MTH5113 (2023/24): Problem Sheet 3

All coursework should be submitted individually.

- Problems marked "[Marked]" should be submitted and will be marked.

Please submit the completed problem on QMPlus:

- At the portal for Coursework Submission 1.
(1) (Warm-up)
(a) Compute the integral

$$
\int_{0}^{1} f(x) d x
$$

where f is the real-valued function

$$
f: \mathbb{R} \rightarrow \mathbb{R}, \quad f(x)=1+x+x^{2}+x^{3}
$$

(b) Compute the integral

$$
\int_{-\pi}^{\pi} g(t) d t
$$

where g is the real-valued function

$$
\mathrm{g}: \mathbb{R} \rightarrow \mathbb{R}, \quad \mathrm{g}(\mathrm{t})=\sin \mathrm{t} \cos \mathrm{t}
$$

(c) Compute the double integral

$$
\iint_{\mathcal{R}} h d A
$$

where \mathcal{R} is the rectangle $[0,5] \times[0,1]$, and where h is the function

$$
h: \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad h(x, y)=e^{2 x}+e^{x} e^{y}
$$

(2) (Warm-up)
(a) Consider the function

$$
\mathrm{V}: \mathbb{R}^{2} \backslash\{(0,0)\} \rightarrow \mathbb{R}, \quad \mathrm{V}(\mathrm{x}, \mathrm{y})=\ln \left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)
$$

(i) Compute the gradient $\nabla \mathrm{V}(\mathrm{x}, \mathrm{y})$ for each $(\mathrm{x}, \mathrm{y}) \in \mathbb{R}^{2} \backslash\{(0,0)\}$.
(ii) Find $\nabla \mathrm{V}(3,4)$ and $\nabla \mathrm{V}(-5,12)$.
(b) Consider the function

$$
w: \mathbb{R}^{3} \rightarrow \mathbb{R}, \quad w(x, y, z)=x y+x z+y z
$$

(i) Compute the gradient $\nabla w(x, y, z)$ for each $(x, y, z) \in \mathbb{R}^{3}$.
(ii) Find $\nabla w(-1,1,6)$.
(3) (Warm-up) Are the following parametric curves regular?
(a) Quartic function:

$$
\mathbf{a}: \mathbb{R} \rightarrow \mathbb{R}^{3}, \quad \mathbf{a}(\mathrm{t})=\left(\mathrm{t}, 0, \mathrm{t}^{4}\right)
$$

(b) No idea what to call this thing:

$$
\mathbf{b}: \mathbb{R} \rightarrow \mathbb{R}^{2}, \quad \mathbf{b}(\mathrm{t})=\left((\mathrm{t}-1)^{3}, e^{(\mathrm{t}-1)^{2}}\right)
$$

(c) Lemniscate of Gerono:

$$
\mathbf{c}: \mathbb{R} \rightarrow \mathbb{R}^{2}, \quad \mathbf{c}(\mathrm{t})=(\cos \mathrm{t}, \sin \mathrm{t} \cos \mathrm{t})
$$

(4) [Marked] Let g be the function

$$
f: \mathbb{R}^{3} \rightarrow \mathbb{R}, \quad f(x, y, z)=\frac{2}{625} e^{\frac{x+y}{5}}(x+y)
$$

and let C denote the region

$$
C=\left\{(x, y, z) \in \mathbb{R}^{3} \mid-(5-z) \leq x \leq(5-z),-(5-z) \leq y \leq(5-z), 0 \leq z \leq 5\right\}
$$

(a) Sketch the region C.
(b) Compute the triple integral

$$
\iiint_{C} f d V .
$$

(5) [Tutorial] Answer the following:
(a) Let f be the function

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad f(x, y)=x^{2} y
$$

and let D denote the triangular region

$$
D=\left\{(x, y) \in \mathbb{R}^{2}|0 \leq y \leq 1,|x| \leq y\}\right.
$$

(i) Sketch the region D on a Cartesian plane.
(ii) Compute the double integral

$$
\iint_{D} f d A .
$$

(b) Let Q denote the region

$$
\mathrm{Q}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid 0 \leq x \leq y+z, 0 \leq y \leq 1,0 \leq z \leq 1\right\}
$$

(i) Sketch the region Q (or at least, do the best you can).
(ii) Use a triple integral to compute the volume of Q .
(6) (Fun with cycloids) Consider the parametric curve

$$
\mathbf{c}: \mathbb{R} \rightarrow \mathbb{R}^{2}, \quad \mathbf{c}(t)=(t-\sin t, 1-\cos t)
$$

(The path mapped out by \mathbf{c} is known as a cycloid.)
(a) Show that \mathbf{c} is not regular. At which $\mathrm{t} \in \mathbb{R}$ do the values $\left|\mathbf{c}^{\prime}(\mathrm{t})\right|$ vanish?
(b) Plot the image of \mathbf{c} using a computer (see the links on the QMPlus page). What happens at the points $\mathbf{c}(\mathrm{t})$ along the plot at which $\left|\mathbf{c}^{\prime}(\mathrm{t})\right|=0$?
(7) (More parametric curves) For each of the following parametric curves γ : (i) sketch, with the help of a computer, the image of γ, and (ii) determine whether γ is regular.
(a) Cissoid of Diocles:

$$
\gamma: \mathbb{R} \rightarrow \mathbb{R}^{2}, \quad \gamma(\mathrm{t})=\left(\frac{\mathrm{t}^{2}}{1+\mathrm{t}^{2}}, \frac{\mathrm{t}^{3}}{1+\mathrm{t}^{2}}\right) .
$$

(b) Witch of Agnesi:

$$
\gamma: \mathbb{R} \rightarrow \mathbb{R}^{2}, \quad \gamma(\mathrm{t})=\left(\mathrm{t}, \frac{1}{1+\mathrm{t}^{2}}\right) .
$$

(c) Tricuspoid:

$$
\gamma: \mathbb{R} \rightarrow \mathbb{R}^{2}, \quad \gamma(t)=(2 \cos t+\cos (2 t), 2 \sin t-\sin (2 t)) .
$$

(8) (Reparametrise my hyperbola!) Consider the following parametric curves:

$$
\begin{array}{ll}
\mathbf{a}: \mathbb{R} \rightarrow \mathbb{R}^{2}, & \mathbf{a}(\mathrm{t})=(\cosh \mathrm{t}, \sinh \mathrm{t}) \\
\mathbf{b}: \mathbb{R} \rightarrow \mathbb{R}^{2}, & \mathbf{b}(\mathrm{t})=\left(\sqrt{1+\mathrm{t}^{2}}, \mathrm{t}\right)
\end{array}
$$

(a) Sketch the image of \mathbf{b}.
(b) Show that both \mathbf{a} and \mathbf{b} are regular.
(c) Show that $\mathbf{a}(\mathrm{t})=\mathbf{b}(\sinh t)$ for any $t \in \mathbb{R}$. According to definition, what else must you to show in order to demonstrate that \mathbf{a} and \mathbf{b} are reparametrisations of each other?
(d) Finish what you started in (c) -show that \mathbf{a} and \mathbf{b} are reparametrisations of each other. (You will not need advanced knowledge, but you will have to be extra resourceful.)
(9) (Numbers, Sets, and Functions revisited) Let \mathcal{P} denote the set of all regular parametric curves in \mathbb{R}^{n}. Given any two $\gamma_{1}, \gamma_{2} \in \mathcal{P}$, we write $\gamma_{1} \sim \gamma_{2}$ iff γ_{1} is a reparametrisation of γ_{2}. Show that this \sim defines an equivalence relation on \mathcal{P}.

