§4 Taybors Theorem
\$4.1 Higher Ordo Derivative

$$
f^{(n+1)}(x)=\frac{d}{d x}\left(f^{(n)}(x)\right)
$$

If the function $f^{\prime}: \Omega \rightarrow \mathbb{R}$ is again differential, we can consider $f^{\prime \prime}: \Omega \rightarrow \mathbb{R} \quad \frac{d^{2} f}{d x^{2}}=\frac{d}{d x}\left(f^{\prime}(x)\right)$
Definition 4.1.1 Let $f: \Omega \rightarrow \mathbb{R}$ be n-times differential at $x_{0} \in \Omega$ if for some $n \in \mathbb{N}$, the nth derisature exists.
We call $f^{(k)}$ the k th derivative is given by ${ }^{\prime \prime} \cdot(x)=f^{\prime}(x)$

$$
f^{(0)}\left(x_{0}\right)=f\left(x_{0}\right), \quad f^{(k+1)}\left(x_{0}\right)=f^{(k)^{\prime}}\left(x_{0}\right)
$$

We say f in n-times continuously differentiable at x_{0} if $f^{(n)}\left(x_{0}\right)$ is continuous at \underline{x}_{0} For n "small", we isl stten nite $f^{(2)}=f^{\prime \prime}$
\$4.2 Taylor Series
Deft 4.2.1 Let f be defined on some interval containing 0 .
If f is k-times diff at $x=0$. then the sum $\sum_{n=0}^{k} \frac{f^{(M)}(0) x^{n}}{n!} \quad$ is called the Taylor sun if f is infrictely differentiable at O (derivatives of) then the series $\sum_{n=0}^{\infty} f^{(n)}(0) \frac{x^{n}}{n!}$ is called the Bulorseries of f The remain der $R(f, x)=f(x)-\sum_{n=0}^{\infty} f^{(n)}(0) \frac{x^{n}}{n!}$
Note $f(x)=\sum_{n=0}^{\infty} f^{(n)}(0) \frac{x^{n}}{n 1}$ if,$R(f, x)=0$.
\$4.2.2. Power series expansions
Suppose that $f(x)$ can be written as a power series, 1.e.

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots+a_{n} x^{n}+\cdots \sum_{n=0}^{\infty} a_{n} x^{n}
$$

Note:

$$
\begin{aligned}
& f(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \Rightarrow f(0)=a_{0} \\
& f^{(n}(x)=\sum_{n=0}^{\infty} n a_{n} x^{n-1} \Rightarrow f^{(1)}(0)=1 \cdot a_{1} \\
& f^{(2)}(x)=\sum_{n=0}^{\infty} n(n-1) a_{n} x^{n-2} \Rightarrow f^{(2)}(0)=2 \cdot 1 \cdot a_{2}
\end{aligned}
$$

Inductive argument gives $f^{(n)}(0)=n!a_{n}$

$$
a_{n}=\frac{f^{(n)}(0)}{n!}
$$

Example $f(x)=\sin (x)=\sum a_{n} x^{n}$

$$
\begin{aligned}
& f^{(0)}(0)=\sin (0)=0 \\
& f^{(1)}(0)=\cos (0)=1 \\
& f^{(2)}(0)=-\sin (0)=0 \\
& f^{(3)}(0)=-\cos (0)=-1 \\
& f^{4}(0)=\sin (0)=0 \\
& f^{(5)}(0)=f^{(1)}(0), \text { etc } . \\
& f^{(6)}(0)=f^{(2)}(0), \text { etc }
\end{aligned}
$$

derivatives
repeat every 4 th differentiation!

So $f(x)=\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots$

$$
=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{x^{n}}{n!}
$$

Remainder $=0$.
correct!

Example 2

$$
\begin{array}{ll}
f(x)=e^{x}, f^{(n)}(x)=e^{x}, f^{(n)}(0)=1 & \text { Remanider }=0 \\
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \quad \text { correct! }
\end{array}
$$

See later!

