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3.1 Equivalence relations and partitions

Suppose that S is a set. In NSF, a relation R on S is defined to be a property which may, or may
not, hold for each ordered pair of elements in S (i.e. an element of the set S × S of ordered pairs
in S).

A relationR is said to be

• reflexive if aRa for every element a of S,

• symmetric if aRb implies bRa for all elements a, b of S,

• anti-symmetric if aRb and bRa implies a = b for all elements a, b of S,

• transitive if aRb and bRc implies aRc for all elements a, b, c of S,

A reflexive, symmetric and transitive relation is said to be an equivalence relation.

Examples/Exercises. Which of the following are equivalence relations?

(1) S = R and aRb if and only if a = b or a = −b. (2) S = Z and aRb if and only if ab = 0. (3)
S = R and aRb if and only if a2+a = b2+ b. (4) S = {people in the world} and aRb if and only
if a lives within 100km of b. (5) S = {the points in the plane} and aRb if and only if a and b are of
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the same distance from the origin. (6) S = {positive integers} and aRb if and only if ab is a square
(of positive integers). (7) S = {1, 2, 3} and aRb if and only if a = 1 or b = 1. (8) S = R × R
and pRq (where p = (x(p), y(q)) and q = (x(q), y(q))) if and only if x(p)2+y(p)2 = x(q)2+y(q)2.

(1), (3), (5), (6) and (8) are equivalence relations.

Remark. The hardest to verify is the transitivity of R in (6): if a, b and c are positive integers
and ab and bc are respectively squares of positive integers, then can ac be a square of positive in-
tegers? Yes! To see this, suppose that ab = r2 and bc = s2 for some positive integers r and s.
Multiplying them together, we obtain ab2c = (rs)2. It suffices to establish that b divides rs, as if
this is the case, then ac is a square of (rs)/b. How do we prove this? Recall from Proposition 8 that

b is a product of prime factors of the form
∏
p

prp where p ranges over the prime numbers and rp

is a non-negative integer for every p. If prp and qrq are prime factors of b at distinct primes p and
q, and if each of them divides rs, then the product prpqrq divides rs (this follows from the ‘correct’

definition of prime numbers). If we repeat the argument, then we may conclude that
∏
p

prp , i.e.,

b divides rs. To sum up, it boils down to showing that, for every prime number p that divides b
(i.e. rp > 1), the prime factor prp of b divides rs. Since prp divides b, it follows that p2rp divides b2

and therefore that p2rp divides (rs)2. If psp is the prime factor of rs at p, then p2rp divides p2sp , i.e.
2rp 6 2sp, i.e. rp 6 sp. This manifests that prp divides rs.

If R is a relation on S and a is an element of R, we denote by [a]R , or simply [a] if it is clear
which relation we are considering from the context, the set

{b ∈ S | aRb}

of all elements b in S which are ‘in relation to’ b with respect toR . IfR is an equivalence relation,
we refer to [a] an equivalence class (represented by a).

Examples/Exercises For those relations (1)-(8) above, describe the equivalence classes.

Remark. By definition, ifR is an equivalence relation, then aRb if and only if [a]R = [b]R . To
see ‘only if’, let c be an element of [a]R . By definition, this means that aRc. SinceR is reflexive, cRa
holds. Since aRb by assumption, it follows from the transitivity ofR that cRb. By the reflexivity
(again!), it then follows that bRc, i.e. c is a element of [b]R . To sum up, we have established that
[a]R ⊆ [b]R . Swapping the roles, it is also possible to prove [b]R ⊆ [a]R (exercise!). Combining,
we have [a]R = [b]R as desired.

In preparation of a theorem to follow, we need:

Definition. Let S be a set. A partition of S is a setP of subsets of S, whose elements are called
its parts, having the following properties:

• ∅ is not a part ofP.

• If A and B are distinct parts ofP, then A ∩ B = ∅,

2



• The union of all parts ofP is S.

Examples.

S = Z,P = {{even integers}, {odd integers}}.
S = {1, 2, 3, 4, 5}. {{1, 2}, {3, 4}, {5}} and {{1}, {2, 3, 4, 5}} are partitions but {{1, 2}, {2, 3}, {4, 5}}

is not.

Theorem 9 (Equivalence Relation Theorem).

• Let R be an equivalence relation on a set S. Then the set [a]R , as a ranges over S, form a
partition of S.

• Conversely, given any partition P of S, there is a unique equivalence relation R on S such
that the parts of P are the same as the sets [a]R for a in S. This R is defined as: aRb if a
and b lies in the same part defined byP.

Proof. (a) We need to check the definitions one by one.

• No element of {[a]R} is ∅. To see this, observe that, since aRa (since R is reflexive), a lies
in [a]R ; therefore [a]R is non-empty.

