WEEK3 \$4 Taylors Theorem $\int^{(n+1)} (sc) = \frac{d}{dx} \left(f^{(n)}(x) \right)$ \$4.1 Higher Ordo Derivative again differential, If the function f:SZ->R is we can consider $f'': SZ \rightarrow \mathbb{R}$ $\frac{d^2 f}{dx^2} = \frac{d}{dx} (f'(x))$ Definition 4.1.1 Let f: R > R be n-times differential at $x_0 \in \Omega$ if for some $n \in \mathbb{N}$, the n-th (df(x)-f'(x))denialme exists, dx = f''(x)We call $f^{(k)}$ the k-th devisable is given by $f^{(0)}(x_0) = f(x_0), \quad f^{(k)}(x_0) = f^{(k)}(x_0)$ Ne say f is n-times continuously differentiable at xo if flm(xo) is continuous at xo For n "Small", we will stren nicte $f^{(2)} = f''$

$$\begin{split} & \underbrace{\$_{+2} \quad \text{Taylor Series}}_{\text{Def}^{n} \ +2.1} \quad \text{Let } f \text{ be addined on some interval}}_{\text{containing } O}, \\ & \text{If } f \text{ is } k-times \quad \text{diff at } z = O}, \text{ then the sum} \\ & \underbrace{\$_{k}}_{n=0} \quad \frac{f^{(n)}(0)z^{n}}{n!} \quad \text{ is called the Taylor sum}}_{n=0} \quad \frac{f^{(n)}(0)z^{n}}{n!} \quad \text{ is called the Taylor sum}}_{n=0} \\ & \text{if } f \text{ is infinitely differentiable at } O \left(\frac{\text{derivatives } g}{\text{all oxder}} \right) \\ & \text{then the series } \underbrace{\$_{n=0}^{O}}_{n=0} f^{(n)}(0) \underbrace{z^{n}}_{n=1} \text{ is called the Taylor series } gf \\ & \text{The neuroninder } \mathbb{R}(f,z) = f(z) - \underbrace{\$_{n=0}^{O}}_{n=0} f^{(n)}(0) \underbrace{z^{n}}_{n=0} \\ & \text{Note } f(z) = \underbrace{\$_{n=0}^{O}}_{n=0} f^{(n)}(0) \underbrace{z^{n}}_{n=0} \text{ if } \mathbb{R}(S,z) = O \end{split}$$

\$4.2.2. Power series expansions Suppose that f(x) can be witten as a power series, i.e. $f[x] = 0_0 + \alpha_1 x + \alpha_2 x^2 + \alpha_3 x^3 + \cdots + \alpha_n x^n + \cdots = \sum_{n=1}^{\infty} \alpha_n x^n$

Note:

$$f(x) = \sum_{n=0}^{\infty} a_n x^n \implies f(0) = a_0$$

$$f'(x) = \sum_{n=0}^{\infty} na_n x^{n-1} \implies f^{(1)}(0) = 1.a_1$$

$$f^{[2]}(x) = \sum_{n=0}^{\infty} n(n-1)a_n x^{n-2} \implies f^{(2)}(0) = 2.1.a_2$$
Enductive argument gives $f^{(n)}(0) = n!a_n$

$$a_n = f^{(n)}(0)$$

Example
$$f(x) = sin(x) = a_n x^n$$

$$f^{(b)}(0) = \sin(0) = 0$$

$$f^{(1)}(0) = \cos(0) = 1$$

$$f^{(2)}(0) = -\sin(0) = 0$$

$$f^{(3)}(0) = -\cos(0) = -1$$

$$f^{(4)}(0) = \sin(0) = 0$$

DERIVATIVES REPEAT EVERY 4th differentiation

$$f^{(5)}(0) = f^{(2)}(0)$$
, etc.
 $f^{(6)}(0) = f^{(2)}(0)$, etc.

So
$$f(x) = \sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$

$$= \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n!}$$
Covrect!

See later!

