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Stopping times
Definition Stopping time adapted to filtration Fo C F1 C --- is a
r.v. 7 with values in {0,1,--- ,00}, s.t.

{r=n}eF, n=0,1,...
If 7 < 0o a.s. the stopping time is called finite.

For &g, &1, ... with natural filtration, examples of stopping times
are T =min{n: &, > ch,7=min{n>0:&, > &} etc.

The stopped variable is defined as

&= &nlir—n)
n=0
and the stopped process as

{T/\nv n Z 0.

Proposition If (X,) is a martingale (sub-, super-) then
(Xran, n > 0) is a martingale (sub-, super-) too.



Doob's optional sampling

Theorem Let (X,) be supermartingale, 7 stopping time. Then

E[X;] < E[Xo]
if at least one of the following holds:
(i) P[r < K] =1 for some K > 0,
(i) sup,|Xn| < K a.s.
(iii) E[r] < oo and sup, E[|Xnt1 — Xa| | Fn] < K,
(iv) (Xp) is uniformly integrable.



First passage time for a RW

For (S,) symmetric +1-random walk with Sop = 0, consider
T=min{n: S, = 1}. Since E[exp(zS,) = (cosh z)"

_exp(z5,)
~ (cosh z)"

is a martingale. By the Optional Sampling

where S, = 1. Changing variable to x = (cosh z)~! gives

. 1—+1—x2
B = LV

whence the distribution of 7 is

Pl = 2m -1 = (-1 (V7).

m



Wald's identities

If £1,&, ... i.i.d. with finite u = E[&1], 02 = Var[€1], then for
Sn =11 &n it holds that

B[S,] = uE[],
E[S, —Tu]®* = o&*E[7].



Martingale convergence

Theorem Let (X,,n > 0) be a submartingale with
sup, E|X,| < co. Then the exists a r.v. Xy with E|X,| < co such
that

Xp — Xso @S n — 00 a.s.

If the uniform integrability condition holds
Jim supE[|Xa[ 1(]Xn| > c)] = 0,
then also E|X, — Xs| — 0.
Example (Doob martingale) If E|{| < oo then for F := o (UpFp)

E[¢|Fn] = E[§|Foo]  as.



Application: supercritical branching process
&nj i.id. Zg-valued r.v.'s with p = E[{,;] > 1. The
Galton-Watson branching process has Zp = 1 and

Zn
Zoi1 = &ni-
i=1

By Wald's identity
E[Zn_,_l’]:n] = /LZ,,, .7:” = J(Zo, ey Zn),

hence we have a martingale

Z
; n>0,
which by the Martingale Convergence has a limit
Z

—:—> W a.s.
7

with P[W = 0] = P[U,{Z, = 0}] being the probability of
extinction.



A random process (C,,n > 0) is predictable if C, is
Fn—1-measurable (F_1; = Fo

Definition Let (X,, n > 0) be martingale, (C,, n > 1) predictable.
The martingale transform is

n
Yo=CoXo+ > G(Xe— Xi1), n=1,2,...
k=1
The martingale transform satisfies

Yn= IE[Yn-|-1|-7:n]7

but in general E|Y,| < co may fail (generalised martingale).



Doob-Meyer decomposition of submartingale

For submartingale (X,) there exists a unique representation
Xn =M, + Gy,

where (M,) a martingale and (C,) a predictable process. Explicitly,

n—1
Mp=Xo+ Y (X1 — E[Xq1| Fil)
k=0
and
n—1
Co=> (E[Xkq1|Fu] — Xk).
]

Example Biased RW (S,) with p > 1: M, =S, — (2p — 1)n.



Quadratic characteristic
Let (X,) be a martingale with Var[X,] < co. The submartingale

X,?, n > 0 decomposes as
X2 = M, + (X)n,
where

(X)n =D E[(Xe — Xe-1)’|Fi
k=1

is the quadratic characteristic of (X,), which satisfies
E[(Xn — Xm)z‘}—m] =E[(X)n = (X)m|Fm]-

Example Let &, be independent, E[¢,] = 0, Var[¢,] = 02 < oo,
then S, =& +...+ &y, n > 0, is a martingale with the quadratic
characteristic

(S), = Var[S,] =03 + - -- + 02.



