MTP24, Lecture 4: Martingales (continued), Convergence and the Brownian Motion

Alexander Gnedin

Queen Mary, University of London

Stopping times

Definition Stopping time adapted to filtration $\mathcal{F}_{0} \subset \mathcal{F}_{1} \subset \cdots$ is a r.v. τ with values in $\{0,1, \cdots, \infty\}$, s.t.

$$
\{\tau=n\} \in \mathcal{F}_{n}, \quad n=0,1, \ldots
$$

If $\tau<\infty$ a.s. the stopping time is called finite.
For ξ_{0}, ξ_{1}, \ldots with natural filtration, examples of stopping times are $\tau=\min \left\{n: \xi_{n}>c\right\}, \tau=\min \left\{n>0: \xi_{n}>\xi_{0}\right\}$ etc.

The stopped variable is defined as

$$
\xi_{\tau}=\sum_{n=0}^{\infty} \xi_{n} \mathbf{1}_{\{\tau=n\}}
$$

and the stopped process as

$$
\xi_{\tau \wedge n}, \quad n \geq 0
$$

Proposition If $\left(X_{n}\right)$ is a martingale (sub-, super-) then $\left(X_{\tau \wedge n}, n \geq 0\right)$ is a martingale (sub-, super-) too.

Doob's optional sampling

Theorem Let $\left(X_{n}\right)$ be supermartingale, τ stopping time. Then

$$
\mathbb{E}\left[X_{\tau}\right] \leq \mathbb{E}\left[X_{0}\right]
$$

if at least one of the following holds:
(i) $\mathbb{P}[\tau<K]=1$ for some $K>0$,
(ii) $\sup _{n}\left|X_{n}\right|<K$ a.s.
(iii) $\mathbb{E}[\tau]<\infty$ and $\sup _{n} \mathbb{E}\left[\left|X_{n+1}-X_{n}\right| \mid \mathcal{F}_{n}\right]<K$,
(iv) $\left(X_{n}\right)$ is uniformly integrable.

First passage time for a RW

For $\left(S_{n}\right)$ symmetric ± 1-random walk with $S_{0}=0$, consider
$\tau=\min \left\{n: S_{n}=1\right\}$. Since $\mathbb{E}\left[\exp \left(z S_{n}\right)=(\cosh z)^{n}\right.$

$$
M_{n}=\frac{\exp \left(z S_{n}\right)}{(\cosh z)^{n}}
$$

is a martingale. By the Optional Sampling

$$
\mathbb{E}\left[\frac{\exp \left(z S_{\tau}\right)}{(\cosh z)^{\tau}}\right]=1
$$

where $S_{\tau}=1$. Changing variable to $x=(\cosh z)^{-1}$ gives

$$
\mathbb{E}\left[x^{\tau}\right]=\frac{1-\sqrt{1-x^{2}}}{x}
$$

whence the distribution of τ is

$$
\mathbb{P}[\tau=2 m-1]=(-1)^{m+1}\binom{1 / 2}{m}
$$

Wald's identities

If ξ_{1}, ξ_{2}, \ldots i.i.d. with finite $\mu=\mathbb{E}\left[\xi_{1}\right], \sigma^{2}=\operatorname{Var}\left[\xi_{1}\right]$, then for $S_{n}=\sum_{i=1}^{n} \xi_{n}$ it holds that

$$
\begin{aligned}
\mathbb{E}\left[S_{\tau}\right] & =\mu \mathbb{E}[\tau] \\
\mathbb{E}\left[S_{\tau}-\tau \mu\right]^{2} & =\sigma^{2} \mathbb{E}[\tau]
\end{aligned}
$$

Martingale convergence

Theorem Let $\left(X_{n}, n \geq 0\right)$ be a submartingale with $\sup _{n} \mathbb{E}\left|X_{n}\right|<\infty$. Then the exists a r.v. X_{∞} with $\mathbb{E}\left|X_{n}\right|<\infty$ such that

$$
X_{n} \rightarrow X_{\infty} \text { as } n \rightarrow \infty \text { a.s. }
$$

