MTH5131 Actuarial Statistics

Coursework 2 — Solutions

Exercise 1. 1. The likelihood is

$$L(\pi; y_1, \dots, y_n) = P(Y_1 = y_1, \dots, Y_n = y_n)$$

= $\prod_{i=1}^n P(Y_i = y_i)$
= $\prod_{i=1}^n {\binom{m}{y_i}} \pi^{y_i} (1 - \pi)^{m - y_i}$
= $\pi^{\sum_{i=1}^n y_i} (1 - \pi)^{mn - \sum_{i=1}^n y_i} \prod_{i=1}^n {\binom{m}{y_i}}.$

2. We may write

$$E\left(\frac{\overline{Y}}{m}\right) = \frac{1}{mn}E\left(\sum_{i=1}^{n}Y_{i}\right)$$
$$= \frac{1}{mn}mn\pi = \pi,$$

and so \overline{Y}/m is an unbiased estimator of $\pi.$ Also, by independence,

$$\operatorname{var}\left(\frac{\overline{Y}}{m}\right) = \frac{1}{(mn)^2} \operatorname{var}\left(\sum_{i=1}^n Y_i\right)$$
$$= \frac{1}{(mn)^2} mn\pi(1-\pi) = \frac{\pi(1-\pi)}{mn}.$$

Since

$$E\left(\frac{\overline{Y}(m-\overline{Y})}{m^2}\right) = E\left(\frac{\overline{Y}}{m}\right) - E\left(\frac{\overline{Y}^2}{m^2}\right)$$
$$= E\left(\frac{\overline{Y}}{m}\right) - E\left(\frac{\overline{Y}}{m}\right)^2 - \left(E\left(\frac{\overline{Y}^2}{m^2}\right) - E\left(\frac{\overline{Y}}{m}\right)^2\right)$$
$$= E\left(\frac{\overline{Y}}{m}\right) - E\left(\frac{\overline{Y}}{m}\right)^2 - \operatorname{Var}\left(\frac{\overline{Y}}{m}\right)$$
$$= \pi - \pi^2 - \frac{\pi(1-\pi)}{mn} = \frac{(mn-1)}{mn}\pi(1-\pi),$$

it follows that

$$E\left(\frac{1}{(mn-1)}\frac{\overline{Y}(m-\overline{Y})}{m^2}\right) = \frac{\pi(1-\pi)}{mn},$$

and so c = 1/(mn - 1).

Exercise 2. 1. We may write

$$E(\overline{Y}) = \frac{1}{n} \left(E(Y_1) + \ldots + E(Y_n) \right) = \mu,$$

and so \overline{Y} is an unbiased estimator of μ .

2. By independence, we have

$$\operatorname{var}(\overline{Y}) = \frac{1}{n^2} \left(\operatorname{var}(Y_1) + \ldots + \operatorname{var}(Y_n) \right) = \frac{\sigma^2}{n}.$$

Thus, as $n \to \infty$, $\operatorname{var}(\overline{Y}) \to 0$. Since $\operatorname{bias}(\overline{Y}) = 0$, $\operatorname{MSE}(\overline{Y}) = \operatorname{var}(\overline{Y}) \to 0$ and it follows that \overline{Y} is consistent for μ .

3. We may write

$$E\left(\frac{1}{n}\sum_{i=1}^{n}(Y_{i}-\overline{Y})^{2}\right) = E\left(\frac{1}{n}\sum_{i=1}^{n}(Y_{i}^{2}-2Y_{i}\overline{Y}+\overline{Y}^{2})\right)$$

$$= \frac{1}{n}\sum_{i=1}^{n}E(Y_{i}^{2})-2E(\overline{Y}^{2})+E(\overline{Y}^{2})$$

$$= \frac{1}{n}\sum_{i=1}^{n}E(Y_{i}^{2})-E(\overline{Y}^{2})$$

$$= E(Y_{1}^{2})-\mu^{2}+\mu^{2}-(E(\overline{Y}^{2})-E(\overline{Y})^{2})-E(\overline{Y})^{2}$$

$$= \operatorname{Var}(Y_{1})+\mu^{2}-\operatorname{Var}(\overline{Y})-\mu^{2}$$

$$= \sigma^{2}+\mu^{2}-\frac{\sigma^{2}}{n}-\mu^{2}$$

$$= \frac{n-1}{n}\sigma^{2}\neq\sigma^{2},$$

and so it is a biased estimator of σ^2 .

