) and slope (4.92) are highly significant. A
possible interpretation the intercept is the average cost of a fire which hap-



pened next door to a fire station. The fire would do quite a bit of damage
before the alarm was raised and it would take some time for the fire fighters
to get all their equipment ready.

- The slope is the extra average cost due to being 1km away from the fire sta-
tion. This represents the extra time it would take to get to the fire and the
extra damage done in that time.

- The relationship does seem to be linear and there is no reason to doubt the
assumptions of linearity or constant variance. The first and last points on the
QQ plot are a little away from the line but there does not seem much reason
to doubt the normality assumption.

2. (a) The Least Squares Estimator β̂ minimizes the sum of squares of errors, which for
the no-intercept model is,

S(β) =
n∑

i=1

ε2i =
n∑

i=1

(Yi − βxi)2.

By differentiating the function with respect to β we obtain

∂S(β)

∂β
= −2

n∑
i=1

(Yi − βxi)xi = −2
n∑

i=1

(Yixi − βx2i ).

Hence,
∂S(β)

∂β
= 0 is equivalent to

n∑
i=1

Yixi = β̂
n∑

i=1

x2i .

This gives

β̂ =

∑n
i=1 Yixi∑n
i=1 x

2
i

=
1

a

n∑
i=1

Yixi, where a =
n∑

i=1

x2i .

To confirm that the function S(β) attains minimum at the solution β̂, we will
check the sign of the second derivative of the function. We have

∂2S(β)

∂β2
= 2

n∑
i=1

x2i > 0 for all β.

Hence the second derivative is also positive for β̂. It means the function S(β)
attains minimum at β̂.

(b) The estimator is a linear combination of the random variables Yi, that is

β̂ =
1

a

n∑
i=1

Yixi =
n∑

i=1

ciYi,

where ci =
xi
a

.



We assume that the variables Yi are normally distributed. Hence, β̂, as a lin-
ear combination of normally distributed random variables, is also normally dis-
tributed.
Next we find its expectation and variance. We have

E(β̂) = E

(
n∑

i=1

ciYi

)
=

n∑
i=1

ci E(Yi) =
n∑

i=1

ciβxi = β

n∑
i=1

cixi = β

as
∑n

i=1 cixi = 1. The estimator is unbiased.
Also, by the properties of the variance function and by independence of Yi, we
can write

Var(β̂) = Var

(
n∑

i=1

ciYi

)
=

n∑
i=1

c2i Var(Yi).

Furthermore, Var(Yi) = σ2. This gives

Var(β̂) = σ2

n∑
i=1

c2i = σ2

n∑
i=1

(xi
a

)2
= σ2

∑n
i=1 x

2
i

a2
=

σ2∑n
i=1 x

2
i

.

Hence, we conclude that

β̂ ∼ N

(
β,

σ2∑n
i=1 x

2
i

)
.

3. Suppose Yi is an i.i.d sequences of random variables, such as Yi ∼ N (θ, 1) for i =
1, . . . , n. Let us consider the following estimators:

θ̂1 =
1

n− 1

n∑
i=1

yi, θ̂2 =
1

2
(y1 + yn)

(a) For the first estimator we have

E[θ̂1] = E

[
1

n− 1

n∑
i=1

yi

]
=

1

n− 1
E

[
n∑

i=1

yi

]
=

1

n− 1

n∑
i=1

E [yi] =

=
1

n− 1

n∑
i=1

θ =
nθ

n− 1

For the second estimator we have

E[θ̂2] = E

[
1

2
(y1 + yn)

]
=

1

2
E[y1 + yn] =

1

2
(E[y1] + E[yn])

=
1

2
(θ + θ) =

2θ

2
= θ



(b) Regarding the variances of the estimators. We start with the first estimator and
due to the i.i.d. assumption of the yi, we have

V ar
(
θ̂1

)
= V ar

[
1

n− 1

n∑
i=1

yi

]
=

1

(n− 1)2
V ar

[
n∑

i=1

yi

]
=

1

(n− 1)2

n∑
i=1

V ar [yi] =

=
1

(n− 1)2

n∑
i=1

1 =
n

(n− 1)2

Analogously for the second estimator we have:

V ar
(
θ̂2

)
= V ar

[
1

2
(y1 + yn)

]
=

1

4
V ar (y1 + yn) =

1

4
(V ar(y1) + V ar(yn)) =

=
1

4
2 =

1

2

(c) From point (a), we have that the expected values of the θ̂1 and θ̂2 are

E[θ̂1] =
n

n− 1
, E[θ̂2] = θ

Thus the first estimator differs from θ and it is biased, while the second estimator
is unbiased.


