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Inference about the regression parameters
(Statistical Modelling 1)

Dr Lubna Shaheen

Week 3, Lecture 2

Inference about the regression parameters
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Standardised Residuals

Three useful plots

. * Check whether a linear model is appropriate
di aga Inst x /Bl * Check the Normal assumptions

* Check for constant variance

* Called homoscedasticity

d; against y,

. * Good first indication of Normal residuals
QQ pIOt in R * Looking for a straight line

Standardised Residuals
Exams Style Question (2022) (7 oA

The thickness (x) and hardness (y) of 36 woods are plotted in the table below. We are
interested in establishing the relationship between the y and x values. For these data, using R,

we obtained the following output.
pﬂ — 1298 282

Im(formula = y ~ x)

Residuals:
Min 10 Median kY Max —_ é I /2 7
i -417.10 -142.03 -13.83 103.70 814.42 =
i ; Coefficients:
L ~ Estimate Std. Error t value Pri>|t|)
(Intercept) -1298 282 139.496 9.307 T.le-11 ees
x 61.127 2.927 20.882 < 2e-16 wes
Signif. codes: 0 ‘++=' 0.001 "#+=' 0.01 "+’ 0.05 .7 0.1 ' " 1 \' /
- ——— Residual standard error: 235.2 on 34 degrees of freedom
- Multiple R-squared: 0.9277,Adjusted R-squared: 0.9255 N
F-statistic: 436 on 1 and 34 DF, p-value: < 2.2e-18
/ "
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Standardised Residuals 34’/?@“”’{ d f:/
Now

AN 16‘/ Aﬂ//

e < —
@I.m‘knm at the value of R? above, is this linear model a reasonable fit? 3 P = O0- OS

@1 Viewing the residual plot, is there a possible problem with the constancy of

R’ 92,777  £zplair

N
QO
L
§

vanance?

Using the Q-Q plot and the Shapiro-Wilk test, check if there is a possible problem - .

with the assumption of normality? 4 fWW
1/ Looking at l'u plots above, is there any other transformation that you would like

to consider? Give reasons for your answer 3

/‘/O'Mf‘j W#‘dﬂ Z Can‘/?adt’?ﬁﬂ 2% pPLo o3
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Inference

Inference: A conclusion we reached on the basis of evidence and reasoning

Conclusions we would like to make:

@ Confidence Intervals for Parameters or the mean response

e Cl for 3,
e Cl for ﬂg
e Cl for jig
e Cl for yp

@ Tests of significance for parameters
e Hypothesis testing using t-Distribution for 4y and 3

© Prediction intervals for a new observation
e Prediction interval for a new value

Standardisation of /3;

In the linear regression model the sampling distribution of the ,31 of 3, is
normal with E(;) = 3; and var(j3;) = g—i, that is 31 ~ N(/3, ;—':)

We can standardized (1 by doing standardization, i.e

2
~ 2]
G — G ~ N(O« S_Xx)
'§1 — .."31
——— ~ N(0,1)
S

The variance usually is not known and it is replaced by its estimate then then Normal
distribution changes to a student t distribution.
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Applying Student t distribution

From Probability and Statistics Il we have the followings
if Z~ N(0.1) and U ~ X? and we have Z and U independent, then

~ t,

where v = degree of freedom.

2 e .
We will see later that U = L:Q)i ~ f’k’,f_z and 52 and f3; are independent. The
student t distribution applies here and we have

55

T oS b — B ot
\/(1'1—2!52 LZ 5/\;’ Sxx n-2

is distributed with (n-2) degrees of freedom.

Developing a confidence interval for j3;

This forms the basis for testing hypotheses and constructing confidence
intervals for ;.

We need to compute the Cl for 31 and to find a Cl for unknown parameter f# means to

find boundaries a and b such that
/A [ LA

‘P(a<9<b)=1—o{ VA P2-)

81— 5 . .
for some small values of a. If - — ~ t,_» and we define t,» to be the quantit

C SH'(\/S; n—2 .,2 q y
such that
P(|t,| < t%}=1—o-

This gives -

*{3?1—31
P(_uz‘{_' <turg)=1—a
SN
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Developing a confidence interval for j3;

P(, i"(/z % L Z"(/z\ = /-X.