Exercise 3.

1. We have

$$E(T_n) = \frac{E(X) + 1}{n+2} = \frac{n\theta + 1}{n+2} \neq \theta.$$

bias $(T_n) = E(T_n) - \theta = \frac{n\theta + 1}{n+2} - \theta = \frac{1 - 2\theta}{n+2}.$

Since $bias(T_n) \neq 0$, T_n is biased.

2.

$$\operatorname{Var}(T_n) = \frac{1}{(n+2)^2} \operatorname{Var}(X) = \frac{n\theta(1-\theta)}{(n+2)^2}$$

and so

$$MSE(T_n) = Var(T_n) + (bias(T_n))^2$$
$$= \frac{n\theta(1-\theta)}{(n+2)^2} + \frac{(1-2\theta)^2}{(n+2)^2}$$
$$= \frac{n\theta(1-\theta) + (1-2\theta)^2}{(n+2)^2}.$$

3. As $\lim_{n\to\infty} MSE(T_n) = 0$, the sequence of estimators T_n are consistent.

Exercise 4. 1. The likelihood is

$$L(\theta; \underline{y}) = \prod_{i=1}^{n} f_{Y_i}(y_i)$$
$$= \prod_{i=1}^{n} \frac{1}{\theta} y_i^{\frac{1}{\theta}-1}$$
$$= \frac{1}{\theta^n} \left(\prod_{i=1}^{n} y_i\right)^{\frac{1}{\theta}-1}$$

.

2. Using integration by parts, we may write

$$E(\log Y) = \frac{1}{\theta} \int_0^1 (\log y) y^{\frac{1}{\theta} - 1} dy$$
$$= \left[(\log y) y^{\frac{1}{\theta}} \right]_0^1 - \int_0^1 y^{\frac{1}{\theta} - 1} dy$$
$$= -\theta \left[y^{\frac{1}{\theta}} \right]_0^1 = -\theta.$$

It follows that

$$E\left(-\frac{1}{n}\sum_{i=1}^{n}\log(Y_i)\right) = -\frac{1}{n}E\left(\sum_{i=1}^{n}\log(Y_i)\right)$$
$$= \frac{1}{n}n\theta = \theta,$$

and so $-\sum_{i=1}^{n} \log(Y_i)/n$ is an unbiased estimator of θ .

3. Let $g(\theta) = \theta$. Then we have $dg/d\theta = 1$. The log-likelihood is

$$\log L(\theta; \underline{y}) = -n \log \theta + \left(\frac{1}{\theta} - 1\right) \sum_{i=1}^{n} \log(y_i).$$

Thus, we have

$$\frac{d\log L(\theta;\underline{y})}{d\theta} = -\frac{n}{\theta} - \frac{1}{\theta^2} \sum_{i=1}^n \log(y_i)$$

and

$$\frac{d^2 \log L(\theta; \underline{y})}{d\theta^2} = \frac{n}{\theta^2} + \frac{2}{\theta^3} \sum_{i=1}^n \log(y_i).$$

It follows that

$$E\left(-\frac{d^2\log L(\theta;\underline{Y})}{d\theta^2}\right) = -\frac{n}{\theta^2} - \frac{2}{\theta^3}E\left(\sum_{i=1}^n \log(Y_i)\right)$$
$$= -\frac{n}{\theta^2} + \frac{2}{\theta^3}n\theta = \frac{n}{\theta^2},$$

and hence $CRLB(\theta) = \theta^2/n$.

4. By independence, we have

$$\operatorname{var}\left(-\frac{1}{n}\sum_{i=1}^{n}\log(Y_{i})\right) = \frac{1}{n^{2}}\operatorname{var}\left(\sum_{i=1}^{n}\log(Y_{i})\right)$$
$$= \frac{1}{n^{2}}n\theta^{2} = \frac{\theta^{2}}{n}.$$

Since this is equal to the CRLB, $-\sum_{i=1}^{n} \log(Y_i)/n$ is a minimum variance unbiased estimator of θ .