Example $3 \quad f(x)=\left\{\begin{array}{cl}-1 / x^{2} & x \neq 0 \\ 0 & x=0\end{array} \quad=\exp \left(-1 / x^{2}\right)\right.$

$$
f^{x}(x)=e^{-1 / x^{2}}\left(\frac{2}{x^{3}}\right)-f^{(2)}(x)=e^{-\frac{1}{x^{2}}}\left(\frac{-6}{x^{4}}\right)+e^{-\frac{1}{x^{2}}}\left(\frac{2}{x^{3}}\right)^{2}
$$

typical terms are $\frac{e^{-\frac{1}{x^{2}}}}{x^{k}}=\frac{1}{e^{1 / x^{2}} \cdot x^{k}} \quad$ for some $k>0$

$$
\begin{aligned}
& \text { Observe } \frac{1}{0 \leqslant} \begin{array}{l}
\left\lvert\, e^{\left.\frac{1}{1} x^{2} \cdot x^{k} \right\rvert\,}\right.
\end{array}=\frac{1}{\left(1+\frac{1}{x^{2}}+\frac{1}{2!}\left(\frac{1}{x^{2}}\right)^{2}+\frac{1}{3!}\left(\frac{1}{x^{2}}\right)^{3}+\right)} \cdot \frac{1}{x^{k} \mid \quad x \neq 0} \\
&
\end{aligned}
$$

So $\frac{1}{e^{1 / x^{2}} \cdot x^{k}} \rightarrow 0$ as $x \rightarrow 0$ since $n!|x|^{2 n-k} \rightarrow 0$ as $x \rightarrow 0$, provided we choose $2 n>k$.

$$
\begin{aligned}
& \therefore f^{(n)}(x) \rightarrow 0 \text { as } x \rightarrow 0 \\
& f(0)=0 \\
& f^{(1)}(0)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{e^{-1 / x^{2}}}{x}=0 . \\
& f^{(2)}(0)=\lim _{x \rightarrow 0} \frac{f^{\prime}(x)-f^{\prime}(0)}{x}=\lim _{x \rightarrow 0} \frac{f^{\prime}(x)}{x}=0 \\
& f^{(n)}(0)=0 \vdots \\
& e^{-1 / x^{2}}=0+0+0+\cdots=0 \\
& \text { Remainder }=f(x)-\sum_{n=0}^{\infty} f^{(n)}(0) x^{n}=0 \\
& \text { See later. }
\end{aligned}
$$

Therren 4.2.2 (Taylor's Theorem)
Assume that f is $(k+1)$-times differentiable on some open interval contains $[0, a]$ and let $x \in(0, a)$ Then for sulu e $c \in(0, x)$, we have

$$
f(x)=f(0)+f^{(1)}(0) x+\frac{f^{(b)}(0) x^{2}}{2!}+\cdots+\frac{f^{(k)}(0) x^{k}}{3!}+R_{(k, a)} f(x)
$$

Such that $\mathcal{P}_{(k, 0) f(x)}=\frac{f^{-(k+1)}(c) / x^{k+1}}{(k+1)!}$
Generalised MVThum to order $(k+1)$

Proof Fix $x \neq 0$, let M sole the equation

$$
f(x)=\sum_{n=0}^{k} \frac{f^{(n)}(0)^{n} x}{n!}!\frac{M_{x}}{n+1}!
$$

for $x \in(0, a)$.
We need to show that $M=f^{R+1}(c)$, forlsome $c \in(0, x)$,
Define

$$
g(t)=\sum_{n=0}^{k} \frac{f^{(n)}(0) t^{n}}{n!}+\frac{M t^{k+1}}{(k+1)!}-f(t)
$$

where $t \in(0, x)$.
By direct substitution $g(0)=g(x)=0$
\therefore by MVT $\exists x_{1}$ such that

$$
g^{(1)}\left(x_{1}\right)=g^{\prime}\left(x_{1}\right)=0 \text { isth } 0<x_{1}<x<a
$$

Now consider

$$
\begin{aligned}
& \begin{aligned}
g^{(1)}(t) & =\sum_{n=1}^{k} \frac{f^{n}(0)}{n!} n t^{n-1}+\frac{M t^{k}}{k!}-f^{\prime}(t) \\
g^{(1)}(0) & =\sum_{n=1}^{k} \frac{f^{(n)}(0)}{n!} n(0)^{n-1}+0-f^{\prime}(0) \\
& =f^{(1)}(0)-f^{(n)}(0)=0 .
\end{aligned}
\end{aligned}
$$

and $g^{(1)}\left(x_{1}\right)=0$
$\therefore \exists x_{2} \in\left(0, x_{1}\right)$ such that $g^{(2)}\left(x_{2}\right)=0$
Repeating this differentiation reduces $\underset{(k+1)!}{M t^{k+1}} \rightarrow \frac{M t^{k}}{k!} \rightarrow$
$\rightarrow \frac{M t^{k-1}}{(k-1)!} \rightarrow \cdots \rightarrow \frac{M t}{1!}$ and finally to M, a constant " after $(k+1)$ steps *)