If the uniform integrability condition holds

$$
\lim _{c \rightarrow \infty} \sup _{n} \mathbb{E}\left[\left|X_{n}\right| \mathbf{1}\left(\left|X_{n}\right|>c\right)\right]=0
$$

then also $\mathbb{E}\left|X_{n}-X_{\infty}\right| \rightarrow 0$.
Example (Doob martingale) If $\mathbb{E}|\xi|<\infty$ then for $\mathcal{F}_{\infty}:=\sigma\left(\cup_{n} \mathcal{F}_{n}\right)$

$$
\mathbb{E}\left[\xi \mid \mathcal{F}_{n}\right] \rightarrow \mathbb{E}\left[\xi \mid \mathcal{F}_{\infty}\right] \quad \text { a.s. }
$$

Application: supercritical branching process

$\xi_{n j}$ i.i.d. \mathbb{Z}_{+}-valued r.v.'s with $\mu:=\mathbb{E}\left[\xi_{n i}\right]>1$. The Galton-Watson branching process has $Z_{0}=1$ and

$$
Z_{n+1}=\sum_{i=1}^{Z_{n}} \xi_{n i}
$$

By Wald's identity

$$
\mathbb{E}\left[Z_{n+1} \mid \mathcal{F}_{n}\right]=\mu Z_{n}, \quad \mathcal{F}_{n}=\sigma\left(Z_{0}, \ldots, Z_{n}\right)
$$

hence we have a martingale

$$
\frac{Z_{n}}{\mu^{n}}, \quad n \geq 0
$$

which by the Martingale Convergence has a limit

$$
\frac{Z_{n}}{\mu^{n}} \rightarrow W \text { a.s. }
$$

with $\mathbb{P}[W=0]=\mathbb{P}\left[\cup_{n}\left\{Z_{n}=0\right\}\right]$ being the probability of extinction.

A random process $\left(C_{n}, n \geq 0\right)$ is predictable if C_{n} is
\mathcal{F}_{n-1}-measurable ($\mathcal{F}_{-1}=\mathcal{F}_{0}$
Definition Let $\left(X_{n}, n \geq 0\right)$ be martingale, $\left(C_{n}, n \geq 1\right)$ predictable. The martingale transform is

$$
Y_{n}=C_{0} X_{0}+\sum_{k=1}^{n} C_{k}\left(X_{k}-X_{k-1}\right), \quad n=1,2, \ldots
$$

The martingale transform satisfies

$$
Y_{n}=\mathbb{E}\left[Y_{n+1} \mid \mathcal{F}_{n}\right],
$$

but in general $\mathbb{E}\left|Y_{n}\right|<\infty$ may fail (generalised martingale).

Doob-Meyer decomposition of submartingale

For submartingale $\left(X_{n}\right)$ there exists a unique representation

$$
X_{n}=M_{n}+C_{n}
$$

where $\left(M_{n}\right)$ a martingale and $\left(C_{n}\right)$ a predictable process. Explicitly,

$$
M_{n}=X_{0}+\sum_{k=0}^{n-1}\left(X_{k+1}-\mathbb{E}\left[X_{k+1} \mid \mathcal{F}_{k}\right]\right)
$$

and

$$
C_{n}=\sum_{k=1}^{n-1}\left(\mathbb{E}\left[X_{k+1} \mid \mathcal{F}_{k}\right]-X_{k}\right)
$$

Example Biased RW $\left(S_{n}\right)$ with $p>1: M_{n}=S_{n}-(2 p-1) n$.