Exercise 5. We have $\mu'_1 = E(Y) = \exp(\theta + 1/2)$ and $m'_1 = \overline{Y}$. So the method of moments estimator of θ satisfies the equation

$$\exp\left(\tilde{\theta} + \frac{1}{2}\right) = \overline{Y}.$$

Thus, we obtain $\tilde{\theta} = \log(\overline{Y}) - 1/2.$ §

Exercise 6. The method of moments estimators of μ and σ^2 satisfy the equations

$$e^{\tilde{\mu}+\frac{\tilde{\sigma}^2}{2}} = \overline{Y}$$
 and $e^{2(\tilde{\mu}+\tilde{\sigma}^2)} = \frac{1}{n}\sum_{i=1}^n Y_i^2$.

By dividing the second equation by the square of the first, we obtain

$$e^{\tilde{\sigma}^2} = \frac{\sum_{i=1}^n Y_i^2}{n\overline{Y}^2} \Rightarrow e^{2\tilde{\mu}} = \frac{n\overline{Y}^4}{\sum_{i=1}^n Y_i^2}$$

So the method of moments estimators are given by

$$\tilde{\mu} = \frac{1}{2} \log \left(\frac{n \overline{Y}^4}{\sum_{i=1}^n Y_i^2} \right) \text{ and } \tilde{\sigma}^2 = \log \left(\frac{\sum_{i=1}^n Y_i^2}{n \overline{Y}^2} \right).$$

Exercise 7.

- 1. We have $\mu'_1 = E(Y) = m\pi$ and $m'_1 = \overline{Y}$. Hence, the method of moments estimator of π satisfies the equation $m\tilde{\pi} = \overline{Y}$, so that $\tilde{\pi} = \overline{Y}/m$.
- 2. The likelihood is

$$L(\pi;\underline{y}) = \prod_{i=1}^{n} \binom{m}{y_i} \pi^{y_i} (1-\pi)^{m-y_i}$$
$$= \pi^{\sum_{i=1}^{n} y_i} (1-\pi)^{mn-\sum_{i=1}^{n} y_i} \prod_{i=1}^{n} \binom{m}{y_i},$$

and so the log-likelihood is

$$\ell(\pi;\underline{y}) = \sum_{i=1}^{n} \log \binom{m}{y_i} + \sum_{i=1}^{n} y_i \log \pi + \binom{mn - \sum_{i=1}^{n} y_i}{\log(1 - \pi)}.$$

Thus, solving the equation

$$\frac{d\ell}{d\pi} = \frac{\sum_{i=1}^{n} y_i}{\pi} - \frac{mn - \sum_{i=1}^{n} y_i}{1 - \pi} = 0,$$

we obtain the maximum likelihood estimator of π as $\hat{\pi} = \overline{Y}/m$.

3. The Maximum Likelihood estimator is asymptotically normally distributed, with mean π and variance given by $I^{-1}(\pi) = \frac{\pi(1-\pi)}{nm}$. (Note: $E(\hat{\pi}) = \pi$ and $\operatorname{Var}(\hat{\pi}) = \frac{\pi(1-\pi)}{nm}$, which is consistent with the parameters of the normal distribution just given.)

Exercise 8. 1. The likelihood is

$$L(\theta; \underline{y}) = \prod_{i=1}^{n} e^{-(y_i - \theta)} = e^{-\sum_{i=1}^{n} y_i + n\theta}, \quad \min_i y_i \ge \theta.$$

Since $L(\theta; \underline{y})$ is an increasing function of θ , it is maximised at the largest value of θ , which is $\min_i y_i$. So the maximum likelihood estimator of θ is $\hat{\theta} = \min_i Y_i$.

2. We have $\mu'_1 = \theta + 1$ and $m'_1 = \overline{Y}$. Thus, the method of moments estimator of θ satisfies the equation $\tilde{\theta} + 1 = \overline{Y}$, so that $\tilde{\theta} = \overline{Y} - 1$.

Exercise 9. 1. $\overline{x} = \frac{1}{n}x_i = 2.95$. $\hat{\lambda} = \frac{1}{2.95} = 0.33898$

- 2. $X\sim \chi^2_\nu \Rightarrow E(X)=\nu$, so $\hat{\nu}=2.95$
- 3. We have

$$E(X^{2}) = \operatorname{var}(X) + (E(X))^{2} = \frac{k(1-p)}{p^{2}} + \left(\frac{k(1-p)}{p}\right)^{2}$$

and $\frac{1}{n} \sum x_i^2 = 13.635$. Set

$$\frac{\hat{k}(1-\hat{p})}{\hat{p}} = 2.95$$
 and $\frac{\hat{k}(1-\hat{p})}{\hat{p}^2} + \left(\frac{\hat{k}(1-\hat{p})}{\hat{p}}\right)^2 = 13.635$

Substituting the first equation into the second gives

$$\frac{2.95}{\hat{p}} + 2.95^2 = 13.635 \Rightarrow \frac{2.95}{\hat{p}} = 4.9325 \Rightarrow \hat{p} = 0.59807$$

Hence, substituting this back into the first equation gives

$$\hat{k} = 4.3896$$

Note that k must be an integer but \hat{k} is not an integer.