2 L4y S = /-X
p(/{d/l/% VA ﬁ; ﬂ’ /z/g.;/)
A 4 oy B = 1o
S _f LB Lt e =) " -

{7('{"//2@-77 JS¥7
[l

A
. 4 S Vol
P(ﬁ"{"/’z[g—;’féﬂi4 f+ O/Z/’S;

Developing a confidence interval for [3;

S) S
A% Sxx \% Six

Suppose we want to generate a 95% confidence interval estimate for 1. This means that there
is a 95% probability that the confidence interval will contain the true value of 3;. Thus,

P(;"?l - t% < [ < .-'!:]\1 -+ t% ) =1—-a

« .

P([mean of estimate] — margin of error < /3, < [mean estimate] -+ margin of error) = 0.95 =~ —

. s )
P(.')’l — fo.025— < [ < 1+ tooss ) =0.95

S
NCw V5

where we define tp g5 to be the quantity such that

P{ tu| < to_g;»s} =0.95

by _

{D//l') n’Z
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Confidence interval for .-3\1

Confidence interval = {mean of estimate & margin of error (the variation in that
estimate)}

For a particular data set with £; and S2 calculated for that data

. s . s
[a,b] = (P — fgﬁffh + fg\/T—”)

Confidence interval for 3;

Comments: The confidence interval for 3; based on t:

, f1 and S2.
P and 5° {0//2”,,72

—-—

.

(1] t,/2: This also known as the critical value of t

@ [31: which in general is a random variable and

Q 52: which depends on our observed data.

This means that it only makes sense to calculate the confidence interval given a
particular set of observed data.

Remark: If the confidence interval (Cl) does not contain null hypothesis value, then the
results of /3 are statistically significant.
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Estimated Standard error of j3;

The estimate of the standard error is the square root of the estimated variance gz
— [ 52
se(f1) =4/ =—

(" ) v Sxx
We can then re-frame the confidence interval and the test statistic for 3; in terms of
this estimated standard error

5, _
= [~ = e
A 7 P24

N — . — 3
[a,b]= [51 — r%se(,ﬁl), B+ t%se(_b’l)] and T = -2 ~ th_o

se(f51)

o 68% Confidence Interval: 3; =1 x s (£

Ly |

(51)
(Br)

@ 99% Confidence Interval: J; & 3 x se(/31)
The confidence interval provides you with a set of plausible values for the
parameters

h-

Ly

1=
o 95% Confidence Interval: ;1 + 2 x se

[=

N

I

Confidence interval for 3

S

™

<

N

Example:

A
Using the R, we obtained the following output. - Se( ) _ ;_’ 6(»/3
S = 5B =

> mody <= lm(y ~ x)
> summary (mody)

Call:
Im(formula = y ~ x)

. /
e 0 Wediam W Hax ﬁ = Y29 248

-67.022 -31.346 -0.631 ;ijx; 54.734
14
Coefficients: QA A /8. 2[/[,
Estimate Std. or t value Pr(>|t|) f/f
(Intercept) 429.048  ((26.513) 16.179 1.69e-08 *%*
x 18.244 (5.643) 3.233 0.00898 ++

Signif. codes: 0 ‘#++' 0.001 “#++' 0.01 ‘+' 0.05 . 0.1 * " 1

Residual standard error: 39.2 on 10 degrees of freedom {

Multiple R-squared: 0.511, Adjusted R-squared: 0.4621 0(/ n,L
2)

)\ N
Se(p) = S 643 Be(f) = 26519
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Confidence interval for 3; A= twe {4«')—0 {
= sl ofy\n-2
F-statistic: 10.45 on 1 and 10 DF, p-value: 0.008979 d/z = Oﬂp— w )

> anova(mody)

Analysis of Variance Table 954 o7 f" ﬂ/ %A = /8. 244

Response: y
Df Sum Sq Mean Sq F value Pr(>F)
x 1 16059 16058.9 10.451 0.008979 *=

A s
Residualy 10 15365 1636.6 (FA,’ fo//z S//S-’;’\;, 9 ﬂ’n+{0(/2 -;a)

T
Signif. codes: O ‘#*»' 0.001 ‘#+’ 0.01 ‘+’ 0.05 “.” 0.1 * * 1

n=/2 (ﬁ/‘ {o//)’ g€(ﬁ/), %r—f' ’fo//zgﬂfﬂ/)>

: . —
Use the R output above to answer the questions below (]

18- 244 £ (22289 (5 -b42)
=[ 567065 3082

(a) By looking at the summary output, write down the fitted model

(b) Write down the formula to compute the 95% confidence interval for 3,7

CRCRC)

¢) Compute the 95% confidence interval for 3,

D]
Y

(d) Fill in the blanks in the following table.

