
MTH5131 Actuarial Statistics
Coursework 2 — Solutions

Exercise 1. 1. The likelihood is

L(π; y1, . . . , yn) = P (Y1 = y1, . . . , Yn = yn)

=
n∏

i=1

P (Yi = yi)

=
n∏

i=1

(
m
yi

)
πyi(1− π)m−yi

= π
∑n

i=1 yi(1− π)mn−
∑n

i=1 yi

n∏
i=1

(
m
yi

)
.

2. We may write

E

(
Y

m

)
=

1

mn
E

(
n∑

i=1

Yi

)
=

1

mn
mnπ = π,

and so Y /m is an unbiased estimator of π. Also, by independence,

var

(
Y

m

)
=

1

(mn)2
var

(
n∑

i=1

Yi

)

=
1

(mn)2
mnπ(1− π) =

π(1− π)

mn
.

Since

E

(
Y (m− Y )

m2

)
= E

(
Y

m

)
− E

(
Y

2

m2

)

= E

(
Y

m

)
− E

(
Y

m

)2

−

(
E

(
Y

2

m2

)
− E

(
Y

m

)2
)

= E

(
Y

m

)
− E

(
Y

m

)2

− Var

(
Y

m

)
= π − π2 − π(1− π)

mn
=

(mn− 1)

mn
π(1− π),

it follows that

E

(
1

(mn− 1)

Y (m− Y )

m2

)
=

π(1− π)

mn
,

and so c = 1/(mn− 1).
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Exercise 2. 1. We may write

E(Y ) =
1

n
(E(Y1) + . . .+ E(Yn)) = µ,

and so Y is an unbiased estimator of µ.

2. By independence, we have

var(Y ) =
1

n2
(var(Y1) + . . .+ var(Yn)) =

σ2

n
.

Thus, as n → ∞, var(Y ) → 0. Since bias(Y ) = 0, MSE(Y ) = var(Y ) → 0 and it follows
that Y is consistent for µ.

3. We may write

E

(
1

n

n∑
i=1

(Yi − Y )2

)
= E

(
1

n

n∑
i=1

(Y 2
i − 2YiY + Y

2
)

)

=
1

n

n∑
i=1

E(Y 2
i )− 2E(Y

2
) + E(Y

2
)

=
1

n

n∑
i=1

E(Y 2
i )− E(Y

2
)

= E(Y 2
1 )− µ2 + µ2 − (E(Y

2
)− E(Y )2)− E(Y )2

= Var(Y1) + µ2 − Var(Y )− µ2

= σ2 + µ2 − σ2

n
− µ2

=
n− 1

n
σ2 ̸= σ2,

and so it is a biased estimator of σ2.

Exercise 3.

1. We have

E(Tn) =
E(X) + 1

n+ 2
=

nθ + 1

n+ 2
̸= θ.

bias(Tn) = E(Tn)− θ =
nθ + 1

n+ 2
− θ =

1− 2θ

n+ 2
.

Since bias(Tn) ̸= 0, Tn is biased.

2.

Var(Tn) =
1

(n+ 2)2
Var(X) =

nθ(1− θ)

(n+ 2)2

and so

MSE(Tn) = Var(Tn) + (bias(Tn))
2

=
nθ(1− θ)

(n+ 2)2
+

(1− 2θ)2

(n+ 2)2

=
nθ(1− θ) + (1− 2θ)2

(n+ 2)2
.
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3. As limn→∞ MSE(Tn) = 0, the sequence of estimators Tn are consistent.

Exercise 4. 1. The likelihood is

L(θ; y) =
n∏

i=1

fYi
(yi)

=
n∏

i=1

1

θ
y

1
θ
−1

i

=
1

θn

(
n∏

i=1

yi

) 1
θ
−1

.

2. Using integration by parts, we may write

E(log Y ) =
1

θ

∫ 1

0

(log y)y
1
θ
−1dy

=
[
(log y)y

1
θ

]1
0
−
∫ 1

0

y
1
θ
−1dy

= −θ
[
y

1
θ

]1
0
= −θ.

