MTH6127

- 1. For each of the following subsets of \mathbb{R} , determine the supremum and decide whether it is a maximum. Justify your answers.
 - (a) $A = \{x : x^2 2 < 0\},$ One has $A = (-\sqrt{2}, \sqrt{2})$ and hence $\sup A = \sqrt{2}$, the maximum does not exist.
 - (b) $B = \{x^2 2 : -2 \le x < 2\},$ One has B = [-2, 2] and therefore $\sup B = 2$ and $\max B = 2$.
 - (c) $C = \{1 1/n^2 : n = 1, 2, 3, ...\}$ sup C = 1, the maximum does not exist.
 - (d) $D = \{1 + 1/n^3 : n = 1, 2, 3, ...\}.$ The sequence is decreasing and therefore $\sup D = 2$ and $\max D = 2$ is achieved for n = 1.
- 2. Let $X = \{0, 1\}^{\omega}$ be the set of all infinite sequences formed of 0s and 1s. For $x, y \in X$, define

$$d(x,y) = \sum_{n=1}^{\infty} 2^{-n} |x_n - y_n|,$$

where $x = (x_n)$ and $y = (y_n)$. Prove that d is well-defined and is a metric on X.

The series defining d converges since $|x_n - y_n| \le 1$ and $\sum_{n=1}^{\infty} 2^{-n} = 1$.

If $x, y, z \in X$, where $x = (x_n), y = (y_n), z = (z_n)$, then for any n

$$|x_n - y_n| \le |x_n - z_n| + |z_n - y_n|$$

implying

$$\sum 2^{-n} |x_n - y_n| \le \sum 2^{-n} |x_n - z_n| + \sum 2^{-n} |z_n - y_n|,$$

i.e. $d(x,y) \leq d(x,z) + d(z,y)$. M1 and M2 are obvious.

3. Prove that if (X, d) is a metric space then $\sigma : X \times X \to \mathbb{R}$ is a metric where

$$\sigma(x, y) = \min\{d(x, y), 1\}.$$

Given $x, y, z \in X$, denote d(x, z) = a, d(x, y) = b, d(y, z) = c and $\sigma(x, z) = a'$, $\sigma(x, y) = b'$, $\sigma(y, z) = c'$ We may assume that $a \ge b \ge c$ and $a \le b + c$. If $a \le 1$ then $b \le 1$ and $c \le 1$, and a = a', b = b', c = c' and $a' \le b' + c'$. If $a \ge 1 \ge b$ then $a' < a \le b' + c'$ since in this case b = b' and c = c'. If $b \ge 1$ then $a' \le b' + c'$ as in this case a' = 1 and b' = 1. 4. A metric space X is said to be bounded if there is some number M > 0 such that

$$d(x,y) \le M$$

for any $x, y \in X$. Show that for any metric space (X, d), the metric space (X, σ) (as defined in the previous question) is bounded. Show also that the metric of example 2 is bounded.

It is clear that $\sigma(x, y) \leq 1$, i.e. the metric σ is bounded. The metric of example 2 also satisfies $d(x, y) \leq \sum_{n=1}^{\infty} 2^{-n} = 1$.

5. The Euclidean norm of a vector $p = (p_1, p_2) \in \mathbb{R}^2$ is defined as $||p||_2 = \sqrt{p_1^2 + p_2^2}$. For $p, q \in \mathbb{R}^2$ define d(p, q) by

$$d(p,q) = \begin{cases} 0, & \text{if } p = q; \\ \|p\|_2 + \|q\|_2, & \text{otherwise.} \end{cases}$$

Prove that d is a metric on \mathbb{R}^2 .

We want to show that for a triple of points $p, q, r \in \mathbb{R}^2$ one has $d(p,q) \leq d(p,r) + d(r,q)$. We may assume that $r \neq p$ and $r \neq q$ since otherwise our statement is obvious. Besides, for the same reason, we may assume that $p \neq q$. Then our statement reduces to $||p|| + ||q|| \leq ||p|| + ||r|| + ||r|| + ||q||$ which is clearly satisfied since $||r|| \geq 0$.