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Stopping times
Definition Stopping time adapted to filtration F0 ⊂ F1 ⊂ · · · is a
r.v. τ with values in {0, 1, · · · ,∞}, s.t.

{τ = n} ∈ Fn, n = 0, 1, . . .

If τ < ∞ a.s. the stopping time is called finite.

For ξ0, ξ1, . . . with natural filtration, examples of stopping times
are τ = min{n : ξn > c}, τ = min{n > 0 : ξn > ξ0} etc.

The stopped variable is defined as

ξτ =
∞∑
n=0

ξn1{τ=n}

and the stopped process as

ξτ∧n, n ≥ 0.

Proposition If (Xn) is a martingale (sub-, super-) then
(Xτ∧n, n ≥ 0) is a martingale (sub-, super-) too.



Doob’s optional sampling

Theorem Let (Xn) be supermartingale, τ stopping time. Then

E[Xτ ] ≤ E[X0]

if at least one of the following holds:

(i) P[τ < K ] = 1 for some K > 0,

(ii) supn |Xn| < K a.s.

(iii) E[τ ] < ∞ and supn E [|Xn+1 − Xn| |Fn] < K ,

(iv) (Xn) is uniformly integrable.



First passage time for a RW
For (Sn) symmetric ±1-random walk with S0 = 0, consider
τ = min{n : Sn = 1}. Since E[exp(zSn) = (cosh z)n

Mn =
exp(zSn)

(cosh z)n

is a martingale. By the Optional Sampling

E
[
exp(zSτ )

(cosh z)τ

]
= 1,

where Sτ = 1. Changing variable to x = (cosh z)−1 gives

E[xτ ] =
1−

√
1− x2

x
,

whence the distribution of τ is

P[τ = 2m − 1] = (−1)m+1

(
1/2

m

)
.



Wald’s identities

If ξ1, ξ2, . . . i.i.d. with finite µ = E[ξ1], σ2 = Var[ξ1], then for
Sn =

∑n
i=1 ξn it holds that

E[Sτ ] = µE[τ ],
E[Sτ − τ µ]2 = σ2 E[τ ].



Martingale convergence

Theorem Let (Xn, n ≥ 0) be a submartingale with
supn E|Xn| < ∞. Then the exists a r.v. X∞ with E|Xn| < ∞ such
that

Xn → X∞ as n → ∞ a.s.

If the uniform integrability condition holds

lim
c→∞

sup
n

E [|Xn| 1(|Xn| > c)] = 0,

then also E|Xn − X∞| → 0.

Example (Doob martingale) If E|ξ| < ∞ then for F∞ := σ (∪nFn)

E[ξ|Fn] → E[ξ|F∞] a.s.



Application: supercritical branching process
ξnj i.i.d. Z+-valued r.v.’s with µ := E[ξni ] > 1. The
Galton-Watson branching process has Z0 = 1 and

Zn+1 =
Zn∑
i=1

ξni .

By Wald’s identity

E[Zn+1|Fn] = µZn, Fn = σ(Z0, . . . ,Zn),

hence we have a martingale

Zn

µn
, n ≥ 0,

which by the Martingale Convergence has a limit

Zn

µn
→ W a.s.

with P[W = 0] = P[∪n{Zn = 0}] being the probability of
extinction.



A random process (Cn, n ≥ 0) is predictable if Cn is
Fn−1-measurable (F−1 = F0

Definition Let (Xn, n ≥ 0) be martingale, (Cn, n ≥ 1) predictable.
The martingale transform is

Yn = C0X0 +
n∑

k=1

Ck(Xk − Xk−1), n = 1, 2, . . .

The martingale transform satisfies

Yn = E[Yn+1|Fn],

but in general E|Yn| < ∞ may fail (generalised martingale).



Doob-Meyer decomposition of submartingale

For submartingale (Xn) there exists a unique representation

Xn = Mn + Cn,

where (Mn) a martingale and (Cn) a predictable process. Explicitly,

Mn = X0 +
n−1∑
k=0

(Xk+1 − E[Xk+1|Fk ]) ,

and

Cn =
n−1∑
k=1

(E[Xk+1|Fk ]− Xk) .

Example Biased RW (Sn) with p > 1: Mn = Sn − (2p − 1)n.



Quadratic characteristic

Let (Xn) be a martingale with Var[Xn] < ∞. The submartingale
X 2
n , n ≥ 0 decomposes as

X 2
n = Mn + ⟨X ⟩n,

where

⟨X ⟩n :=
n∑

k=1

E [(Xk − Xk−1)
2|Fk ]

is the quadratic characteristic of (Xn), which satisfies

E [(Xn − Xm)
2|Fm] = E[⟨X ⟩n − ⟨X ⟩m|Fm].

