Actuarial Mathematics II MTH5125

Week 2 - Feedback: Recap with Exercises

Dr. Melania Nica

Spring Term

Feedback

> I've been trying to catch up with the work I missed from the day of the assessment centres I had but there is no recording and I've been really struggling with teaching myself the content on the PowerPoints. I asked around some of my course mates and they seem equally as confused, I understand you have a timeline to teach the work in however I was wondering if you'd been able to do a brief summary of last weeks work, just going through examples as I do understand the theory itself, however we seem to find it difficult to actually apply it mathematically. Even if it's a brief summary in the first half of the lecture, I feel like we'd all benefit from it.

Net random future loss

The insurer's net random future loss (the present value of future loss random):

$$
L_{0}^{n}=P V F B_{0}-P V F P_{0}
$$

$L_{0}^{n}=P V$ of benefits outgo $-P V$ of premium income
The net premium, generically denoted by P, may be determined according to the principle of equivalence:

$$
\begin{aligned}
E\left(L_{0}^{n}\right) & =0 \\
E\left(P V F B_{0}\right) & =E\left(P V F P_{0}\right) \\
E P V \text { of benefit outgo } & =E P V \text { of premium income }
\end{aligned}
$$

Actuarial value of future benefits $=$ Actuarial value of future income

The equivalence principle premium: whole life insurance

The net annual premium
An insurer issues a whole life insurance (annual) to a life aged x, with sum insured S (payable at the end of the year of death). Premiums are payable annually in advance until death. Find the net annual premium is P for a benefit $S=100,000$ for a life $x=60$. Consider the Standard Life Table with $i=5 \%$.

$$
\begin{gathered}
L_{0}^{n}=S v^{K_{x}+1}-P \ddot{a}_{\overline{K_{x}+1}}=0 \\
E\left(S v^{K_{x}+1}\right)=E\left(P \ddot{a}_{\overline{K_{x}+1}}\right) \\
S A_{x}=P \ddot{a}_{x} \\
P=\frac{S A_{x}}{\ddot{a}_{x}} \\
P=100,000 \frac{0.29028}{14.9041}=1947.652
\end{gathered}
$$

The equivalence principle premium: whole life insurance

The variance of the net random future loss

$$
\begin{aligned}
L_{0}^{n} & =S v^{K_{x}+1}-P \ddot{a}_{K_{x}+1} \\
& =S v^{K_{x}+1}-P \frac{1-v^{K_{x}+1}}{d} \\
& =\left(S+\frac{P}{d}\right)\left(v^{K_{x}+1}\right)-\frac{P}{d} \\
V\left(L_{0}^{n}\right) & =\left(S+\frac{P}{d}\right)^{2} V\left(v^{K_{x}+1}\right) \\
& =\left(S+\frac{P}{d}\right)^{2}\left[{ }^{2} A_{x}-\left(A_{x}\right)^{2}\right]
\end{aligned}
$$

Note - in Actuarial maths $1:{ }^{2} A_{x}$ was denoted with A_{x}^{*}

The equivalence principle premium: endowment insurance

The net annual premium

$$
L_{0}^{n}=S v^{\min \left(K_{x}+1, n\right)}-P \ddot{a} \overline{\min \left(K_{x}+1, n\right)}
$$

$$
\begin{aligned}
E\left(L_{0}^{n}\right) & =S E\left(v^{\min \left(K_{x}+1, n\right)}\right)-P E\left(\ddot{a}_{\overline{\min \left(K_{x}+1, n\right)}}\right) \\
& =S A_{x: \bar{n}}-P \ddot{a}_{x: n}
\end{aligned}
$$

$$
\begin{aligned}
E\left(L_{0}^{n}\right) & =0 \\
S A_{x: \eta} & =P \ddot{a}_{x: n}
\end{aligned}
$$