• If [a]R and [b]R are distinct, then [a]R ∩ [b]R = ∅; or equivalently, if [a]R ∩ [b]R 6= ∅, then
[a]R = [b]R . To prove the latter, let c be an non-trivial element of [a]R ∩ [b]R (made possible
by assumption). By definition, this means that aRc and bRc, or equivalently cRb (because
R is symmetric). BecauseR is transitive, it follows from aRc and cRb that aRb. From the
remark above, it follows that [a]R = [b]R .

• The union T of [a]R , as a ranges over S, equals S. Since [a]R ⊆ S as sets, T ⊆ S. Therefore
it suffices to prove S ⊆ T . Let a be an element of S. Then a lies in [a]R (see the proof for
the first part). Since [a]R ⊆ S, it follows that a lies in S.

(b) We check the conditions of an equivalence relation one by one, following the definition of
R given in the statement.

• reflexive. Since a and a (!) both lie in the same part, aRa holds.

• symmetric. If a and b lies in the same part, then so do b and a. So the reflexivity follows.

• transitive. Suppose that a and b lies in a part A ofP, i.e. a subset A of S. Similarly, suppose
that b and c lie in a part B of P. Since b lies in both A and B, it follows from the second
condition of the definition of a partition thatA andB are not distinct, i.e. A = B. Therefore
a and c both lie in the same part A = B, i.e. aRc.

By definition, [a]R is the set of elements b in S which lie in the same part, say A, as a does. This
set is nothing other than A! Hence [a]R = A. So the partition P of S is the subsets of the form
[a]R .

To see the uniqueness (R is the only equivalence relation whose parts are the subsets [a]R),
suppose that R and R ′ are equivalence relations giving rise to the partition P. Since the parts
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{b | aRb} = [a]R and {b | aR ′b} = [a]R′ both contain a, they are the same subsets of S. �

Remark. The theorem asserts that every element a of S belongs to exactly one equivalence class
[a].

Example. Let S = {1, 2, 3}.

Partition Relations Equivalence classes
{1, 2, 3} aRb for all a, b ∈ {1, 2, 3} [1]

{1}, {2, 3} 1R1,
aRb for all a, b ∈ {2, 3} [1], [2]

{2}, {1, 3} 2R2,
aRb for all a, b ∈ {1, 3} [2], [1]

{3}, {1, 2} 3R3,
aRb for all a, b ∈ {1, 2} [3], [1]

{1}, {2}, {3}
1R1,
2R2,
3R3

[1], [2], [3]

3.2 Congruence mod n

Let n be a positive integer.

Definition. We define a relation ≡ on the set Z as follows:

if a and b are elements of Z (i.e. integers), then a ≡ b if and only if b− a is divisible by n.

Proposition 10. ≡ on Z is an equivalence relation.

Proof. We need to check that it is reflexive, symmetric and transitive.

• a ≡ a.

Since a− a = 0 and this is divisible by n (or any integer, for that matter), a ≡ a.

• If a ≡ b, then b ≡ a.

Since a ≡ b, there exists b − a is divisible by n, i.e., there exists an integer r such that
b− a = rn. It then follows that a− b = (−r)n, i.e. a− b is divisible by n, hence b ≡ a.

• If a ≡ b and b ≡ c, then a ≡ c.

By assumption, there exist integers r and s such that b − a = rn and c − b = sn. It then
follows that c− a = (c− b) + (b− a) = rn+ sn = (r + s)n, hence a ≡ c. �

This means that the set of integers is partitioned into equivalence classes by ≡.

Definition. We write Zn for the set of equivalence classes modulo n. Personally, I prefer to
write Z/nZ. When n is a prime number p, we write Fp instead of ‘Zp’.
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Examples

Z5 =



...
...

...
...

...
[−5] [−4] [−3] [−2] [−1]
|| || || || ||
[0] [1] [2] [3] [4]
|| || || || ||
[5] [6] [7] [8] [9]
|| || || || ||
...

...
...

...
...


In a standard clock, keeping track of hours = Z12 while minutes = Z60.

Proposition 11. The cardinality of Zn is n, i.e. there are exactly n equivalence classes with re-
spect to ≡ modulo n, namely [0], [1], . . . , [n− 1].

Proof. Firstly, we show that every integer s belongs to one of the congruence classes [0], . . . , [n−
1]. Indeed, there exist integers q and 0 6 r 6 n−1 such that s = nq+r, i.e. s ≡ rmod n. Therefore
s lies in [r].