- **Exercise 10.** 1. Since $0 \le P(X = x) \le 1$, using this for each of the probabilities gives lower bounds for α of -1/16, -1/6, and -3/8. Hence $\alpha \ge -1/16$. We also obtain upper bounds for α of 7/16, 1/6, and 5/8. Hence, $\alpha \le 1/6$.
 - (a) We have one unknown, so we will use $E(Y) = \bar{y}$:

$$E(Y) = 2(1/8 + 2\alpha) + 4(1/2 - 3\alpha) + 5(3/8 + \alpha) = 33/8 - 3\alpha$$

From the data we have

$$\bar{y} = \frac{7 \times 2 + 6 \times 4 + 17 \times 5}{30} = 123/30 = 4.1$$

Therefore,

$$33/8 - 3\hat{\alpha} = 4.1 \Rightarrow \hat{\alpha} = 0.0083$$

This value lies between the limits derived in part (i).

(b) The likelihood of obtaining the observed results is:

$$L(\alpha) = C \times (1/8 + 2\alpha)^7 (1/2 - 3\alpha)^6 (3/8 + \alpha)^{17}$$

where C is a normalising constant. Taking logs and differentiating gives

$$\ln L(\alpha) = \ln C + 7\ln(1/8 + 2\alpha) + 6\ln(1/2 - 3\alpha) + 17\ln(3/8 + \alpha)$$
$$\Rightarrow \frac{d}{d\alpha}\ln L(\alpha) = \frac{14}{1/8 + 2\alpha} - \frac{18}{1/2 - 3\alpha} + \frac{17}{3/8 + \alpha}$$

Equating this to zero to find the maximum value of α gives

$$\frac{14}{1/8 + 2\hat{\alpha}} - \frac{18}{1/2 - 3\hat{\alpha}} + \frac{17}{3/8 + \hat{\alpha}} = 0$$

$$\Rightarrow 14(1/2 - 3\hat{\alpha})(3/8 + \hat{\alpha}) - 18(1/8 + 2\hat{\alpha})(3/8 + \hat{\alpha}) + 17(1/8 + 2\hat{\alpha})(1/2 - 3\hat{\alpha}) = 0$$

$$\Rightarrow 180\hat{\alpha}^2 + \frac{111}{8}\hat{\alpha} - \frac{91}{32} = 0$$

(c) Solving the quadratic equation gives:

$$\hat{\alpha} = \frac{-\frac{111}{8} \pm \sqrt{\left(\frac{111}{8}\right)^2 - 4(180)(-91/32)}}{360} = -0.170, 0.0929$$

The maximum likelihood estimate is 0.0929.

The other solution of -0.170 oes not lie between the bounds calculated in (i). It is not feasible as it is less than the smallest possible value for α of -0.0625.

Exercise 11. The likelihood is given by

$$L(\lambda) = \left(\prod_{i=1}^{10} f_X(x_i)\right) \times (P(X > 4))^6 = \lambda^{10} e^{-\lambda \sum_{i=1}^{10} x_i} \times (e^{-4\lambda})^6.$$

Taking logarithms gives

$$\ell(\lambda) = 10 \ln \lambda - \lambda \sum_{i=1}^{10} x_i - 24\lambda.$$

Since $\sum_{i=1}^{10} x_i = 18.3$, we get

$$\ell(\lambda) = 10 \ln \lambda - 42.3\lambda.$$

Differentiating gives

$$\frac{d}{d\lambda}\ell(\lambda) = \frac{10}{\lambda} - 42.3.$$

This equals 0 when

$$\lambda = \frac{10}{42.3} = 0.2364$$

Differentiating again gives

$$\frac{d}{d\lambda}\ell(\lambda) = -\frac{10}{\lambda^2} < 0$$

So the maximum likelihood estimate is

$$\hat{\lambda} = \frac{10}{42.3} = 0.2364.$$