It follows that

E

(
− 1

n

n∑
i=1

log(Yi)

)
= − 1

n
E

(
n∑

i=1

log(Yi)

)
=

1

n
nθ = θ,

and so −
∑n

i=1 log(Yi)/n is an unbiased estimator of θ.

3. Let g(θ) = θ. Then we have dg/dθ = 1. The log-likelihood is

logL(θ; y) = −n log θ +

(
1

θ
− 1

) n∑
i=1

log(yi).

Thus, we have
d logL(θ; y)

dθ
= −n

θ
− 1

θ2

n∑
i=1

log(yi)

and
d2 logL(θ; y)

dθ2
=

n

θ2
+

2

θ3

n∑
i=1

log(yi).

It follows that

E

(
−d2 logL(θ;Y )

dθ2

)
= − n

θ2
− 2

θ3
E

(
n∑

i=1

log(Yi)

)
= − n

θ2
+

2

θ3
nθ =

n

θ2
,

and hence CRLB(θ) = θ2/n.
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4. By independence, we have

var

(
− 1

n

n∑
i=1

log(Yi)

)
=

1

n2
var

(
n∑

i=1

log(Yi)

)

=
1

n2
nθ2 =

θ2

n
.

Since this is equal to the CRLB, −
∑n

i=1 log(Yi)/n is a minimum variance unbiased estimator
of θ.

Exercise 5. We have µ′
1 = E(Y ) = exp(θ + 1/2) and m′

1 = Y . So the method of moments
estimator of θ satisfies the equation

exp

(
θ̃ +

1

2

)
= Y .

Thus, we obtain θ̃ = log(Y )− 1/2.§

Exercise 6. The method of moments estimators of µ and σ2 satisfy the equations

eµ̃+
σ̃2

2 = Y and e2(µ̃+σ̃2) =
1

n

n∑
i=1

Y 2
i .

By dividing the second equation by the square of the first, we obtain

eσ̃
2

=

∑n
i=1 Y

2
i

nY
2 ⇒ e2µ̃ =

nY
4∑n

i=1 Y
2
i

So the method of moments estimators are given by

µ̃ =
1

2
log

(
nY

4∑n
i=1 Y

2
i

)
and σ̃2 = log

(∑n
i=1 Y

2
i

nY
2

)
.

Exercise 7.

1. We have µ′
1 = E(Y ) = mπ and m′

1 = Y . Hence, the method of moments estimator of π
satisfies the equation mπ̃ = Y , so that π̃ = Y /m.

2. The likelihood is

L(π; y) =
n∏

i=1

(
m
yi

)
πyi(1− π)m−yi

= π
∑n

i=1 yi(1− π)mn−
∑n

i=1 yi

n∏
i=1

(
m
yi

)
,

and so the log-likelihood is

ℓ(π; y) =
n∑

i=1

log

(
m
yi

)
+

n∑
i=1

yi log π +

(
mn−

n∑
i=1

yi

)
log(1− π).

Thus, solving the equation

dℓ

dπ
=

∑n
i=1 yi
π

− mn−
∑n

i=1 yi
1− π

= 0,

we obtain the maximum likelihood estimator of π as π̂ = Y /m.
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3. The Maximum Likelihood estimator is asymptotically normally distributed, with mean π and
variance given by I−1(π) = π(1−π)

nm
.

(Note: E(π̂) = π and Var(π̂) = π(1−π)
nm

, which is consistent with the parameters of the normal
distribution just given.)

Exercise 8. 1. The likelihood is

L(θ; y) =
n∏

i=1

e−(yi−θ) = e−
∑n

i=1 yi+nθ, min
i

yi ≥ θ.

Since L(θ; y) is an increasing function of θ, it is maximised at the largest value of θ, which is

mini yi. So the maximum likelihood estimator of θ is θ̂ = mini Yi.

