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3.1 Equivalence relations and partitions

Suppose that § is a set. In NSF, a relation R on § is defined to be a property which may, or may
not, hold for each ordered pair of elements in S (i.e. an element of the set § x S of ordered pairs

in S).

A relation R is said to be

reflexive if aRa for every element a of S,

o symmetric if aRb implies bRa for all elements a, b of S,

e anti-symmetric if aRb and bRa implies a = b for all elements a, b of S,

o transitive if aRb and bR¢ implies aRe for all elements a, b, ¢ of S,

A reflexive, symmetric and transitive relation is said to be an equivalence relation.

Examples/Exercises. Which of the following are equivalence relations?

() S =RandaRbifandonlyifa = bora = —b. (2) S = ZandaRb it and onlyifab = 0. (3)
S =Rand aRb if and only ifa?+a=0+b.(4) S = {people in the world} and aRb if and only
if a lives within 100km of b. (5) S = {the points in the plane} and aRb it and only if @ and b are of
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the same distance from the origin. (6) S = {positive integers} and aRb if and only if ab is a square
(of positive integers). (7) § = {1,2,3} andaRb it andonlyifa =1lorb=1. 8) S=R xR
and pRq (where p = (x(p),¥(q)) and ¢ = (x(¢),¥(¢))) if and only if x(p)* +x(p)* = x(¢)* +¥(q)*.

(1), (3), (5), (6) and (8) are equivalence relations.

Remark. The hardest to verify is the transitivity of R in (6): if @, b and ¢ are positive integers
and ab and bc are respectively squares of positive integers, then can ac be a square of positive in-
tegers? Yes! To see this, suppose that ab = r? and bc = s for some positive integers 7 and s.
Multiplying them together, we obtain ab®c = (r5)?. It suffices to establish that b divides s, as if
this is the case, then ac is a square of (r5) /b. How do we prove this? Recall from Proposition 8 that
b is a product of prime factors of the form Hpr” where p ranges over the prime numbers and 7,

P
is a non-negative integer for every p. If p’» and ¢’ are prime factors of b at distinct primes p and
¢, and if cach of them divides 7s, then the product p7¢’* divides s (this follows from the ‘correct’

definition of prime numbers). If we repeat the argument, then we may conclude that Hpr”, ie.,

b divides 7s. To sum up, it boils down to showing that, for every prime number p that divides &
(ie. 1, = 1), the prime factor p of b divides rs. Since p’ divides b, it follows that p?* divides b
and therefore that p** divides (rs)?. 1f p* is the prime factor of 7s at p, then p** divides p**, i.c.
2r, < 25y, 1.e. 1, < 8. This manifests that p divides 7.

If R is a relation on S and @ is an element of R, we denote by [a]x, or simply [a] if it is clear
which relation we are considering from the context, the set

{b € S|aRb}

of all elements b in § which are ‘in relation to’ b with respect to R. If R is an equivalence relation,
we refer to [a] an equivalence class (represented by a).

Examples/Exercises For those relations (1)-(8) above, describe the equivalence classes.

Remark. By definition, if R is an equivalence relation, then aRb if and only if [a]x = [b]x. To
see ‘only if’, let ¢ be an element of [a]&. By definition, this means that afRe. Since R is reflexive, cRa
holds. Since aRb by assumption, it follows from the transitivity of R that cRb. By the reflexivity
(again!), it then follows that bRc¢, i.e. ¢ is a element of [b]x. To sum up, we have established that
[alx C [b]x. Swapping the roles, it is also possible to prove [b]g C [a]x (exercise!). Combining,
we have [a]g = [b]g as desired.

In preparation of a theorem to follow, we need:

Definition. Let S be a set. A partition of § is a set P of subsets of S, whose elements are called
its parts, having the following properties:

® O isnot a part of P.

e If A and B are distinct parts of P, then AN B = &,



e 'The union of all parts of P is S.

Examples.

S =7,% = {{even integers}, {odd integers}}.
S=1{1,2,3,4,5}. {{1,2},{3.4}, {5} } and {{1}, {2, 3,4, 5} } are partitions but {{1, 2}, {2, 3}, {4, 5} }

1S Not.
Theorem 9 (Equivalence Relation Theorem).

o Let R be an equivalence relation on a set S. Then the set [a]g, as @ ranges over S, form a
partition of S.

e Conversely, given any partition & of §, there is a unique equivalence relation R on S such
that the parts of @ are the same as the sets [a]g for @ in S. This R is defined as: aRb if a
and b lies in the same part defined by &.