Maximal inequalities

For (Xn, Fn) submartingale, ¢ > 0,

+
Plmax X > c] < ELX, ],
k<n C

and for martingale

E[|X,|?]
> < =
Plmax [ X = c] < =5



Convergence modes
(Xn, n>0)on (Q,F,P) converges to X

e almost surely if P[X, — X] =1,
o X, = X (in probability) if limp_ee P[|Xa — X| > €) =0 Ve >0,
o X, 55 X (in pth mean, p > 0) if limp_o0 E[| X, — X|?|] = 0.

o X, % X in distribution if E[f(Xn)] — E[f(X)] for all bounded,
continuous f : R — R.

Connection:
a.s P
= = -,
LP P
= = -,
P d
- = —
But
P a.s.
- = =

along a subsequence. If X, i> X then X], 2% X’ for some
distributional copies X/ 4 Xn, X! 4x.



Weak convergence

Let P and P,,n € N, be probability measures on a metric space E
(with Borel o-algebra).

Definition P, X P, that is P, converge weakly to P, if

/Ef(X)P,,(dx)—>/Ef(x)P(dx)

for all bounded, continuous functions f : E — R.

Equivalently, P, 2 P if any of the following holds true:
(i) limsup P,(A) < P(A) for closed A,

(ii) liminf P,(A) > P(A) for open A,

(i) Pp(A)—P(A) if P(OA) =0, where 0A = clA N clAC.



The Brownian motion

The BM (B(t), t > 0) is a continuous-time stochastic process
satisfying
(i) B(0) =0 as.,
(ii) the path t +— B(t) is continuous a.s.
(iii) the increments B(t1) — B(to), ..., B(tn) — B(ty—1) are
independent for any choice 0 < tg < t; < ... < tp.
(iv) B(t)— B(s) £ N(0,t—s), 0<s < t.
Conditions (iii), (iv) can be equivalently replaced by
e (B(t), t > 0) is Gaussian with E[B(t)] = 0, and

cov(B(s), B(t)) =sAt.



Existence of the BM

By Kolmogorov's extension there exists Gaussian (B(t),t € Q1)
(where Q1 = QN [0, 1]) with mean 0 and covariance s A t. We
need a uniformly continuous version on Q1. Consider the
‘modulus of continuity’
A, = sup |B(t) - B(S)|a
5,t€Qq:|s—t|<1/n
we want A, — 0 a.s. To estimate this introduce simpler variables
Yin = sup |B(t) — B(s)],

ste[*5H 5]

then (apply the triangle inequality for the B-values at times
(k—1)/n<s < k/n < t) we obtain

A, <3 max Y.
1<k<n 7’

By the stationarity of increments

n
P Y., >el < PIY, . > ¢l = nPIY: . > €l.
[]_rgnka%(n k,n — 6] = ; [ k,n Z 6] n [ 1,n = 6]



(B(t), t € Q) martingale = (B*(t), t € Q) submartingale, and the
maximal inequality gives

P[Yin > €] = nP B(t)| > €| <
nP[Yin =€l =n te@”%[%ﬁ/n]' (D) =€ <

n 4 3n
QE[B (1/n)]:n2—64—>0 as n — 0o,

which gives A, ﬂ 0 but since Ay > Ay > --- as. also A, 23 0.

= the BM extends from t € Q; to [0, 1] by continuity.



Further properties of the BM

e BM is nowhere differentiable,

e the variation is infinite on any interval (same holds for the length
of Brownian path),

e the quadratic variation is (B)(t) =t, t >0,

Holder continuity with exponent 0 < o < 1/2

sup |B(t) — B(s)| < C|t—s|* aus.
s,t€[0,1]

o the set of zeroes {t : B(t) = 0} is a.s. closed without isolated
points.