Suppose r and s are integers satisfying 0 6 r < s 6 n − 1. If [r] = [s], then it would follow
that r − s is divisible by n. But this contradicts 0 < r − s < n− 1. �

3.3 Arithmetic with congruence classes

We define addition, subtraction and multiplication on Zn as follows:

[a] + [b] = [a+ b]

[a]− [b] = [a− b]

[a][b] = [ab]

What about ‘division’? Can we make sense of it? It is NOT true that when we divide [a] by

[b], we get
[a
b

]
. In the first place,

a
b
might not even be an integer! Would it be surprising if I

tell you, for example, that when n = 11, we can even divide [1] by [3] to get [4]! This is because
[3][4] = [12] = [1].

Examples
Z3 = F3 = {[0], [1], [2]}. Then [1] + [2] = [1 + 2] = [3] = [0] while [2][2] = [2× 2] = [4] =

[1].

Z6 = {[0], [1], [2], [3], [4], [5]}. Then [2] + [5] = [2 + 5] = [7] = [1] while [2][3] = [2× 3] =

[6] = [0]. Since 2 divides 6, we know very well that
6

2
= 3 but

[6]

[2]
= [3]? In the first place,

[6] = [0], so this should mean the same thing as
[0]

[2]
= [3] but if we allowed

[0]

[2]
= [

0

2
] = [0], then

we would get [0] = [3] which is evidently false!
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It is necessary to check that these definitions do not depend on our choice of representatives.
For example, we’ve seen [1] + [2] = [0] in Z3 but we could have had [4] instead of [1], as [1] = [4].
In this case, [4] + [2] = [6] = [0], so it does not matter whether we choose 1 or 4 (or any integer
congruent to 1 mod 3 for that matter) as a representative of the equivalence class [1].

More rigorously, suppose that a, b and c are integers and that a ≡ b mod n. To show that the
definition of ‘addition’ does not depend on choice of representatives, we need to show [a] + [c] =
[b] + [c]. Since the LHS (resp. RHS) is defined to be [a + c] (resp. [b + c]), this is equivalent to
showing that [a + c] = [b + c]. However, it follows from a ≡ b mod n that (a + c) − (b + c) is
divisible by n and therefore that (a+ c) ≡ (b+ c) mod n. It follows that [a+ c] = [b+ c].

Similarly, it is necessary to check that [a][c] = [b][c], i.e. [ac] = [bc]. Since n divides a − b, it
also divides c(a− b) = ac− bc. Therefore ac ≡ ab, i.e. [ac] = [ab].

3.4 Modular inverses

Let n be a fixed positive integer. Throughout this section, ≡ denotes the ‘congruence modulo n’
and [a] denote the congruence class of integers congruent to a modulo n.

Definition. We say that [a] has a multiplicative inverse if there exists an integer b such that
[a][b] = [1].

Remark. The multiplicative inverse, if exists, is unique. Indeed, if [b] and [c] are elements of
Zn satisfying [a][b] = [1] and [a][c] = [1], then mutiplying [b] on both sides of [c][a] = [1] yields
[c][a][b] = [1][b], i.e. [c][1] = [b], i.e. [c] = [b].

Theorem 12. The elements [a] of Zn has a multiplicative inverse if and only if gcd(a, n) = 1.

Proof. Suppose that [a] has a multiplicative inverse, i.e. [b] such that [a][b] = [1], i.e. [ab] = [1].
This means that ab− 1 is divisible by n, hence there exists an integer c such that ab+ (−c)n = 1.
As gcd(a, n) divides the LHS, it does so the RHS, i.e. 1. The only non-negative integer diving 1 is
1, so gcd(a, n) = 1.

Conversely, suppose gcd(a, n) = 1. By Bezout, there exist integers b and c such that ab+nc = 1.
Since ar ≡ 1mod n, it follows that [a][b] = [ab] = [1]. Themultiplicative inverse of [a] is therefore
[b]. �

Examples.
What is the multiplicative inverse of [4]21? Since gcd(4, 21) = 1, the theorem assures us

of the multiplicative inverse. How do we compute it? The proof indeed explains how. Since
gcd(4, 21) = 1, Euclid’s algorithm (backed up by Bezout) gives us a pair of integers r and s such
that 4r + 21s = gcd(4, 21) = 1. Indeed, (r, s) = (−5, 1) does the job. In particular, 4r ≡ 1 mod
21 and it therefore follows that [4][r] = [4r] = [1]. So [−5] = [16] is the multiplicative inverse of
[4].

What is the multiplicative inverse of [23]2023? Firstly, we compute gcd(23, 2023) by Euclid’s
algorithm:

2023 = 23 · 87 + 22
23 = 22 · 1 + 1.
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Hence 1 = 23 − 1 · 22 = 23 − 1 · (2023 − 23 · 87) = (−1) · 2023 + 88 · 23 and [88] is the
multiplicative inverse of [23].

What is the multiplicative inverse of [17]2023? Since 2023 = 119 · 17 and 17 is a prime num-
ber, gcd(2023, 17) = 17. It follows from the theorem above that [17] has no multiplicative inverse.