Proof. (a) We need to check the definitions one by one.

e No clement of {[a]x } is @. To see this, observe that, since aRa (since R is reflexive), a lies
in [a]g; therefore [a]x is non-empty.

o [f[a]g and [b] are distinct, then [a]g N [b]g = @; or equivalently, if [a]x N [b]x # &, then
[a]g = [b]x. To prove the latter, let ¢ be an non-trivial element of [a]& N [6]x (made possible
by assumption). By definition, this means that aRe and bR, or equivalently ¢Rb (because
R is symmetric). Because R is transitive, it follows from aRe¢ and ¢Rb that aRb. From the
remark above, it follows that [¢]g = [b]x.

o 'The union T of [a]g, as @ ranges over S, equals S. Since [a]g C S assets, T C §. Therefore
it suffices to prove S C T Let a be an element of S. Then a lies in [a] (see the proof for
the first part). Since [a]g C S, it follows that @ lies in S.

(b) We check the conditions of an equivalence relation one by one, following the definition of
R given in the statement.

o reflexive. Since @ and a (1) both lie in the same part, afRa holds.
o symmetric. If @ and b lies in the same part, then so do b and a. So the reflexivity follows.

e transitive. Suppose that @ and b lies in a part A of P, i.c. a subset A of . Similarly, suppose
that b and ¢ lic in a part B of #. Since b lies in both A and B, it follows from the second
condition of the definition of a partition that A and B are not distinct, i.e. A = B. Therefore
a and ¢ both lie in the same part A = B, i.e. aRe.

By definition, [a] is the set of elements b in S which lie in the same part, say A, as @ does. This
set is nothing other than A! Hence [a|g = A. So the partition # of S is the subsets of the form
[a]gQ.

To see the uniqueness (R is the only equivalence relation whose parts are the subsets [a]g),
suppose that R and R’ are equivalence relations giving rise to the partition &. Since the parts



{b|aRb} = [a]g and {b|aR'b} = [a]x’ both contain a, they are the same subsets of S. [J

Remark. The theorem asserts that every element a of S belongs to exactly one equivalence class

la].

Example. Let S = {1, 2,3}

Partition Relations Equivalence classes
{1,2,3} aRb for alla,b € {1,2,3} 1]

1R1,

{1,{2.3} aRb tor all a, b € {2,3} 1, 2
2R,

CRL3Y b foralla b e {1,3) 2], [1]
3R3,

34 {1,2} aRb for all a, b € {1,2} 131, 1]
1R1,

{1},{2}, {3} 22, (1], 2], [3]

3R3

3.2 Congruence mod n

Let n be a positive integer.
Definition. We define a relation = on the set Z as follows:
if @ and b are elements of Z (i.c. integers), then @ = b if and only if' b — a is divisible by n.
Proposition 10. = on Z is an equivalence relation.
Proof. We need to check that it is reflexive, symmetric and transitive.

e qa=a.

Since @ — a = 0 and this is divisible by n (or any integer, for that matter), a = a.

e [fa=0b, thenb=a.
Since @ = b, there exists b — a is divisible by n, i.c., there exists an integer 7 such that
b —a = rn. It then follows thata — b = (—r)n, i.c. a — b is divisible by n, hence b = a.

e lfa=bandb=c thena=c
By assumption, there exist integers 7 and s such that b —a = mm and ¢ — b = sn. It then

follows thate —a = (¢ —b) + (b —a) =rn+sn = (r +s)n, hencea = ¢. O

This means that the set of integers is partitioned into equivalence classes by =.

Definition. We write Z, for the set of equivalence classes modulo n. Personally, I prefer to

write Z/nZ. When n is a prime number p, we write F, instead of ‘Z,".



Examples

[—|'|5J [4|41 [—|'|31 [T|2] 1]
. [ﬁ] [ﬁ] [ﬁ] [ﬁ] 4]
516 7] [
RN A TR TR
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In a standard clock, keeping track of hours = Z15 while minutes = Zgo.

Proposition 11. The cardinality of Z, is n, i.e. there are exactly n equivalence classes with re-
spect to = modulo 7, namely [0], [1], ..., [z — 1].

