MTH5131 Actuarial Statistics

Coursework 2 - Solutions

Exercise 1. 1. The likelihood is

$$
\begin{aligned}
L\left(\pi ; y_{1}, \ldots, y_{n}\right) & =P\left(Y_{1}=y_{1}, \ldots, Y_{n}=y_{n}\right) \\
& =\prod_{i=1}^{n} P\left(Y_{i}=y_{i}\right) \\
& =\prod_{i=1}^{n}\binom{m}{y_{i}} \pi^{y_{i}}(1-\pi)^{m-y_{i}} \\
& =\pi^{\sum_{i=1}^{n} y_{i}}(1-\pi)^{m n-\sum_{i=1}^{n} y_{i}} \prod_{i=1}^{n}\binom{m}{y_{i}} .
\end{aligned}
$$

2. We may write

$$
\begin{aligned}
E\left(\frac{\bar{Y}}{m}\right) & =\frac{1}{m n} E\left(\sum_{i=1}^{n} Y_{i}\right) \\
& =\frac{1}{m n} m n \pi=\pi
\end{aligned}
$$

and so \bar{Y} / m is an unbiased estimator of π. Also, by independence,

$$
\begin{aligned}
\operatorname{var}\left(\frac{\bar{Y}}{m}\right) & =\frac{1}{(m n)^{2}} \operatorname{var}\left(\sum_{i=1}^{n} Y_{i}\right) \\
& =\frac{1}{(m n)^{2}} m n \pi(1-\pi)=\frac{\pi(1-\pi)}{m n}
\end{aligned}
$$

Since

$$
\begin{aligned}
E\left(\frac{\bar{Y}(m-\bar{Y})}{m^{2}}\right) & =E\left(\frac{\bar{Y}}{m}\right)-E\left(\frac{\bar{Y}^{2}}{m^{2}}\right) \\
& =E\left(\frac{\bar{Y}}{m}\right)-E\left(\frac{\bar{Y}}{m}\right)^{2}-\left(E\left(\frac{\bar{Y}^{2}}{m^{2}}\right)-E\left(\frac{\bar{Y}}{m}\right)^{2}\right) \\
& =E\left(\frac{\bar{Y}}{m}\right)-E\left(\frac{\bar{Y}}{m}\right)^{2}-\operatorname{Var}\left(\frac{\bar{Y}}{m}\right) \\
& =\pi-\pi^{2}-\frac{\pi(1-\pi)}{m n}=\frac{(m n-1)}{m n} \pi(1-\pi)
\end{aligned}
$$

it follows that

$$
E\left(\frac{1}{(m n-1)} \frac{\bar{Y}(m-\bar{Y})}{m^{2}}\right)=\frac{\pi(1-\pi)}{m n}
$$

and so $c=1 /(m n-1)$.

Exercise 2. 1. We may write

$$
E(\bar{Y})=\frac{1}{n}\left(E\left(Y_{1}\right)+\ldots+E\left(Y_{n}\right)\right)=\mu
$$

and so \bar{Y} is an unbiased estimator of μ.
2. By independence, we have

$$
\operatorname{var}(\bar{Y})=\frac{1}{n^{2}}\left(\operatorname{var}\left(Y_{1}\right)+\ldots+\operatorname{var}\left(Y_{n}\right)\right)=\frac{\sigma^{2}}{n}
$$

