1. For each of the following subsets of \mathbb{R}, determine the supremum and decide whether it is a maximum. Justify your answers.
(a) $A=\left\{x: x^{2}-2<0\right\}$,

One has $A=(-\sqrt{2}, \sqrt{2})$ and hence $\sup A=\sqrt{2}$, the maximum does not exist.
(b) $B=\left\{x^{2}-2:-2 \leq x<2\right\}$,

One has $B=[-2,2]$ and therefore $\sup B=2$ and $\max B=2$.
(c) $C=\left\{1-1 / n^{2}: n=1,2,3, \ldots\right\}$
$\sup C=1$, the maximum does not exist.
(d) $D=\left\{1+1 / n^{3}: n=1,2,3, \ldots\right\}$.

The sequence is decreasing and therefore $\sup D=2$ and $\max D=2$ is achieved for $n=1$.
2. Let $X=\{0,1\}^{\omega}$ be the set of all infinite sequences formed of 0 s and 1 s . For $x, y \in X$, define

$$
d(x, y)=\sum_{n=1}^{\infty} 2^{-n}\left|x_{n}-y_{n}\right|,
$$

where $x=\left(x_{n}\right)$ and $y=\left(y_{n}\right)$. Prove that d is well-defined and is a metric on X.
The series defining d converges since $\left|x_{n}-y_{n}\right| \leq 1$ and $\sum_{n=1}^{\infty} 2^{-n}=1$.
If $x, y, z \in X$, where $x=\left(x_{n}\right), y=\left(y_{n}\right), z=\left(z_{n}\right)$, then for any n

$$
\left|x_{n}-y_{n}\right| \leq\left|x_{n}-z_{n}\right|+\left|z_{n}-y_{n}\right|
$$

implying

$$
\sum 2^{-n}\left|x_{n}-y_{n}\right| \leq \sum 2^{-n}\left|x_{n}-z_{n}\right|+\sum 2^{-n}\left|z_{n}-y_{n}\right|
$$

i.e. $d(x, y) \leq d(x, z)+d(z, y)$. M1 and M2 are obvious.
3. Prove that if (X, d) is a metric space then $\sigma: X \times X \rightarrow \mathbb{R}$ is a metric where

$$
\sigma(x, y)=\min \{d(x, y), 1\}
$$

Given $x, y, z \in X$, denote $d(x, z)=a, d(x, y)=b, d(y, z)=c$ and $\sigma(x, z)=a^{\prime}$, $\sigma(x, y)=b^{\prime}, \sigma(y, z)=c^{\prime}$ We may assume that $a \geq b \geq c$ and $a \leq b+c$.
If $a \leq 1$ then $b \leq 1$ and $c \leq 1$, and $a=a^{\prime}, b=b^{\prime}, c=c^{\prime}$ and $a^{\prime} \leq b^{\prime}+c^{\prime}$.
If $a \geq 1 \geq b$ then $a^{\prime}<a \leq b^{\prime}+c^{\prime}$ since in this case $b=b^{\prime}$ and $c=c^{\prime}$.
If $b \geq 1$ then $a^{\prime} \leq b^{\prime}+c^{\prime}$ as in this case $a^{\prime}=1$ and $b^{\prime}=1$.
4. A metric space X is said to be bounded if there is some number $M>0$ such that

$$
d(x, y) \leq M
$$

for any $x, y \in X$. Show that for any metric space (X, d), the metric space (X, σ) (as defined in the previous question) is bounded. Show also that the metric of example 2 is bounded.
It is clear that $\sigma(x, y) \leq 1$, i.e. the metric σ is bounded. The metric of example 2 also satisfies $d(x, y) \leq \sum_{n=1}^{\infty} 2^{-n}=1$.
5. The Euclidean norm of a vector $p=\left(p_{1}, p_{2}\right) \in \mathbb{R}^{2}$ is defined as $\|p\|_{2}=\sqrt{p_{1}^{2}+p_{2}^{2}}$. For $p, q \in \mathbb{R}^{2}$ define $d(p, q)$ by

$$
d(p, q)= \begin{cases}0, & \text { if } p=q \\ \|p\|_{2}+\|q\|_{2}, & \text { otherwise }\end{cases}
$$

Prove that d is a metric on \mathbb{R}^{2}.
We want to show that for a triple of points $p, q, r \in \mathbb{R}^{2}$ one has $d(p, q) \leq d(p, r)+$ $d(r, q)$. We may assume that $r \neq p$ and $r \neq q$ since otherwise our statement is obvious. Besides, for the same reason, we may assume that $p \neq q$. Then our statement reduces to $\|p\|+\|q\| \leq\|p\|+\|r\|+\|r\|+\|q\|$ which is clearly satisfied since $\|r\| \geq 0$.