$$
P=\frac{S A_{x: \bar{\eta}}}{\ddot{a}_{x: \eta}}
$$

The equivalence principle premium: endowment insurance

The variance of net random loss

$$
\begin{aligned}
L_{0}^{n} & =S v^{\min \left(K_{x}+1, n\right)}-P \ddot{a} \frac{\overline{\min \left(K_{x}+1, n\right)}}{} \\
= & S v^{\min \left(K_{x}+1, n\right)}-P \frac{1-v^{\min \left(K_{x}+1, n\right)}}{d} \\
& =\left(S+\frac{P}{d}\right) v^{\min \left(K_{x}+1, n\right)}-\frac{P}{d} \\
V\left(L_{0}^{n}\right) & =\left(S+\frac{P}{d}\right)^{2} V\left(v^{\min \left(K_{x}+1, n\right)}\right) \\
& =\left(S+\frac{P}{d}\right)^{2}\left[{ }^{2} A_{x: n}-\left(A_{x: n}\right)^{2}\right]
\end{aligned}
$$

Gross (expense-loaded) premiums

Investment-related expenses (e.g. analysis, cost of buying, selling, servicing)

Insurance-related expenses:

- acquisition (agents' commission, underwriting, preparing new records)
- maintenance (premium collection, policyholder correspondence)
- general (research, actuarial, accounting, taxes)
- settlement (claim investigation, legal defense, disbursement)

Gross (expense-loaded) premiums

- Most life insurance contracts incur large losses in the first year because of large first year expenses:
- Renewal expenses are expenses used for maintaining and continuing a policy
- percentage of premium
- per policy amount
- combination of the two above
- Termination expenses: when a policy expire (death or maturity) - very small

Gross premium calculations

Treat expenses as if they are a part of benefits.
The gross random future loss at issue is

$$
L_{0}^{g}=P V F B_{0}+P V F E_{0}-P V F P_{0}
$$

$P V F E_{0}$: the present value random variable associated with future expenses incurred by the insurer.
Equivalence principle:

$$
\begin{gathered}
E\left(L_{0}^{g}\right)=E\left(P V F B_{0}\right)+E\left(P V F E_{0}\right)-E\left(P V F P_{0}\right)=0 \\
E\left(P V F P_{0}\right)=E\left(P V F B_{0}\right)+E\left(P V F E_{0}\right)
\end{gathered}
$$

$E P V$ of gross premiums $=E P V$ of benefits $+E P V$ of expenses

Exercise 6.6

A select life aged 45 purchases a fully discrete 20-year endowment insurance with sum insured $\$ 100000$. Calculate the annual premium using the following assumptions:
i) Commission is 10% of the first premium and 2% of each subsequent premium.
ii) Other expenses are $\$ 50$ at issue and $\$ 8$ at each subsequent date. Mortality follows Standard Select Table and $i=5 \%$.

Some helpful relations

- Reminder:

$$
\begin{aligned}
& A_{x}=1-d \ddot{a}_{x} \\
& A_{x: n}=1-d \ddot{a}_{x: n} \\
& \ddot{a}_{x: n \mid}=\frac{1-A_{x: \pi}}{d} \\
& d=1-v=1-\frac{1}{1+i}=\frac{i}{1+i}
\end{aligned}
$$

Some helpful relations

Whole life insurance:

$$
\begin{aligned}
& A_{x}=A_{x: n}^{1}+v^{n}{ }_{n} p_{x} A_{x+n} \\
& A_{x}=A_{x: n}^{1}+{ }_{n} E_{x} A_{x+n}
\end{aligned}
$$

Term insurance: $A_{x: n}^{1}=A_{x}-{ }_{n} E_{x} A_{x+n}$

Some helpful relations

$$
\text { Endowment insurance } A_{x: \bar{\eta}}=A_{x: n}^{1}+{ }_{n} E_{x}
$$

Endowment insurance: $A_{x: n \mid}=A_{x}-{ }_{n} E_{x} A_{x+n}+{ }_{n} E_{x}$

$$
A_{[45]: 20 \mid}=A_{[45]}-20 E_{[45]} A_{65}+{ }_{20} E_{[45]}
$$

Exercise 6.6

Let P be the annual premium.
When cashflows are complicated is better to value each element separately:
EPV of endowment insurance benefits:

$$
\begin{aligned}
100,000 A_{[45]: \overline{20}} & =100,000\left(A_{[45]}-20 E_{[45]} A_{65}+20 E_{[45]}\right) \\
& =38,376.55
\end{aligned}
$$