Example Let ξn be independent, E[ξn] = 0,Var[ξn] = σ2
n < ∞,

then Sn = ξ1 + . . .+ ξn, n ≥ 0, is a martingale with the quadratic
characteristic

⟨S⟩n = Var[Sn] = σ2
1 + · · ·+ σ2

n.



Maximal inequalities

For (Xn,Fn) submartingale, c > 0,

P[max
k≤n

Xk ≥ c] ≤ E[X+
n ]

c
,

and for martingale

P[max
k≤n

|Xk | ≥ c] ≤ E[ |Xn|2 ]
c2

.



Convergence modes
(Xn, n ≥ 0) on (Ω,F ,P) converges to X

• almost surely if P[Xn → X ] = 1,

• Xn
P→ X (in probability) if limn→∞ P[|Xn − X | > ϵ) = 0 ∀ϵ > 0,

• Xn
Lp→ X (in pth mean, p > 0) if limn→∞ E[|Xn − X |p|] = 0.

• Xn
d→ X in distribution if E[f (Xn)] → E[f (X )] for all bounded,

continuous f : R → R.
Connection:

a.s.→ ⇒ P→,
Lp→ ⇒ P→,
P→ ⇒ d→ .

But
P→ ⇒ a.s.→

along a subsequence. If Xn
d→ X then X ′

n
a.s.→ X ′ for some

distributional copies X ′
n

d
= Xn,X

′ d
= X .



Weak convergence

Let P and Pn, n ∈ N, be probability measures on a metric space E
(with Borel σ-algebra).

Definition Pn
w→ P, that is Pn converge weakly to P, if∫

E
f (x)Pn(dx) →

∫
E
f (x)P(dx)

for all bounded, continuous functions f : E → R.

Equivalently, Pn
w→ P if any of the following holds true:

(i) lim supPn(A) ≤ P(A) for closed A,

(ii) lim inf Pn(A) ≥ P(A) for open A,

(iii) Pn(A)→P(A) if P(∂A) = 0, where ∂A = clA ∩ clAc .



The Brownian motion

The BM (B(t), t ≥ 0) is a continuous-time stochastic process
satisfying

(i) B(0) = 0 a.s.,

(ii) the path t 7→ B(t) is continuous a.s.

(iii) the increments B(t1)− B(t0), . . . ,B(tn)− B(tn−1) are
independent for any choice 0 ≤ t0 < t1 < . . . < tn.

(iv) B(t)− B(s)
d
= N (0, t − s), 0 ≤ s < t.

Conditions (iii), (iv) can be equivalently replaced by

• (B(t), t ≥ 0) is Gaussian with E[B(t)] = 0, and

cov(B(s),B(t)) = s ∧ t.



Existence of the BM
By Kolmogorov’s extension there exists Gaussian (B(t), t ∈ Q1)
(where Q1 = Q ∩ [0, 1]) with mean 0 and covariance s ∧ t. We
need a uniformly continuous version on Q1. Consider the
‘modulus of continuity’

∆n := sup
s,t∈Q1:|s−t|<1/n

|B(t)− B(s)|,

we want ∆n → 0 a.s. To estimate this introduce simpler variables

Yk,n := sup
s,t∈[ k−1

n
, k
n ]∩Q1

|B(t)− B(s)|,

then (apply the triangle inequality for the B-values at times
(k − 1)/n < s < k/n < t) we obtain

∆n ≤ 3 max
1≤k≤n

Yk,n.

By the stationarity of increments

P[ max
1≤k≤n

Yk,n ≥ ϵ] ≤
n∑

k=1

P[Yk,n ≥ ϵ] = n P[Y1,n ≥ ϵ].



(B(t), t ∈ Q) martingale ⇒ (B4(t), t ∈ Q) submartingale, and the
maximal inequality gives

n P[Y1n ≥ ϵ] = n P
[

max
t∈Q∩[0,1/n]

|B(t)| ≥ ϵ

]
≤

n

ϵ4
E
[
B4(1/n)

]
=

3n

n2ϵ4
→ 0 as n → ∞,

which gives ∆n
P→ 0 but since ∆1 ≥ ∆2 ≥ · · · a.s. also ∆n

a.s.→ 0.

⇒ the BM extends from t ∈ Q1 to [0, 1] by continuity.



Further properties of the BM

• BM is nowhere differentiable,

• the variation is infinite on any interval (same holds for the length
of Brownian path),

• the quadratic variation is ⟨B⟩(t) = t, t ≥ 0,

Hölder continuity with exponent 0 < α < 1/2

sup
s,t∈[0,1]

|B(t)− B(s)| < C |t − s|α a.s.

• the set of zeroes {t : B(t) = 0} is a.s. closed without isolated
points.