Proof. Firstly, we show that every integer s belongs to one of the congruence classes [0], . . . , [n —
1]. Indeed, there exist integers g and 0 < r < n—1such thats = ng+r, ie. s = r mod n. Therefore
s lies in [r].

Suppose 7 and s are integers satisfying 0 < r < s < n — 1. If [r] = [s], then it would follow
that 7 — s is divisible by n. But this contradicts 0 <r —s <n — 1. 0O

3.3 Arithmetic with congruence classes

We define addition, subtraction and multiplication on Z,, as follows:

What about ‘division”” Can we make sense of it? It is NOT true that when we divide [a] by
a > a . . ‘ . .. - ("
6], we get [ﬂ In the first place, A might not even be an integer! Would it be surprising if I

tell you, for example, that when n = 11, we can even divide [1] by [3] to get [4]! This is because
B][4] = [12] = 1]

Examp]es
. Zz = Fs = {[0], [1], [2]}. Then [1] + [2] = [1 + 2] = [3] = [0] while [2][2] = [2 x 2] = [4] =

Zs = {[0], (1], [2], 3], [4], [5]}. Then [2] + [5] = [2 + 5] = [7] = [1] while [2][3] = [2 x 3] =

[6] = [0]. Since 2 divides 6, we know very well that g = 3 but % = [3]? In the first place,
[6] = [0], so this should mean the same thing as % = [3] but if we allowed % = [g] = [0], then

we would get [0] = [3] which is evidently false!



It is necessary to check that these definitions do not depend on our choice of representatives.
For example, we've seen [1] + [2] = [0] in Z3 but we could have had [4] instead of [1], as [1] = [4].
In this case, [4] 4+ [2] = [6] = [0], so it does not matter whether we choose 1 or 4 (or any integer
congruent to 1 mod 3 for that matter) as a representative of the equivalence class [1].

More rigorously, suppose that @, b and ¢ are integers and that @ = b mod n. To show that the
definition of ‘addition’ does not depend on choice of representatives, we need to show [a] 4 [¢] =
6] + [¢]. Since the LHS (resp. RHS) is defined to be [a + ¢] (resp. [b + ¢]), this is equivalent to
showing that [@ + ¢] = [b + ¢]. However, it follows from @ = b mod n that (a +¢) — (b+¢) is
divisible by 7 and therefore that (@ 4 ¢) = (b + ¢) mod n. It follows that [a + ¢] = [b + ¢].

Similarly, it is necessary to check that [a][c] = [b]]c], i.e. [ac] = [bc]. Since n divides a — b, it
also divides ¢(a — b) = ac — be. Theretore ac = ab, i.e. [ac] = [ab].

3.4 Modular inverses

Let m be a fixed positive integer. Throughout this section, = denotes the ‘congruence modulo »’
and [a] denote the congruence class of integers congruent to @ modulo 7.

Definition. We say that [a| has a multiplicative inverse if there exists an integer & such that

[a]b] = [1].

Remark. The multiplicative inverse, if exists, is unique. Indeed, if [b] and [c] are elements of
Zy, satistying [a][b] = [1] and [a][¢] = [1], then mutiplying [6] on both sides of [c][a] = [1] yields
[c]la][b] = [1][6], i.e. [c][1] =[], i.e. [c] = [£].

Theorem 12. The elements [a] of Z, has a multiplicative inverse if and only if ged(a, n) = 1.

Proof. Suppose that [a] has a multiplicative inverse, i.e. [b] such that [a][b] = [1], i.e. [ab] = [1].
This means that ab — 1 is divisible by n, hence there exists an integer ¢ such that ab + (—¢)n = 1.
As ged(a, n) divides the LHS, it does so the RHS, i.e. 1. The only non-negative integer diving 1 is
1, s0 ged(a,n) = 1.

Conversely, suppose ged(a, n) = 1. By Bezout, there exist integers b and ¢ such that ab+nc = 1.
Since ar = 1 mod n, it follows that [a][b] = [ab] = [1]. The multiplicative inverse of [a] is therefore

b. O

Examples.

What is the multiplicative inverse of [4]5;?7 Since ged(4,21) = 1, the theorem assures us
of the multiplicative inverse. How do we compute it? The proof indeed explains how. Since
ged(4,21) = 1, Euclid’s algorithm (backed up by Bezout) gives us a pair of integers r and s such
that 47 4+ 21s = ged(4, 21) = 1. Indeed, (r,s) = (=5, 1) does the job. In particular, 47 = 1 mod
21 and it therefore follows that [4][r] = [47] = [1]. So [=5] = [16] is the multiplicative inverse of
[4].