Example 3
$$f(x) = \int_{e}^{e^{-1}/x^{2}} x \neq 0$$
 $= \exp(-\frac{1}/3c^{2})$
 $g(y) = \exp(y); y = h(x) = -\frac{1}{x^{2}}$
 $f'(x) = e^{-\frac{1}{2}c^{2}}(\frac{\pi}{x^{3}}) - \int_{e}^{(2)}(x) = e^{-\frac{1}{x^{2}}}(\frac{-6}{x^{4}}) + e^{-\frac{1}{x^{2}}}(\frac{2}{x^{3}})^{2}$
typical terms are $e^{-\frac{1}{2}c^{2}} = \frac{1}{e^{\frac{1}{2}c^{2}}}$ for some $k > 0$
Observe
 $0 \le |e^{\frac{1}{2}c^{2}}, x|| = (1 + \frac{1}{x^{2}} + \frac{1}{2!}(\frac{1}{2x})^{2} + \frac{1}{3!}(\frac{1}{2x})^{3} + \frac{1}{2}) + \frac{1}{x^{2}}|x|$ $x \neq 0$
 $\le \frac{1}{e^{\frac{1}{2}c^{2}}, x||^{2}} = \frac{1}{e^{\frac{1}{2}c^{2}}} e^{-\frac{1}{2}c^{2}} = n! |x|^{2n-k}$

So
$$\frac{1}{e^{k^2}x^k} \rightarrow 0$$
 as $x \rightarrow 0$ since
 $n! |x|^{2n-k} \rightarrow 0$ as $x \rightarrow 0$, provided we choose $2n > k$.

$$:= f^{(m)}(x) \rightarrow 0 \quad a \quad x \rightarrow 0$$

$$f(0) = 0$$

$$f^{(1)}(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{e^{-1/x^2}}{x} = 0,$$

$$f^{(2)}(0) = \lim_{x \to 0} \frac{f'(0) - f'(0)}{x} = \lim_{x \to 0} \frac{f'(x)}{x} = 0$$

$$f^{(n)}(0) = 0$$

$$e^{-i/x^2} = 0 + 0 + 0 + \dots = 0$$

$$X$$

$$Remander = f(x) - \sum_{k=0}^{\infty} f^{(n)}(0|x) = 0$$
See later.

Theorem 4.2.2 (Taylov's Theorem)
Assume that f is
$$(k+1)$$
-times differentiable on
some open into val containing $[0, a]$ and let $xe(0, a)$
Then for some $c \in (0, x)$, we have
 $f(x) = f(a) + f^{(1)}(0)x + \frac{f^{(0)}(0)x^{2}}{2!} + \frac{f^{(0)}(0)x^{k}}{3!} + \frac{f(k, a)}{3!}f(x)$
Such that $\frac{f(x)}{2!} = \frac{f^{(k+1)}(c)}{(k+1)!}$
Generalised MVThin to order $(k+1)$

Proof Fix $z \neq 0$, let M some the equation $f(x) = \sum_{\substack{k=0 \ n \neq 0}}^{k} \binom{n}{(0)} \frac{1}{2} + \binom{M_2}{(k+1)!}$ for $x \in (0, a)$.

We need to show that $M = f^{R+1}(c)$, for/some $C \in (0, \infty)$. Define $e = \frac{k}{n=0} f^{(n)}(0)t^{n} + Mt^{k+1} - f(t)$ $g(t) = \sum_{n=0}^{k} f^{(n)}(0)t^{n} + Mt^{k+1} - f(t)$ where $t \in (0, x)$. By direct substitution g(0) = g(x) = 0by MVT 3 a, such that $g^{(1)}(sc_i) = g'(x_i) = 0$ inth $0 < x_i < x < \alpha$

Now consider
$$k = \frac{f'(0)}{n!} nt^{n-1} + \frac{Mt^{k}}{k!} - f'(t)$$

 $g''(t) = \sum_{n=1}^{k} \frac{f''(0)}{n!} nt^{n-1} + \frac{Mt^{k}}{k!} - f'(t)$

$$g^{(n)}(0) = \sum_{n=1}^{k} \frac{f^{(n)}(0)}{n!} n[0]^{n-1} + 0 - f'(0)$$
$$= f^{(n)}(0) - f^{(n)}(0) = 0.$$

and
$$q^{(n)}(x_1) = 0$$

 $\exists x_2 \in (0, x_1)$ such that $q^{(2)}(x_2) = 0$

(Repeating this differentiation reduces
$$\frac{Mt^{k+1}}{(k+1)!} \rightarrow \frac{Mt^k}{k!} \rightarrow \frac{Mt^{k-1}}{(k-1)!} \rightarrow \cdots \rightarrow \frac{Mt}{1!}$$
 and finally to M, a constant'
after (k+1) steps (*)