Thus, as $n \rightarrow \infty, \operatorname{var}(\bar{Y}) \rightarrow 0$. Since $\operatorname{bias}(\bar{Y})=0, \operatorname{MSE}(\bar{Y})=\operatorname{var}(\bar{Y}) \rightarrow 0$ and it follows that \bar{Y} is consistent for μ.
3. We may write

$$
\begin{aligned}
E\left(\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}\right) & =E\left(\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}^{2}-2 Y_{i} \bar{Y}+\bar{Y}^{2}\right)\right) \\
& =\frac{1}{n} \sum_{i=1}^{n} E\left(Y_{i}^{2}\right)-2 E\left(\bar{Y}^{2}\right)+E\left(\bar{Y}^{2}\right) \\
& =\frac{1}{n} \sum_{i=1}^{n} E\left(Y_{i}^{2}\right)-E\left(\bar{Y}^{2}\right) \\
& =E\left(Y_{1}^{2}\right)-\mu^{2}+\mu^{2}-\left(E\left(\bar{Y}^{2}\right)-E(\bar{Y})^{2}\right)-E(\bar{Y})^{2} \\
& =\operatorname{Var}\left(Y_{1}\right)+\mu^{2}-\operatorname{Var}(\bar{Y})-\mu^{2} \\
& =\sigma^{2}+\mu^{2}-\frac{\sigma^{2}}{n}-\mu^{2} \\
& =\frac{n-1}{n} \sigma^{2} \neq \sigma^{2}
\end{aligned}
$$

and so it is a biased estimator of σ^{2}.

Exercise 3.

1. We have

$$
\begin{gathered}
E\left(T_{n}\right)=\frac{E(X)+1}{n+2}=\frac{n \theta+1}{n+2} \neq \theta . \\
\operatorname{bias}\left(T_{n}\right)=E\left(T_{n}\right)-\theta=\frac{n \theta+1}{n+2}-\theta=\frac{1-2 \theta}{n+2} .
\end{gathered}
$$

Since $\operatorname{bias}\left(T_{n}\right) \neq 0, T_{n}$ is biased.
2.

$$
\operatorname{Var}\left(T_{n}\right)=\frac{1}{(n+2)^{2}} \operatorname{Var}(X)=\frac{n \theta(1-\theta)}{(n+2)^{2}}
$$

and so

$$
\begin{aligned}
\operatorname{MSE}\left(T_{n}\right) & =\operatorname{Var}\left(T_{n}\right)+\left(\operatorname{bias}\left(T_{n}\right)\right)^{2} \\
& =\frac{n \theta(1-\theta)}{(n+2)^{2}}+\frac{(1-2 \theta)^{2}}{(n+2)^{2}} \\
& =\frac{n \theta(1-\theta)+(1-2 \theta)^{2}}{(n+2)^{2}} .
\end{aligned}
$$

3. As $\lim _{n \rightarrow \infty} \operatorname{MSE}\left(T_{n}\right)=0$, the sequence of estimators T_{n} are consistent.

Exercise 4. 1. The likelihood is

$$
\begin{aligned}
L(\theta ; \underline{y}) & =\prod_{i=1}^{n} f_{Y_{i}}\left(y_{i}\right) \\
& =\prod_{i=1}^{n} \frac{1}{\theta} y_{i}^{\frac{1}{\theta}-1} \\
& =\frac{1}{\theta^{n}}\left(\prod_{i=1}^{n} y_{i}\right)^{\frac{1}{\theta}-1} .
\end{aligned}
$$

2. Using integration by parts, we may write

$$
\begin{aligned}
E(\log Y) & =\frac{1}{\theta} \int_{0}^{1}(\log y) y^{\frac{1}{\theta}-1} d y \\
& =\left[(\log y) y^{\frac{1}{\theta}}\right]_{0}^{1}-\int_{0}^{1} y^{\frac{1}{\theta}-1} d y \\
& =-\theta\left[y^{\frac{1}{\theta}}\right]_{0}^{1}=-\theta .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
E\left(-\frac{1}{n} \sum_{i=1}^{n} \log \left(Y_{i}\right)\right) & =-\frac{1}{n} E\left(\sum_{i=1}^{n} \log \left(Y_{i}\right)\right) \\
& =\frac{1}{n} n \theta=\theta,
\end{aligned}
$$

and so $-\sum_{i=1}^{n} \log \left(Y_{i}\right) / n$ is an unbiased estimator of θ.
3. Let $g(\theta)=\theta$. Then we have $d g / d \theta=1$. The log-likelihood is

$$
\log L(\theta ; \underline{y})=-n \log \theta+\left(\frac{1}{\theta}-1\right) \sum_{i=1}^{n} \log \left(y_{i}\right) .
$$