Source of Variation DF Sum of Squares Mean Square F Value
I 1 SSR 16059 MSR 16058.9 ? 5
Re 12-?2 =7 | SSE=? MSE = 188 - 7

Ulhyn-2 = 10025 D= 2-2284 ol = 0-05

Confidence interval of 3;
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Developing the test statistics

Last week we used the ANOVA table and F statistics to test the null
hypothesis Hy : 5; = 0.

Now that we have a confidence interval for 31 there is another way to test this same
hypothesis.

81—
We have already seen T = % 5 LI th—2

VS

Developing the test statistics

Now under Hy = 31 = 0 this test statistics becomes

3
T = Sl ~ tho2

W SXX

which we can calculate for any particular data set. We then reject Hy if

| T| = tﬂ—z,%

£
This is mathematically equivalent to the F statistics test

P-values:

@ A p-value is a statistical measurement used to validate a hypothesis against observed data.
@ Small p-values are evidence against the null hypothesis.
@ A p-value of 0.05 or lower is generally considered statistically significant.
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Confidence Interval and Student t Distribution

CT e B 3 _g, Remarks: Looking at the confidence
f ?(—f-’_ < &_ﬁ' ‘t“-lr%)”"" interval. If the hypothesized value is

S/ H - - .
— ’,xr,de.i i} outside the confidence interval you reject
//,«_d N the null hypothesis.
s Wi
-R{% o £ s

Notice that this is equivalent to the t-test. An absolute value for t greater than 2 implies that
the proposed value is outside the confidence interval therefore reject. In Tact,a 95% confidence
interval contains all the values for a parameter that are not rejected by hypothesis test with a
false positive rate of 5%

@,+zge/(\ﬂ,)f 95y, Valees.

Confidence interval for 5

Because we are usually employing statistical modelling to better understand the
relationship between Y and X, we are generally more interested in 31 than /g
However, we can also develop confidence intervals and test hypotheses for /3y Last
week we found the sampling distribution for /3y

?2

5 . 1
Bo ~ N(Bo,o*(~ + <))
XX

We can now use the same methodology with 3y as earlier for /31
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Confidence interval for 5

The 100(1 — a)% confidence interval for g is

— —
3

[3_. b] = [3\0 - t(_zv 56(_50),30 + f% Se(éo)]

where

— 1 =2
£ — 21 R
se(fBo) = v"S [n - 5 )

XX

Test statistics for [

The test statistic to test the null hypothesis Hy : 59 = B for some value B (which may
or may not be zero) is
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o fio=©
/
Confidence interval for (/2 _ 90 /3] x&~32/8I5) /fa,_(. 2-73/7& ,?M’)
Exercise M _ ) 7> 98.

The following are the R output of the data Hegression Qutput from & y
givings the DI'IE—Way airfare {II‘I US dO”arS) and [II"I':IcF!:;In::;u:‘l:_:u::"LI-‘-:!nl.m.‘- for the production data were caleulated using R, giving
distance (in miles) from city A to‘;/ other 4 o

cities in the US, ﬁ’ . @O
@ Write down the formula to compute 95%
confidence interval for 5,7
@ Compute the 95% confidence interval for
.
1 n="
[—o= 095 n-2,04) —
d= 005 tr5,005 = 2./3

2 ;

Confidence interval for 5
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Confidence interval for the mean response i,

We can also develop confidence intervals and test hypotheses for the mean response,
that is for E[Y;|X; = x;] which is often written p;.

Under the simple linear regression model,

pi = E[YilXi = x;] = fo + Pixi

and p; is estimated by least squares at a particular value of x; as

i = Bo + Brx;
Po+

Sampling distribution for y;

Under the simple linear regression model, the sampling distribution of p; is also normal

X,‘—EZ

fir ~ N, (= + 5 50)
—— [ ng

which leads to a 100(1 — )% confidence interval for ji; of

[a, b] = [fii — tase(fhi), fii + tase(fii)]

(A — ’?)2

SoA

N /
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Test statistics for the mean response /i;

— —
where sefi; = 1/s2(% 4 %=X

n Sxx
we can test the null hypothesis, Hp : ji; = M for some value M ( which is not
necessary zero), with the test statistics
i — M
T= ;:—--—--—_ ~ th—2

se(/i;)

A note of caution

@ For the estimation of the mean response to be valid, The value of x; used should be
within the range of observed values for X

© The model has said nothing about the applicability of linear regression outside of this
range for x;

© We should not use inference about ;; as a method of extrapolation

Extrapolation: The action of estimating or concluding something by assuming that existing
trends will continue or a current method will remain applicable.