If p is a prime number, then Zp = {[0], [1], . . . , [p − 1]} and, by the theorem, it follows that
gcd(a, p − 1) = 1 if and only if a is prime to p. Therefore the congruence classes [1], . . . , [p − 1]
all have inverses.

Proposition 13. Suppose n > 1. The element [a] of Zn has no multiplicative inverse if and only
if there exists an integer b, not congruent to 0 modulo n, such that [a][b] = [0].

Proof. Suppose that [a] has no multiplicative inverse. It then follow from the theorem above
that c = gcd(a, n) > 1. If we let b = n/c, then b is a positive integer not congruent to 0mod n (if it
were congruent to 0mod n, then bwould be n and force c = 1). By definition, ab = an/c = (a/c)n
is divisible by n, for a/c is an integer. It follows that ab ≡ 0 mod n, hence that [a][b] = [ab] = [0].

To prove the converse, suppose that [a] has a multiplicative inverse– we aim at establishing
that no integer b, not congruent to n, satisfies [a][b] = [0]. By assumption, there exists an integer c
such that [a][c] = [1]. Let b be an integer not congruent to 0 mod n. Multiplying the both sides of
[a][c] = [1] by [b], we obtain [b] = [b][a][c] = [c]([a][b]). If [a][b] = [0], then the RHS is [0], hence
the LHS [b] is [0], in other words, b is divisible by n. However this contradicts the assumption that
b is not. �

Remark. Proposition 13 is paraphrasing gcd(a, n) > 1.

Given a positive integer n, how many elements in Zn has multiplicative inverses? In theory, we
ask, for every 0 ≤ a ≤ n − 1, whethere gcd(a, n) = 1 (or not) to compile a list. For example, if
n = 24, {1, 5, 7, 11, 13, 17, 19, 23} (incidentally they are all prime numbers!) is the set of integers
0 ≤ a ≤ n− 1 = 23 such that gcd(a, 24) = 1. Hence there are 8 elements in total.

What about n = 108? That seems to entail a lot of computations. There is a formula!– it goes
by the name of Euler’s totient function. Recall from the fundamental theorem of arithmetic that

n may be written as the product
∏
p

prp of prime factors. Then the number we are looking for is

computed by

φ(n) =
∏
p

(p− 1)prp−1.

For example, 24 = 23 · 3, so φ(24) = (2 − 1)22 · (3 − 1) = 8 which is consistent with the
computation above. Similarly, 108 = 33 · 22, so φ(108) = (3− 1) · 32 · (2− 1) · 2 = 36. Is this
consistent with your computation?

What are multiplicative inverses useful for? They are useful in solving linear congruence equa-
tions.

Example. Solve 7X ≡ 1 mod 11, or equivalently [7]11[X ]11 = [1]11 in F11.
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The first approach: Since F11 = {[0], [1], . . . , [10]}, we do trial and error.

[X ] [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]
[7][X ] [0] [7] [3] [10] [6] [3] [9] [5] [1] [8] [4]

[7][X ]− [1] [10] [6] [2] [9] [5] [2] [8] [4] [0] [7] [3]

so [X ] = [8] is the solution.

The second approach: Firstly, we find the multiplicative inverse of [7] by Euclid’s algorithm

11 = 7 · 1 + 4
7 = 4 · 1 + 3
4 = 3 · 1 + 1
3 = 1 · 3

hence 1 = 4− 1 · 3 = 4− 1 · (7− 1 · 4) = 2 · 4− 1 · 7 = 2 · (11− 1 · 7)− 1 · 7 = 2 · 11− 3 · 7.
So [−3] = [8] is the multiplicative inverse of [7]. Multiplying the both sides of [7][X ] = [1] by [8],
we then get

[8][7][X ] = [8][1].

The LHS, [8][7] is [1], without computing as [8 · 7] = [56] = [1], because we know that [8] is the
multiplicative inverse of [7] so by definition [8][7] = [1]. The RHS is [8]. Putting these together,
we see that [X ] = [8].

The second approach suggests it should be possible to solve equations of the form [a][X ]+[b] =
[c] if gcd(a, n) = 1 (or equivalently the liner congruence equation aX ≡ c mod n). Indeed, the
equation is equivalent to [a][X ] = [c − b]. By Theorem 12, there exists a multiplicative inverse,
denoted [a]−1, of [a]. Multiplying [a][X ] = [c− b] by [a]−1, we obtain

[X ] = [c− b][a]−1

(not that the RHS is NOT [c− b]/[a]!).

It is possible to solve equations as above, even if gcd(a, n) > 1 but we shall not touch upon
these in this module. Go to Number Theory in Year 2, if you are interested.
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