MTH5131 Actuarial Statistics

Coursework 2

This coursework is not to be turned in. You may ask questions about the coursework in tutorial or by email.

Exercise 1. Suppose that Y_1, Y_2, \dots, Y_n are independent $Bin(m, \pi)$ random variables, where m is known.

- 1. Write down the likelihood for the data y_1, y_2, \ldots, y_n .
- 2. Show that \overline{Y}/m is an unbiased estimator of π and find its variance. What is the value for c such that $c\overline{Y}(m-\overline{Y})/m^2$ is an unbiased estimator of this variance?

Exercise 2. Suppose that Y_1, Y_2, \dots, Y_n are independent $N(\mu, \sigma^2)$ random variables.

- 1. Show that \overline{Y} is an unbiased estimator of μ .
- 2. Is \overline{Y} consistent for μ ?
- 3. Show that $\sum_{i=1}^n (Y_i \overline{Y})^2/n$ is a biased estimator of σ^2 .

Exercise 3. Let $X \sim \operatorname{Binomial}(n, \theta)$, where n is known, and we want to estimate θ . Consider the estimator of θ given by $T_n = \frac{X+1}{n+2}$.

- 1. Find $bias(T_n)$ and show that each T_n is an biased estimator of θ .
- 2. Find the MSE of T_n for θ .
- 3. Show that T_n is a consistent sequence of estimators for θ .

Exercise 4. Suppose that Y_1, Y_2, \dots, Y_n are independent random variables from the beta distribution with probability density function

$$f_Y(y) = \frac{1}{\theta} y^{\frac{1}{\theta} - 1}, \quad 0 < y < 1,$$

where $\theta > 0$.

- 1. Write down the likelihood for the data y_1, y_2, \ldots, y_n .
- 2. Show that $E(\log Y) = -\theta$. Hence, show that $-\sum_{i=1}^n \log(Y_i)/n$ is an unbiased estimator of θ .
- 3. Find the Cramér-Rao lower bound for unbiased estimators of θ .
- 4. Given that $var(\log Y) = \theta^2$, is $-\sum_{i=1}^n \log(Y_i)/n$ a minimum variance unbiased estimator of θ ?

Exercise 5. Let Y_1, Y_2, \ldots, Y_n be independent lognormal random variables with probability density function

$$f_Y(y) = \frac{1}{\sqrt{2\pi}y} \exp\left\{-\frac{1}{2}(\log y - \theta)^2\right\}, \quad y > 0,$$

where $-\infty < \theta < \infty$. Given that $E(Y) = \exp(\theta + 1/2)$, obtain the method of moments estimator of θ .

Exercise 6. Suppose that Y_1, Y_2, \dots, Y_n are independent lognormal random variables with probability density function

$$f_Y(y) = \frac{1}{\sqrt{2\pi\sigma^2 y}} \exp\left\{-\frac{1}{2\sigma^2} (\log y - \mu)^2\right\}, \quad y > 0,$$

where $-\infty < \mu < \infty$ and $\sigma^2 > 0$ are parameters. Given that

$$E(Y) = e^{\mu + \frac{\sigma^2}{2}}$$
 and $E(Y^2) = e^{2\mu + 2\sigma^2}$,

find the method of moments estimators for μ and σ^2 .

Exercise 7. Let Y_1, Y_2, \ldots, Y_n be independent $Bin(m, \pi)$ random variables, where m is known.

- 1. Show that the method of moments estimator of π is $\overline{Y}/m.$
- 2. Find the maximum likelihood estimator of π .
- 3. The Fisher information of π for Y_1, Y_2, \dots, Y_n is given by

$$I(\pi) = \frac{nm}{\pi(1-\pi)}.$$

Write down the asymptotic distribution of the maximum likelihood estimator.

¹As a further exercise, try calculating this.

Exercise 8. Suppose that Y_1, Y_2, \dots, Y_n are independent random variables with mean $\theta + 1$ and probability density function

$$f_Y(y) = e^{-(y-\theta)}, \quad y \ge \theta,$$

where $-\infty < \theta < \infty$.

- 1. Explain why the maximum likelihood estimator of θ is $\hat{\theta} = \min_i Y_i$.
- 2. Find the method of moments estimator of θ .

Exercise 9.

A random variable X with Type 1 negative binomial distribution having parameters p and k counts the number of the trial on which the kth success occurs, where k is a positive integer lt has p.d.f.

$$P(X = x) = {x - 1 \choose k - 1} p^k (1 - p)^{x - k}, \quad x = k, k + 1, \dots$$

Another formulation of the negative binomial distribution is sometimes used, which is called the Type 2 negative binomial distribution . Let Y be the number of failures before the kth success.o Then,

$$P(Y = y) = {k + y - 1 \choose y} p^k (1 - p)^y, \quad y = 0, 1, \dots$$

with expectation $E(Y)=\frac{k(1-p)}{p}$ and variance $\text{var}(X)=\frac{k(1-p)}{p^2}$. Note that Y=X-k, where X is defined as above.

A random sample of eight observations from a distribution are given below:

$$4.8 \quad 7.6 \quad 1.2 \quad 3.5 \quad 2.9 \quad 0.8 \quad 0.5 \quad 2.3$$

Derive the method of moments estimates for:

- 1. λ from an Exponential(λ) distribution
- 2. ν from a χ^2_{ν} distribution.
- 3. k and p from a Type 2 negative binomial distribution. What do you notice about this estimate?

Exercise 10. A discrete random variable has probability density function given by

$$P(X = 2) = \frac{1}{8} + 2\alpha, \quad P(X = 4) = \frac{1}{2} - 3\alpha, \quad P(X = 5) = \frac{3}{8} + \alpha.$$

- 1. Give the range of possible values for the unknown parameter α .
- 2. A random sample of 30 observations gave respective frequencies of 7, 6 and 17.
 - (a) Calculate the method of moments estimate of α .
 - (b) Write down an expression for the likelihood of these data and hence show that the maximum likelihood estimate $\hat{\alpha}$ satisfies the quadratic equation:

$$180\hat{\alpha}^2 + \frac{111}{8}\hat{\alpha} - \frac{91}{32} = 0.$$

(c) Hence determine the maximum likelihood estimate and explain why one root is rejected as a possible estimate of α

Exercise 11. Waiting times in a post office queue have an Exponential(λ) distribution. Ten people had waiting times (in minutes) of:

$$1.6 \quad 0.9 \quad 1.1 \quad 2.1 \quad 0.7 \quad 1.5 \quad 2.3 \quad 1.7 \quad 3.0 \quad 3.4$$

A further six people had waiting times of more than 4 minutes. Calculate the maximum likelihood estimate of λ based on these data.