However we can now turn to using the model to predict the response value for some
new value of x; for which y; has not yet been observed.
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Prediction Interval for a new observation

Motivation:

@ Simple linear regression models can be used to predict the response at any given value of
the predictor

Beware predicting far beyond the range of the data

Point predictions should be accompanied by corresponding prediction intervals, providing
a range of plausible values

Suppose that we want to predict yy = y(xp) when the predictor x takes the value xg

(]

Note that predicting a response is about estimating the value of a random variable, say
vo, and not the value of a parameter, say g

Prediction Interval for a new observation

For a simple linear regression:

@ The standard deviation of the sampling distribution of /iy = o + fixo is

@ The standard error estimate for i is

R
- 1 (x-%

se( g = sv - + 5.

@ It can be shown that the sampling distribution of /iy is defined by

tio — 1o
——— ~1p2

@ we can use a linea 1 MC

x; for which y; has een ed

@ This is called a Prediction Interval sometimes just Pl for a new observation
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Prediction interval for a new observation

The prediction was
]
Yo = Bo+ Bixo + €0

o But yp = Bo + Bixo is also the natural estimate of E(yo) = po and E(eg) = 0.

@ Hence yjp, the predicted value of yp is the same as E(yy) = /fg, the estimated
mean response of E(yg).

@ However, difference arise if we want to construct corresponding confidence
intervals.

o We seek yg = pig + €g. The " point prediction” would be yg = iy = ,30 + ,-Cﬁxo

@ We know that
Xp — %2

)

o Therefore the distribution of jip — g is fip — pto ~ N(0,0%(% + 5“5))

. 1
fig ~ N(#o.ﬂz(; +

SXX

From g to v

o But rather than /iy — g we would prefer the distribution of ¥ — yo
@ If we add and subtract ey to the distribution equation for jig — jig we have

fio — pro = fio — (o + €o) + €0

. 1 xp—X°
= o= yo+ 0 ~ N(0,7(- + =)

@ But we know that eg ~ N(0,02) from the original model definition, so

XD—fz

1
yo — Yo ~ N(0,0%(1 + —+ )

Sxx
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From distribution to PI

To get the prediction interval we need to:

© standardise the normal distribution
@ replace the unknown variance o2 with its estimator 52

1. leads to L (U
Vo1 + 14 22y
2. gives us Yo — Yo = ~ th-2
VR4 14 mEy
——

Prediction interval for y

The 100(1 — )% prediction interval for yq is then

1 =2
Yo & ta 52(1+—+XO X)
- = n Six
Vv " e

Note the prediction interval for yg is usually much wider than the confidence interval
for p1g because the random variability term ¢p impacts the PT.
—— ~———
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Confidence Interval and Prediction interval plot

variable around the normal curve with
mean jig, i.e yo ~ N(ptg,o%) with
variability due to 2.

@ Different samples give different
regression lines with slightly different iy

© /iy has variability due to sampling
distribution. ¥y has two sources of
variability from the model distribution
and the sampling distribution of iy

@ i is a fixed mean parameter of normal © this explain why the Pl for y, is wider
curve when x = x and Yj is a random than the CI for the mean ;i

Confidence Interval and Prediction interval plot

Confidence interval for mean response and prediction,

Note that the CI for mean response is narrower in the middle and is much narrower than the Pl
for predicted response.
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Confidence Interval Versus Prediction Interval

Example: For the given small data set calculate the_90% confidence interval and prediction
intervals for the response when x* = 1 given the simple linear regression line have equation
——

n=4

W R R =X

4
5
6

¥ =15+ 15x,

[aX$N

‘Z’o-hz = 2°920

_A//Z -2

9o0% CT

Qo L

Degrees of
freedom (df)

O ® N DD WN -

an =23

383IFaF

20

s° =025 a

= Jo54 I'S(1) =73.

p—
—

>

x—X)P=2= STE

port estinel ©.

34 2:9290(0-033)= (/-74,4.26)

C,]\:P ANy e

Critical values of t for two-tailed tests

Significance level (a)

2 a5
1638 1
1533 1
1476 18
1.440 16
1415 18
1397 1.59;
383 1.574
1372 1.55¢
36 1548
15 3
350 30
1.345 3
133
1333
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1

05

12.706

2447
2365
2.306
2262
2228

2120
ano
2301
2093
2088

025

01

3,707
3.490
3355
3.250

3189

2.861

-_—

—

ﬂ’j\ = 31—2»929

~
1~