Quadratic characteristic

Let $\left(X_{n}\right)$ be a martingale with $\operatorname{Var}\left[X_{n}\right]<\infty$. The submartingale $X_{n}^{2}, n \geq 0$ decomposes as

$$
X_{n}^{2}=M_{n}+\langle X\rangle_{n}
$$

where

$$
\langle X\rangle_{n}:=\sum_{k=1}^{n} \mathbb{E}\left[\left(X_{k}-X_{k-1}\right)^{2} \mid \mathcal{F}_{k}\right]
$$

is the quadratic characteristic of $\left(X_{n}\right)$, which satisfies

$$
\mathbb{E}\left[\left(X_{n}-X_{m}\right)^{2} \mid \mathcal{F}_{m}\right]=\mathbb{E}\left[\langle X\rangle_{n}-\langle X\rangle_{m} \mid \mathcal{F}_{m}\right] .
$$

Example Let ξ_{n} be independent, $\mathbb{E}\left[\xi_{n}\right]=0, \operatorname{Var}\left[\xi_{n}\right]=\sigma_{n}^{2}<\infty$, then $S_{n}=\xi_{1}+\ldots+\xi_{n}, n \geq 0$, is a martingale with the quadratic characteristic

$$
\langle S\rangle_{n}=\operatorname{Var}\left[S_{n}\right]=\sigma_{1}^{2}+\cdots+\sigma_{n}^{2}
$$

Maximal inequalities

For $\left(X_{n}, \mathcal{F}_{n}\right)$ submartingale, $c>0$,

$$
\mathbb{P}\left[\max _{k \leq n} X_{k} \geq c\right] \leq \frac{\mathbb{E}\left[X_{n}^{+}\right]}{c}
$$

and for martingale

$$
\mathbb{P}\left[\max _{k \leq n}\left|X_{k}\right| \geq c\right] \leq \frac{\mathbb{E}\left[\left|X_{n}\right|^{2}\right]}{c^{2}}
$$

Convergence modes

$\left(X_{n}, n \geq 0\right)$ on $(\Omega, \mathcal{F}, \mathbb{P})$ converges to X

- almost surely if $\mathbb{P}\left[X_{n} \rightarrow X\right]=1$,
- $X_{n} \xrightarrow{\mathbb{P}} X($ in probability $)$ if $\lim _{n \rightarrow \infty} \mathbb{P}\left[\left|X_{n}-X\right|>\epsilon\right)=0 \quad \forall \epsilon>0$,
- $X_{n} \xrightarrow{L^{p}} X($ in pth mean, $p>0)$ if $\lim _{n \rightarrow \infty} \mathbb{E}\left[\left|X_{n}-X\right|^{p} \mid\right]=0$.
- $X_{n} \xrightarrow{d} X$ in distribution if $\mathbb{E}\left[f\left(X_{n}\right)\right] \rightarrow \mathbb{E}[f(X)]$ for all bounded, continuous $f: \mathbb{R} \rightarrow \mathbb{R}$.
Connection:

$$
\begin{aligned}
& \xrightarrow[\rightarrow]{\text { a.s. }} \Rightarrow \xrightarrow{\mathbb{P}}, \\
& \xrightarrow{L^{p}} \Rightarrow \xrightarrow{\mathbb{P}}, \\
& \xrightarrow{\mathbb{P}} \Rightarrow \xrightarrow{d} .
\end{aligned}
$$

But

$$
\xrightarrow{\mathbb{P}} \Rightarrow \xrightarrow{\text { a.s. }}
$$

along a subsequence. If $X_{n} \xrightarrow{d} X$ then $X_{n}^{\prime} \xrightarrow{\text { a.s. }} X^{\prime}$ for some distributional copies $X_{n}^{\prime} \stackrel{d}{=} X_{n}, X^{\prime} \stackrel{d}{=} X$.

Weak convergence

Let P and $P_{n}, n \in \mathbb{N}$, be probability measures on a metric space E (with Borel σ-algebra).
Definition $P_{n} \xrightarrow{w} P$, that is P_{n} converge weakly to P, if

$$
\int_{E} f(x) P_{n}(\mathrm{~d} x) \rightarrow \int_{E} f(x) P(\mathrm{~d} x)
$$

for all bounded, continuous functions $f: E \rightarrow \mathbb{R}$.
Equivalently, $P_{n} \xrightarrow{w} P$ if any of the following holds true:
(i) $\limsup P_{n}(A) \leq P(A)$ for closed A,
(ii) $\liminf P_{n}(A) \geq P(A)$ for open A,
(iii) $P_{n}(A) \rightarrow P(A)$ if $P(\partial A)=0$, where $\partial A=\operatorname{cl} A \cap \operatorname{cl} A^{c}$.