Hence we get repeatedly for
$$m < k+1$$

 $g^{(M)}(x_m) = 0$ for $m < k+1$ for a sequence
 $g^{(M)}(x_m) = 0$ for $m < k+1$ for a sequence
 $g^{(M)}(x_m) = 0$ for $m < k+1$ for a sequence
 $0 < x_{k+1} < x_R < x_{R-1} \dots < x_l < x$
by repeated use g Rollé's theorem.
Now $g^{(k+1)}(x_{R+1}) = 0$, and
But $g^{(k+1)}(t) = M - f^{(k+1)}(t)$ (see \textcircled{R})
 $\Rightarrow f^{(k+1)}(x_{R+1}) = M$
(at $c = x_{R+1} \quad \& we get$ $M = f^{(k+1)}(c)$, $c \in (0, x)$

Notation For the general expansion about
$$x = a$$

 $T_{k,a}$, $f(t) = \sum_{n=0}^{k} \frac{f^{(n)}(a)}{n!} (x-a)^{n}$

The knainder Satisfies

$$R_{(k,\alpha)}f(x)(=R_{(k,\alpha)}(x)) = f(x) - T_{(k,\alpha)}f(x)$$

$$R_{(k,\alpha)}f(x) = R_{(k,\alpha)}(x) = \frac{f^{(k+1)}(c)(x-\alpha)^{k+1}}{(k+1)!}$$

This is the LAGRANGE form of the knamder Making f(x) the subject we have $f(x) = T_{(k,a)}f(x) + R_{(k,a)}f(x)$

4.2.3 Examples
(i)
$$f(x) = e^{x}$$
, $f^{(1)}(x) = e^{x}$, $f^{(n)}(x) = e^{x}$, $e^{0} = 1$.
(i) $f(x) = e^{x}$, $f^{(1)}(x) = e^{x}$, $f^{(n)}(x) = e^{x}$, $e^{0} = 1$.
(i) $f(x) = e^{x}$, $f^{(n)}(x) = e^{x}$, $f^{(n)}(x) = 0$
Lagrange Remander in
 $f^{(0)}(x) = e^{x}$, $\left| R_{(k,0)}f(x) \right| = \frac{f^{(k+1)}(c)}{(k+1)!}$, $f^{(n)}(x) = e^{x}$, $f^{$

$$\begin{aligned} \left| \begin{array}{c} R_{(k,o)} f(z) \right| < \frac{e^{\chi} |\chi|^{K}}{K!} \frac{|\chi|}{K+1} \frac{|\chi|}{K+2} \frac{|\chi|}{K} \frac{|\chi|}{K+1} \frac{|\chi|}{K+1} \frac{|\chi|}{K+1} \\ \stackrel{\text{fixed}}{\longrightarrow} \left| \begin{array}{c} e^{\chi} |\chi|^{K} \\ \downarrow \end{array} \right| \left| \begin{array}{c} |\chi| \\ |$$

(ii)
$$f(x) = \sinh(x)$$
 (note $\sinh(x) = \cosh(x)$
 $e^{i} \cosh(x) = \sinh(x)$
 $if^{(2)}(x) = \cosh(x)$
 $if^$

.