Thus, we have

$$
\frac{d \log L(\theta ; \underline{y})}{d \theta}=-\frac{n}{\theta}-\frac{1}{\theta^{2}} \sum_{i=1}^{n} \log \left(y_{i}\right)
$$

and

$$
\frac{d^{2} \log L(\theta ; \underline{y})}{d \theta^{2}}=\frac{n}{\theta^{2}}+\frac{2}{\theta^{3}} \sum_{i=1}^{n} \log \left(y_{i}\right) .
$$

It follows that

$$
\begin{aligned}
E\left(-\frac{d^{2} \log L(\theta ; \underline{Y})}{d \theta^{2}}\right) & =-\frac{n}{\theta^{2}}-\frac{2}{\theta^{3}} E\left(\sum_{i=1}^{n} \log \left(Y_{i}\right)\right) \\
& =-\frac{n}{\theta^{2}}+\frac{2}{\theta^{3}} n \theta=\frac{n}{\theta^{2}},
\end{aligned}
$$

and hence $\operatorname{CRLB}(\theta)=\theta^{2} / n$.
4. By independence, we have

$$
\begin{aligned}
\operatorname{var}\left(-\frac{1}{n} \sum_{i=1}^{n} \log \left(Y_{i}\right)\right) & =\frac{1}{n^{2}} \operatorname{var}\left(\sum_{i=1}^{n} \log \left(Y_{i}\right)\right) \\
& =\frac{1}{n^{2}} n \theta^{2}=\frac{\theta^{2}}{n} .
\end{aligned}
$$

Since this is equal to the CRLB, $-\sum_{i=1}^{n} \log \left(Y_{i}\right) / n$ is a minimum variance unbiased estimator of θ.

Exercise 5. We have $\mu_{1}^{\prime}=E(Y)=\exp (\theta+1 / 2)$ and $m_{1}^{\prime}=\bar{Y}$. So the method of moments estimator of θ satisfies the equation

$$
\exp \left(\tilde{\theta}+\frac{1}{2}\right)=\bar{Y}
$$

Thus, we obtain $\tilde{\theta}=\log (\bar{Y})-1 / 2 . \S$
Exercise 6. The method of moments estimators of μ and σ^{2} satisfy the equations

$$
e^{\tilde{\mu}+\frac{\tilde{\sigma}^{2}}{2}}=\bar{Y} \quad \text { and } \quad e^{2\left(\tilde{\mu}+\tilde{\sigma}^{2}\right)}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}^{2}
$$

By dividing the second equation by the square of the first, we obtain

$$
e^{\tilde{\sigma}^{2}}=\frac{\sum_{i=1}^{n} Y_{i}^{2}}{n \bar{Y}^{2}} \Rightarrow e^{2 \tilde{\mu}}=\frac{n \bar{Y}^{4}}{\sum_{i=1}^{n} Y_{i}^{2}}
$$

So the method of moments estimators are given by

$$
\tilde{\mu}=\frac{1}{2} \log \left(\frac{n \bar{Y}^{4}}{\sum_{i=1}^{n} Y_{i}^{2}}\right) \quad \text { and } \quad \tilde{\sigma}^{2}=\log \left(\frac{\sum_{i=1}^{n} Y_{i}^{2}}{n \bar{Y}^{2}}\right) .
$$

Exercise 7.