The Brownian motion

The $\mathrm{BM}(B(t), t \geq 0)$ is a continuous-time stochastic process satisfying
(i) $B(0)=0$ a.s.,
(ii) the path $t \mapsto B(t)$ is continuous a.s.
(iii) the increments $B\left(t_{1}\right)-B\left(t_{0}\right), \ldots, B\left(t_{n}\right)-B\left(t_{n-1}\right)$ are independent for any choice $0 \leq t_{0}<t_{1}<\ldots<t_{n}$.
(iv) $B(t)-B(s) \stackrel{d}{=} \mathcal{N}(0, t-s), 0 \leq s<t$.

Conditions (iii), (iv) can be equivalently replaced by

- $(B(t), t \geq 0)$ is Gaussian with $\mathbb{E}[B(t)]=0$, and

$$
\operatorname{cov}(B(s), B(t))=s \wedge t
$$

Existence of the BM

By Kolmogorov's extension there exists Gaussian $\left(B(t), t \in \mathbb{Q}_{1}\right)$ (where $\mathbb{Q}_{1}=\mathbb{Q} \cap[0,1]$) with mean 0 and covariance $s \wedge t$. We need a uniformly continuous version on \mathbb{Q}_{1}. Consider the 'modulus of continuity'

$$
\Delta_{n}:=\sup _{s, t \in \mathbb{Q}_{1}:|s-t|<1 / n}|B(t)-B(s)|,
$$

we want $\Delta_{n} \rightarrow 0$ a.s. To estimate this introduce simpler variables

$$
Y_{k, n}:=\sup _{s, t \in\left[\frac{k-1}{n}, \frac{k}{n}\right] \cap \mathbb{Q}_{1}}|B(t)-B(s)| \text {, }
$$

then (apply the triangle inequality for the B-values at times $(k-1) / n<s<k / n<t)$ we obtain

$$
\Delta_{n} \leq 3 \max _{1 \leq k \leq n} Y_{k, n}
$$

By the stationarity of increments

$$
\mathbb{P}\left[\max _{1 \leq k \leq n} Y_{k, n} \geq \epsilon\right] \leq \sum_{k=1}^{n} \mathbb{P}\left[Y_{k, n} \geq \epsilon\right]=n \mathbb{P}\left[Y_{1, n} \geq \epsilon\right]
$$

$(B(t), t \in \mathbb{Q})$ martingale $\Rightarrow\left(B^{4}(t), t \in \mathbb{Q}\right)$ submartingale, and the maximal inequality gives

$$
\begin{aligned}
& n \mathbb{P}\left[Y_{1 n} \geq \epsilon\right]=n \mathbb{P}\left[\max _{t \in \mathbb{Q} \cap[0,1 / n]}|B(t)| \geq \epsilon\right] \leq \\
& \frac{n}{\epsilon^{4}} \mathbb{E}\left[B^{4}(1 / n)\right]=\frac{3 n}{n^{2} \epsilon^{4}} \rightarrow 0 \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

which gives $\Delta_{n} \xrightarrow{\mathbb{P}} 0$ but since $\Delta_{1} \geq \Delta_{2} \geq \cdots$ a.s. also $\Delta_{n} \xrightarrow{\text { a.s. }} 0$. \Rightarrow the BM extends from $t \in \mathbb{Q}_{1}$ to $[0,1]$ by continuity.

Further properties of the BM

- BM is nowhere differentiable,
- the variation is infinite on any interval (same holds for the length of Brownian path),
- the quadratic variation is $\langle B\rangle(t)=t, t \geq 0$, Hölder continuity with exponent $0<\alpha<1 / 2$

$$
\sup _{s, t \in[0,1]}|B(t)-B(s)|<C|t-s|^{\alpha} \quad \text { a.s. }
$$

- the set of zeroes $\{t: B(t)=0\}$ is a.s. closed without isolated points.