2. We have µ′
1 = θ+ 1 and m′

1 = Y . Thus, the method of moments estimator of θ satisfies the
equation θ̃ + 1 = Y , so that θ̃ = Y − 1.

Exercise 9. 1. x = 1
n
xi = 2.95. λ̂ = 1

2.95
= 0.33898

2. X ∼ χ2
ν ⇒ E(X) = ν, so ν̂ = 2.95

3. We have

E(X2) = var(X) + (E(X))2 =
k(1− p)

p2
+

(
k(1− p)

p

)2

and 1
n

∑
x2
i = 13.635. Set

k̂(1− p̂)

p̂
= 2.95 and

k̂(1− p̂)

p̂2
+

(
k̂(1− p̂)

p̂

)2

= 13.635

Substituting the first equation into the second gives

2.95

p̂
+ 2.952 = 13.635 ⇒ 2.95

p̂
= 4.9325 ⇒ p̂ = 0.59807

Hence, substituting this back into the first equation gives

k̂ = 4.3896

Note that k must be an integer but k̂ is not an integer.

Exercise 10. 1. Since 0 ≤ P (X = x) ≤ 1, using this for each of the probabilities gives lower
bounds for α of −1/16, −1/6, and −3/8. Hence α ≥ −1/16. We also obtain upper bounds
for α of 7/16, 1/6, and 5/8. Hence, α ≤ 1/6.

(a) We have one unknown, so we will use E(Y ) = ȳ:

E(Y ) = 2(1/8 + 2α) + 4(1/2− 3α) + 5(3/8 + α) = 33/8− 3α.

From the data we have

ȳ =
7× 2 + 6× 4 + 17× 5

30
= 123/30 = 4.1

Therefore,
33/8− 3α̂ = 4.1 ⇒ α̂ = 0.0083

This value lies between the limits derived in part (i).
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(b) The likelihood of obtaining the observed results is:

L(α) = C × (1/8 + 2α)7(1/2− 3α)6(3/8 + α)17

where C is a normalising constant. Taking logs and differentiating gives

lnL(α) = lnC + 7 ln(1/8 + 2α) + 6 ln(1/2− 3α) + 17 ln(3/8 + α)

⇒ d

dα
lnL(α) =

14

1/8 + 2α
− 18

1/2− 3α
+

17

3/8 + α

Equating this to zero to find the maximum value of α gives

14

1/8 + 2α̂
− 18

1/2− 3α̂
+

17

3/8 + α̂
= 0

⇒ 14(1/2− 3α̂)(3/8 + α̂)− 18(1/8 + 2α̂)(3/8 + α̂) + 17(1/8 + 2α̂)(1/2− 3α̂) = 0

⇒ 180α̂2 +
111

8
α̂− 91

32
= 0

(c) Solving the quadratic equation gives:

α̂ =
−111

8
±
√(

111
8

)2 − 4(180)(−91/32)

360
= −0.170, 0.0929

The maximum likelihood estimate is 0.0929.

The other solution of −0.170 oes not lie between the bounds calculated in (i). It is not
feasible as it is less than the smallest possible value for α of -0.0625.

Exercise 11. The likelihood is given by

L(λ) =

(
10∏
i=1

fX(xi)

)
× (P (X > 4))6 = λ10e−λ

∑10
i=1 xi × (e−4λ)6.

Taking logarithms gives

ℓ(λ) = 10 lnλ− λ
10∑
i=1

xi − 24λ.

Since
∑10

i=1 xi = 18.3, we get
ℓ(λ) = 10 lnλ− 42.3λ.

Differentiating gives
d

dλ
ℓ(λ) =

10

λ
− 42.3.

This equals 0 when

λ =
10

42.3
= 0.2364.

Differentiating again gives
d

dλ
ℓ(λ) = −10

λ2
< 0

So the maximum likelihood estimate is

λ̂ =
10

42.3
= 0.2364.

6