Example
$$f(x) = \sin x$$
, $f'(x) = \cos x$, $f''(x) = -\sin x$, $f''(x) = \cos x$
 $f(x) = \sin x$, $f'(x) = \cos x$, $f''(x) = -\sin x$, $f''(x) = \cos x$
 $T_{(k,p)}f(x) = \sum_{n=0}^{k-1} \frac{f^{(n)}(0)}{n!} x^n + R_{(k,0)}f(x)$
 $R_{(k,p)}f(x) = \frac{f^{(k+1)}(c)}{n!} \frac{2c^{k+1}}{(k+1)!}$
 $f(x) = \sin x$, $\cdots |f^{(n)}(x)| = \begin{cases} 1\sin(b) & n \cdot even \\ 1\cos(b) & n \cdot even \\ 1\cos(b) & n \cdot even \\ 1\cos(b) & n \cdot even \end{cases}$
 $rise$
 $[f^{(n)}(x)] \leq 1$, $\forall x \Rightarrow |R_{(k,0)}f(x)|$
 $rise$
 $[mx] \leq 1$, $\cdots = 1$, $[x]^{k+1}$
 $[mx] \leq 1$, $\cdots = 1$, $[x]^{k+1}$
 $[mx] \leq 1$, $\cdots = 0$, $[x]^{k+1}$
 $[mx] \leq 1$, $\cdots = 0$, $[x]^{k+1}$
 $[mx] \leq 1$, $\cdots = 0$, $[x]^{k+1}$
 $[mx] \leq 1$, $\cdots = 0$, $[x]^{k+1}$
 $[mx] \leq 1$, $\cdots = 0$, $[x]^{k+1}$
 $[mx] \leq 1$, $\cdots = 0$, $[x]^{k+1}$
 $[mx] \leq 1$, $\cdots = 0$, $[x]^{k+1}$
 $[mx] \leq 1$, $\cdots = 0$, $[x]^{k+1}$

Example f(x) = ln(1+sc) $f'(0) = 0, f''(x) = \frac{1}{1+x}, f''(x) = \frac{-1}{(1+x)^2},$ $f^{-(3)}(x) = \frac{2}{(1+x)^{3}} \cdots f^{(n)}(x) = (-1)^{n} \frac{(n-1)!}{(1+x)^{n}}$ $T_{(k,0)}f(x) = 0 + \frac{1}{1!} x - \frac{1!}{2!} x^{2} + \frac{2! x^{3}}{3!} - \frac{3! x^{4}}{4!} + \dots + (-1) \frac{k!}{k}$ = $x - \frac{x^{2}}{2} + \frac{x^{3}}{3!} - \frac{x^{4}}{5!} + \frac{x^{5}}{5!} + (-1)^{k+1} \frac{2! x^{k}}{k}$ $\left| \mathbf{K}_{(k,0)} \mathbf{f}_{(x)} \right| = \left| \frac{\mathcal{X}^{k+1}}{(k+1)!} \cdot \mathbf{f}^{(k+1)}(c) \right|,$ 0< c < > . where, $\frac{1}{(l+c)^{k}} < 1$ for $\frac{1}{c70}$, $\left| f^{(k+1)}(c) \right| = \left| \frac{k!}{(1+c)k} \right|$

$$|R_{(k,0)}f(x)| = \frac{|x|^{R+1}}{|1+c|^{R}(k+1)} < \frac{|x|^{R+1}}{(k+1)}$$

If we assume $|\pi | < 1$, then $\frac{|x|^{R+1}}{(R+1)} \to 0$ as
 $k \to \infty$
 $k = n(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \cdots + \frac{1}{2} + \frac{n^{3}}{3} - \cdots + \frac{n^{3}}{2} + \frac{n^{3}}{3} - \cdots + \frac{n^{3}}{2} + \frac{n^{3}}{3} +$

Example
$$f(x) = \int_{0}^{1} \frac{1}{x} , x > 0$$

(0 $x \le 0$

b-th Lagrange remaindes
$$\neq 0$$
 as $k \rightarrow \infty$. Why?
Show $f^{(r)}(0)=0 \forall n$. $T(\infty, 0)f(x)\equiv 0$, $f(x)\neq 0$
 $\therefore R(\infty, 0)f(x)\neq 0$

NOTE
$$f'(x) = e^{-\frac{1}{2}x} \frac{1}{x^2}, f^{(2)} = e^{-\frac{1}{2}} \left(\frac{1}{x^2}\right)^2 + e^{-\frac{1}{2}x} \left(\frac{2}{x^3}\right)$$

 $f^{(k)}(x) = e^{-\frac{1}{2}} \left(polynomial in\left(\frac{1}{x}\right)\right)$
You can prove $f^{(k)}(x) \rightarrow 0$

-hence
$$f^{(k+1)}(0) = 0 \implies T_{(n,0)}f(x) = 0$$