1. We have $\mu_{1}^{\prime}=E(Y)=m \pi$ and $m_{1}^{\prime}=\bar{Y}$. Hence, the method of moments estimator of π satisfies the equation $m \tilde{\pi}=\bar{Y}$, so that $\tilde{\pi}=\bar{Y} / m$.
2. The likelihood is

$$
\begin{aligned}
L(\pi ; \underline{y}) & =\prod_{i=1}^{n}\binom{m}{y_{i}} \pi^{y_{i}}(1-\pi)^{m-y_{i}} \\
& =\pi^{\sum_{i=1}^{n} y_{i}}(1-\pi)^{m n-\sum_{i=1}^{n} y_{i}} \prod_{i=1}^{n}\binom{m}{y_{i}}
\end{aligned}
$$

and so the log-likelihood is

$$
\ell(\pi ; \underline{y})=\sum_{i=1}^{n} \log \binom{m}{y_{i}}+\sum_{i=1}^{n} y_{i} \log \pi+\left(m n-\sum_{i=1}^{n} y_{i}\right) \log (1-\pi) .
$$

Thus, solving the equation

$$
\frac{d \ell}{d \pi}=\frac{\sum_{i=1}^{n} y_{i}}{\pi}-\frac{m n-\sum_{i=1}^{n} y_{i}}{1-\pi}=0
$$

we obtain the maximum likelihood estimator of π as $\hat{\pi}=\bar{Y} / m$.
3. The Maximum Likelihood estimator is asymptotically normally distributed, with mean π and variance given by $I^{-1}(\pi)=\frac{\pi(1-\pi)}{n m}$.
(Note: $E(\hat{\pi})=\pi$ and $\operatorname{Var}(\hat{\pi})=\frac{\pi(1-\pi)}{n m}$, which is consistent with the parameters of the normal distribution just given.)

Exercise 8. 1. The likelihood is

$$
L(\theta ; \underline{y})=\prod_{i=1}^{n} e^{-\left(y_{i}-\theta\right)}=e^{-\sum_{i=1}^{n} y_{i}+n \theta}, \quad \min _{i} y_{i} \geq \theta .
$$

Since $L(\theta ; \underline{y})$ is an increasing function of θ, it is maximised at the largest value of θ, which is $\min _{i} y_{i}$. So the maximum likelihood estimator of θ is $\hat{\theta}=\min _{i} Y_{i}$.
2. We have $\mu_{1}^{\prime}=\theta+1$ and $m_{1}^{\prime}=\overline{\tilde{Y}}$. Thus, the method of moments estimator of θ satisfies the equation $\tilde{\theta}+1=\bar{Y}$, so that $\tilde{\theta}=\bar{Y}-1$.

Exercise 9. 1. $\bar{x}=\frac{1}{n} x_{i}=2.95 . \hat{\lambda}=\frac{1}{2.95}=0.33898$
2. $X \sim \chi_{\nu}^{2} \Rightarrow E(X)=\nu$, so $\hat{\nu}=2.95$
3. We have

$$
E\left(X^{2}\right)=\operatorname{var}(X)+(E(X))^{2}=\frac{k(1-p)}{p^{2}}+\left(\frac{k(1-p)}{p}\right)^{2}
$$

and $\frac{1}{n} \sum x_{i}^{2}=13.635$. Set

$$
\frac{\hat{k}(1-\hat{p})}{\hat{p}}=2.95 \quad \text { and } \quad \frac{\hat{k}(1-\hat{p})}{\hat{p}^{2}}+\left(\frac{\hat{k}(1-\hat{p})}{\hat{p}}\right)^{2}=13.635
$$

Substituting the first equation into the second gives

$$
\frac{2.95}{\hat{p}}+2.95^{2}=13.635 \Rightarrow \frac{2.95}{\hat{p}}=4.9325 \Rightarrow \hat{p}=0.59807
$$