Exercise 6.6

EPV of initial and renewal expenses:

$$
\begin{aligned}
& 0.1 P+0.02 P a_{[45]: 20 \mid}+50+8 a_{[45]: 20} \\
= & 0.1 P+0.02 P\left(\ddot{a}_{[45]: 20 \mid}-1\right)+50+8\left(\ddot{a}_{[45]: 20 \mid}-1\right) \\
= & 0.08 P+42+(0.02 P+8) \ddot{a}_{[45]: 20} \\
= & 0.3388 P+145.53
\end{aligned}
$$

Since $\ddot{a}_{[45]: 20 \mid}=\left(1-A_{x: \bar{n} \mid}\right) \frac{1.05}{0.05}$

Exercise 6.6

EPV of premiums:

$$
\begin{aligned}
P \ddot{a}_{[45]: 20]}= & P\left(1-A_{x: n}\right) \frac{1.05}{0.05} \\
& 12.9409 P
\end{aligned}
$$

Exercise 6.6

The equation of value/equivalent principle:

$$
\begin{gathered}
12.9409 P=38,376.55+0.3388 P+145.53 \\
P=\$ 3,056.80
\end{gathered}
$$

Exercise 6.1

Consider a fully discrete whole life insurance with sum insured $\$ 200,000$ issued to a select life aged 30 . The premium payment term is 20 years. Assume the mortality follows the Standard Select Life Table with $i=5 \%$.
a) Write down an expression for the net loss at issue random variable
b) Calculate the annual premium.
c) Calculate the probability that the contract makes a profit

Exercise 6.1

Benefits outgo: whole life insurance(annual, discrete) - \$200,000 to be paid at the end of the year of death: $v^{K_{[30]}+1}$

Income: premiums paid over 20 years - term annuity due (if not mentioned clearly in the question). If the life dies (obviously) premiums are not paid anymore.
Net future loss at issue:

$$
L_{0}^{n}=200,000 v^{K_{[30]}+1}-P \ddot{a} \overline{\min \left(K_{30}+1,20\right)}
$$

Equivalence principle:

$$
E\left(L_{0}^{n}\right)=200,000 A_{[30]}-P \ddot{a}_{[30]: 20 \mid}=0
$$

Exercise 6.1

Reminder:

$$
\ddot{a}_{x: n}=\ddot{a}_{x}-v^{n}{ }_{n} p_{x} \ddot{a}_{x+n}
$$

Note that when the life reached 50 - not select anymore.

$$
\ddot{a}_{[30]: 20}=\ddot{a}_{[30]}-20 E_{[30]} \ddot{a}_{50}
$$

$$
P=\frac{200,000 A_{[30]}}{\ddot{a}_{[30]}-20 E_{[30]} \ddot{a}_{50}}=\frac{200,000 \times 0.07693}{13.0419}=\$ 1,179.74
$$

Exercise 6.1

Assume the life survives more than $n>20$ years:
Did the policy made a profit at death?
At death:

- Benefit outgo: 200,000
- Income: premiums for 20 years only - bring them to the time of death?

$$
\underbrace{\ddot{a}_{[30]: \overline{20}} \times P(1.05)^{20} \times(1.05)^{n-20}>200,000}_{F V \text { at the end of } 20 \text { years }}
$$

We want the smallest integer such that the accumulations of premiums to time n exceed the sum insured

$$
n=53
$$

Exercise 6.1

The probability of profit is ${ }_{52} p_{30}=0.70704$. Note that the benefit will be paid at time 53 or layter if the life survives for 52 years from issue.

