Typed-up notes for Week 2
8 Week 3
have been uploaded onto th Week 2 tab!
Ill edit them a bit more next week though
office hons Friday 11-12

$$
M B-B 2 I
$$

Wechescans 1-2 Leamis Cafe

Last Monday
Equivalence relation \otimes on a set S.
We withe

$$
[a]=[a]_{R}
$$

for $a \in S$
to mean

$$
\{b \in S \mid a Q b\}
$$

In partials, if R is an equiklen θ relation
ten $[a]=[b]$
canitivere for any $b \in S$
clocs $a R b$
repisasented by a.
(6)
[key isthe: n, m positiol

$$
Q \widehat{n^{2}\left|m^{2} \Rightarrow n\right| m \text { intgers, }}
$$

To prove this we use

He fucamemil theovem if GFithmetic

$$
n=\prod_{p} p^{r_{p}} \quad r_{p} \geq 0
$$

product $\forall p$

$$
=p_{1}^{r_{1}} \cdot p_{2}^{r_{2}}
$$

Pi's are distiuct primes

Def S aset A partion P of S is a set od subsets of S Satisfying the suciritions

- $\phi \nLeftarrow P$
- If $A \& B \in \mathcal{P}$ cie. $A \& B$ are siphork of S in $P 1$
8 distiuct,
tem

$$
A \cap B=\phi
$$

- The unicon of all $A \in P$ is S.

Theorem 9

$$
\begin{aligned}
& \left\{\begin{array}{c}
\text { partions } P \\
\text { of } S
\end{array}\right\} \leftrightarrow\left\{\begin{array}{l}
\text { equivalene } \\
\text { rehtions } Q
\end{array}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \text { a singet of }
\end{aligned}
$$

$$
\begin{aligned}
& P \longmapsto \text { Define } \\
& a \not Q b \\
& \text { if } a \& b \text { lies } \\
& \text { in to same } \\
& A \in P
\end{aligned}
$$

Let's prove Theorem 9!
Suppose we are given an equiv. relation Q on S.
We need to clock that

$$
\left\{[a]_{\mathbb{R}}\right\}
$$

satisters the conditions.
for partion.

- No element oo $\{[a] p\}$

$$
\text { is } \phi
$$

since R is reflerive:

$$
a \in[a]_{R}
$$

Thanture [a] is nan-mmoty.

- If [a] and [b] are distinct, Hor $[a] \cap[b]=\phi$
Equivalently,

$$
\begin{aligned}
\text { if }[a] \cap[b] & \neq \phi, \\
\text { then }[a] & =[b]
\end{aligned}
$$

By assumption.

$$
\begin{aligned}
& \exists c \in[a] \cap[b] \\
& +\phi
\end{aligned}
$$

$$
\begin{array}{ll}
\Rightarrow & c \in[a] \\
& c \in[b] \\
\Rightarrow & a Q c \\
\text { i.e. hold } \\
& b Q c \quad
\end{array}
$$

That meals

$$
\text { (becouse } R \text { is symmetric) }
$$

Since 2 is trasitive

* ** $\Rightarrow a Q b$

$$
\Rightarrow[a]=[b]
$$

- The union T of $[a]^{\prime} s$ $a \in S$ equals S.
We need to check
(1) $S \leq T$
(2) $T \leq S$
(1) By detention
$\forall a \in S, \quad[a] \subseteq S$
$\{b \in\{\mid a R b\}$
Thenature

$$
T \leq S
$$

(I've used the fact that

$$
\begin{aligned}
& v \leq \$ \\
& V \leq \$
\end{aligned}
$$

then $U \cup V \leq S$)
(2) $\quad S \leq T ?$

Let a be ane event in S
(GoAl: $a \in T$)
The equivalence

$$
[a] \subseteq T
$$

OTOH,

$$
a \in[a]
$$

Therefore, $a \in T . D$.

Wed re just proved that $\underset{\substack{\text { equiv. } \\ \text { relation }}}{\otimes} \boldsymbol{\text { portion }}$

Cchuergly, Suppose we are given
a portion P,
we need to check that the relation Q
(defined sit. $a R b$

$$
\Leftrightarrow a \& b
$$

lies in a part

Satistos te canditions
(Exerciz! Do it!)
Also cheek that
R so delined is whique
3.2 Congtrenes mod n Let n be a pasitik integen

Def The define a relation

$$
\equiv
$$

on $S=\mathbb{Z}$ (He integers)
by: $\quad a, b \in \mathbb{Z}$

$$
a \equiv b(\bmod n)
$$

(a is congruent to $b \bmod n$)
if and curly if n divides

Prop 10 三 is an equivalence (congtronce mod n relation relation) ${ }^{o n} \mathbb{Z}$

According to Theorem 9, this defines a portion on \mathbb{Z}. What is it?

$$
\left\{[0],\left[\frac{1}{1}\right]_{11}, \cdots,[n-1]\right\}
$$

[n] $[n+1]$ By Theorem 9,
$[2 n]$ " we know that
 $[-3 n+1]$ belongs to exactly one [] above