Hence we get repeatedly for $m<k+1$ $g^{(m)}\left(x_{m}\right)=0$ for $m<k+1$ for a sequence of values x_{m} satistying

$$
0<x_{k+1}<x_{k}<x_{k-1} \cdots<x_{1}<x
$$

by repeated use of Rolle's theorem.
Now $g^{(k+1)}\left(x_{k+1}\right)=0$; and
But $g^{(k+1)}(t)=M-f^{(k+1)}(t) \quad($ see $)$

$$
\Rightarrow f^{(k+1)}\left(x_{R+1}\right)=M
$$

Let $c=x_{k+1} \&$ we get $M=f^{(k+1)}(c), c \in(0, x)$

Notation For the general expansion about $x=a$

$$
\tau_{(k, a)} f(x)=\sum_{n=0}^{k} \frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

The remainder satisfies

$$
R_{(k, a)} f(x)\left(=R_{(k, a)}(x)\right)=f(x)-T_{(k, a)} f(x)
$$

\&

$$
R_{c, a)} f(x)=R_{(k, a)}(x)=\frac{f^{(k+1)}(c)}{(k+1)!}(x-a)^{k+1}
$$

This is the LAGRANGE form of the remainder
Making $f(x)$ the subject we have

$$
f(x)=T_{(k, a)} f(x)+R_{(k, a)} f(x)
$$

4.2.3 Examples
(i)

$$
\begin{aligned}
& f(x)=e^{x}, f^{(1)}(x)=e^{x}, f^{(n)}(x)=e^{x}, e^{0}=1 . \\
& \therefore \quad \because f(x)=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} ; \text { if } \lim _{k \rightarrow \infty} R_{k, 0}(x)=0
\end{aligned}
$$

Lagrange Remainder is

$$
\begin{array}{ll}
\therefore f^{(0)}(x)=e^{x}!\left|R_{(k, 0)} f(x)\right| & =\frac{f^{(k+1)}(c) x^{k+1}}{(k+1)!} \\
\vdots f^{(k+1)}(x)=e^{x}! & =\frac{e^{c} x^{k+1}}{(k+1)!} \text { for some } c \in(0, x) .
\end{array}
$$

Now $0<c<x$

$$
\left|R_{(k, 0)} f(x)\right|<\left|\frac{e^{x} \cdot x^{k+1}}{(k+1)!}\right| \xrightarrow{?} 0 \quad \text { as } k \rightarrow \infty .
$$

Let $k>|x|$

$$
\begin{aligned}
& \text { k. }>|x| \\
& \left|R_{(k, 0)} f(x)\right|<\frac{e^{x}|x|^{k}}{k!} \cdot \frac{|x|}{k+1} \cdot \frac{|x|}{k+2} \cdots \cdot \frac{|x|}{k} \cdot \frac{|x|}{k+1}
\end{aligned}
$$

"fixed" $<\frac{e^{x}|x|^{k}}{k!}\left(\frac{|x|}{k+1}\right)^{(k)-k} \underset{\text { constant }<1}{\rightarrow \text { larger powers }}$
Fmally $\left(\frac{|x|}{k+1}\right)^{k} \rightarrow 0$ as $\operatorname{constant}_{k \rightarrow \infty}$ since $\frac{|x|}{k+1}<1$

$$
\therefore \exp (x)=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \text { Conclusion! }
$$

(ii)

$$
\begin{array}{r}
f(x)=\sinh (x) \quad\left(\text { note } \sinh ^{\prime}(x)=\cosh (x)\right. \\
\text { en } \cosh (x)=\sinh (x))
\end{array}
$$

$$
\begin{array}{ll}
f^{(2 n)}(x)=\sinh (x)! & \therefore \cdots \\
i f(x)=\sinh (x)=\sum_{n=0}^{\infty} \frac{x^{2 n+1}}{(2 n+1)!} ; \\
\left.i f^{(2 n+1)}(x)=\cosh (x)\right)_{1} & \ddots
\end{array}
$$

Assume $x>0$, Lagrange Remainder is:

"or $\cosh (c)^{\prime \prime}$

$$
=\left|\frac{\sinh (c)}{(k+1)!} x^{k+1}\right|<\left|\frac{e^{c} x^{k+1}}{(k+1)!}\right|<\left|\frac{e^{x} x^{k+1}}{(k+1)!}\right|, 0<c<x
$$

$$
\begin{aligned}
& \text { Example } f(x)=\sin x \\
& f(x)=\sin x, f^{\prime}(x)=\cos x, f^{\prime \prime}(x)=-\sin x, f^{\prime \prime \prime}(x)=\cos x \\
& T_{(k, 0)} f(x)=\sum_{n=0}^{k} \frac{f^{(n)}(0)}{n!} x^{n}+R_{(k, 0)} f(x) \\
& R_{(k, 0)} f(x)=f^{(k+1)}(c) \frac{x^{k+1}}{(k+1)!} \\
& f(x)=\sin x, \quad \therefore\left|f^{(n)}(x)\right|= \begin{cases}|\sin (x)| & n \text {. even } \\
|\cos (x)| & n \cdot \text { odd. }\end{cases} \\
& \because\left|f^{((1)}(x)\right| \leqslant(\sqrt{1}), \forall x \Rightarrow|R(k, 0) f(x)| \\
& \begin{array}{l}
\text { uise }-\cdots \\
|\sin x| \leqslant 1 \\
|\operatorname{los} x| \leqslant 1
\end{array}, \cdots(1) \frac{|x|^{k+1}}{(k+1)!} \\
& \rightarrow{ }_{a k \rightarrow \infty} \\
& \text { ef. exanple: } \\
& \therefore \text { of } f(x)=e^{x_{1}},
\end{aligned}
$$

Example $f(x)=\ln (1+x)$

$$
\begin{aligned}
& f^{0}(0)=0, f^{(i)}(x)=\frac{1}{1+x}, f^{(2)}(x)=\frac{-1}{(1+x)^{2}}, \\
& f^{(3)}(x)=\frac{2}{(1+x)^{3,}} \cdots \cdots, f^{(n)}(x)=(-1)^{n+1} \frac{(n-1)!}{(1+x)^{n}} \\
& T_{(k, 0)} f(x)=0+\frac{1}{1!} \cdot x-\frac{1!}{2!} x^{2}+\frac{2!x^{3}}{3!}-\frac{3!x^{4}}{4!}+\cdots+(-1)^{k+1} \frac{x^{k}}{k} \\
& =x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\frac{x^{5}}{5}+(-1)^{k+1} \cdot \frac{x^{k}}{k} \\
& \left|R_{(k, 0)} f(x)\right|=\left|\frac{x^{k+1}}{(k+1)!} \cdot f^{(k+1)}(c)\right|, \quad 0<c<x .
\end{aligned}
$$

where,

$$
\left|f^{(k+1)}(c)\right|=\left|\frac{k!}{(1+c)^{k}}\right|
$$

$$
\frac{1}{(l+c)^{k}<1 \text { for }} c>0
$$

$$
\therefore \quad\left|R_{(k, 0)} f(x)\right|=\frac{\mid x x^{k+1}}{|1+c|^{k}(k+1)}<\frac{1}{(k+1)}
$$

If we assume $|x|<1$, then $\frac{|x|^{k+1}}{(k+1)} \rightarrow 0$ as

$$
\begin{aligned}
& k \rightarrow \infty \\
& \therefore \quad \ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3} \cdots \sum_{n=1}^{\infty}(-1)^{n+1} \frac{x^{n}}{n} ;
\end{aligned}
$$

for $\quad|x|<1 \approx$

Example $\quad f(x)= \begin{cases}e^{-1 / x} & , x>0 \\ 0 & x \leq 0\end{cases}$
k th Lagrange remainder $\Rightarrow 0$ as $k \rightarrow \infty$. Why?
Show $f^{(n)}(0)=0 \quad \forall n . \quad T_{(\infty, 0) f(x) \equiv 0, f(x) \neq 0}$

$$
\therefore \quad R(\infty 0,0) f(x) \neq 0
$$

NOTE

$$
\begin{aligned}
& f^{(1)}(x)=e^{-\frac{1}{x}} \frac{1}{x^{2}}, f^{(2)}=e^{-\frac{1}{x}}\left(\frac{1}{x^{2}}\right)^{2}+e^{-\frac{1}{x}}\left(\frac{-2}{x^{3}}\right) \\
& f^{(k)}(x)=e^{-\frac{1}{x}}\left(\text { polynomial in }\left(\frac{1}{x}\right)\right)
\end{aligned}
$$

you can prove $\frac{f^{(k)}(x)}{x} \rightarrow 0$

- hence $f^{(k+1)}(0)=0 \Rightarrow T(n, 0) f(x)=0!$

END OF WEEK 3