Hence, substituting this back into the first equation gives

$$
\hat{k}=4.3896
$$

Note that k must be an integer but \hat{k} is not an integer.
Exercise 10. 1. Since $0 \leq P(X=x) \leq 1$, using this for each of the probabilities gives lower bounds for α of $-1 / 16,-1 / 6$, and $-3 / 8$. Hence $\alpha \geq-1 / 16$. We also obtain upper bounds for α of $7 / 16,1 / 6$, and $5 / 8$. Hence, $\alpha \leq 1 / 6$.
(a) We have one unknown, so we will use $E(Y)=\bar{y}$:

$$
E(Y)=2(1 / 8+2 \alpha)+4(1 / 2-3 \alpha)+5(3 / 8+\alpha)=33 / 8-3 \alpha .
$$

From the data we have

$$
\bar{y}=\frac{7 \times 2+6 \times 4+17 \times 5}{30}=123 / 30=4.1
$$

Therefore,

$$
33 / 8-3 \hat{\alpha}=4.1 \Rightarrow \hat{\alpha}=0.0083
$$

This value lies between the limits derived in part (i).
(b) The likelihood of obtaining the observed results is:

$$
L(\alpha)=C \times(1 / 8+2 \alpha)^{7}(1 / 2-3 \alpha)^{6}(3 / 8+\alpha)^{17}
$$

where C is a normalising constant. Taking logs and differentiating gives

$$
\begin{aligned}
\ln L(\alpha) & =\ln C+7 \ln (1 / 8+2 \alpha)+6 \ln (1 / 2-3 \alpha)+17 \ln (3 / 8+\alpha) \\
& \Rightarrow \frac{d}{d \alpha} \ln L(\alpha)=\frac{14}{1 / 8+2 \alpha}-\frac{18}{1 / 2-3 \alpha}+\frac{17}{3 / 8+\alpha}
\end{aligned}
$$

Equating this to zero to find the maximum value of α gives

$$
\begin{gathered}
\frac{14}{1 / 8+2 \hat{\alpha}}-\frac{18}{1 / 2-3 \hat{\alpha}}+\frac{17}{3 / 8+\hat{\alpha}}=0 \\
\Rightarrow 14(1 / 2-3 \hat{\alpha})(3 / 8+\hat{\alpha})-18(1 / 8+2 \hat{\alpha})(3 / 8+\hat{\alpha})+17(1 / 8+2 \hat{\alpha})(1 / 2-3 \hat{\alpha})=0 \\
\Rightarrow 180 \hat{\alpha}^{2}+\frac{111}{8} \hat{\alpha}-\frac{91}{32}=0
\end{gathered}
$$

(c) Solving the quadratic equation gives:

$$
\hat{\alpha}=\frac{-\frac{111}{8} \pm \sqrt{\left(\frac{111}{8}\right)^{2}-4(180)(-91 / 32)}}{360}=-0.170,0.0929
$$

The maximum likelihood estimate is 0.0929 .
The other solution of -0.170 oes not lie between the bounds calculated in (i). It is not feasible as it is less than the smallest possible value for α of -0.0625 .

Exercise 11. The likelihood is given by

$$
L(\lambda)=\left(\prod_{i=1}^{10} f_{X}\left(x_{i}\right)\right) \times(P(X>4))^{6}=\lambda^{10} e^{-\lambda \sum_{i=1}^{10} x_{i}} \times\left(e^{-4 \lambda}\right)^{6} .
$$

Taking logarithms gives

$$
\ell(\lambda)=10 \ln \lambda-\lambda \sum_{i=1}^{10} x_{i}-24 \lambda .
$$

Since $\sum_{i=1}^{10} x_{i}=18.3$, we get

$$
\ell(\lambda)=10 \ln \lambda-42.3 \lambda
$$

Differentiating gives

$$
\frac{d}{d \lambda} \ell(\lambda)=\frac{10}{\lambda}-42.3
$$

This equals 0 when

$$
\lambda=\frac{10}{42.3}=0.2364 .
$$

Differentiating again gives

$$
\frac{d}{d \lambda} \ell(\lambda)=-\frac{10}{\lambda^{2}}<0
$$

So the maximum likelihood estimate is

$$
\hat{\lambda}=\frac{10}{42.3}=0.2364
$$