What is the multiplicative inverse of [23]0237 Firstly, we compute ged(23,2023) by Euclid’s
algorithm:

2023 = 23-87+22
23 = 22-1+1
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Hence 1 = 23— 1-22 = 23 — 1 (2023 — 23 - 87) = (—1) - 2023 + 88 - 23 and [88] is the

multiplicative inverse of [23].

What is the multiplicative inverse of [17]20237 Since 2023 = 119 - 17 and 17 is a prime num-
ber, gcd(2023, 17) = 17. It follows from the theorem above that [17] has no multiplicative inverse.

If p is a prime number, then Z, = {[0], [1],...,[p — 1]} and, by the theorem, it follows that
ged(a,p — 1) = 1if and only if @ is prime to p. Therefore the congruence classes [1],. .., [p — 1]

all have inverses.

Proposition 13. Suppose n > 1. The element [a] of Z, has no multiplicative inverse if and only
if there exists an integer b, not congruent to 0 modulo n, such that [a][b] = [0].

Proof. Suppose that [a] has no multiplicative inverse. It then follow from the theorem above
that¢ = ged(a,n) > 1. Ifwelet b = n/c, then b is a positive integer not congruent to 0 mod n (if it
were congruent to 0 mod 7, then & would be 7 and force ¢ = 1). By definition, ab = an/c = (a/c)n
is divisible by n, for @/c is an integer. It follows that ab = 0 mod n, hence that [a][b] = [ab] = [0].

To prove the converse, suppose that [a] has a multiplicative inverse— we aim at establishing
that no integer b, not congruent to n, satisfies [a|[b] = [0]. By assumption, there exists an integer ¢
such that [a][¢] = [1]. Let b be an integer not congruent to 0 mod 7. Multiplying the both sides of
a][c] = [1] by [], we obtain [b] = [b][a][c] = [¢]([a][b]). If [a][b] = [0], then the RHS is [0], hence
the LHS [b] is
b is not. O

0], in other words, & is divisible by n. However this contradicts the assumption that

Remark. Proposition 13 is paraphrasing ged(a,n) > 1.

Given a positive integer 1, how many elements in Z,, has multiplicative inverses? In theory, we
ask, for every 0 < @ < n — 1, whethere ged(a,n) = 1 (or not) to compile a list. For example, if
n=24{1,5,7,11,13,17,19, 23} (incidentally they are all prime numbers!) is the set of integers
0<a<n—1=23such that gcd(a, 24) = 1. Hence there are 8 elements in total.

What about n = 108? That seems to entail a lot of computations. There is a formulal- it goes
by the name of Euler’s totient function. Recall from the fundamental theorem of arithmetic that

n may be written as the product Hpr” of prime factors. Then the number we are looking for is
4

o) =[] —p" .
P
For example, 24 = 2% - 3 50 ¢(24) = (2 — 1)2% - (3 — 1) = 8 which is consistent with the
computation above. Similarly, 108 = 3% - 22 50 ¢(108) = (3 — 1) - 3% (2 — 1) - 2 = 36. Is this

consistent with your computation?

computed by

What are multiplicative inverses useful for? They are useful in solving linear congruence equa-
tions.

Example. Solve 7X = 1 mod 11, or equivalently [7]11[X]11 = [1]11 in Fy5.



The first approach: Since Fy; = {[0], [1],...,[10]}, we do trial and error.

[X] o] [ 2] 8] [4 [5 [6] [7] [8] [9] [10]
7X] [ (o] [7] [3] [10] [6] [3] [9] [5] [1] [8] [4]
[7IXT =[] [10] [6] 20 [91 (3] [2] (8] [4] [0] [7] [3]

so [X] = [8] is the solution.
The second approach: Firstly, we find the multiplicative inverse of [7] by Euclid’s algorithm

11 = 7-1+4
= 4-1+3
3141

= 1-3

W ks
I

hencel=4-1-3=4-1-(7T—1-4)=2.4-1.7=2-(11-1.7)~1-7=2-11-3-7.
So [—3] = [8] is the multiplicative inverse of [7]. Multiplying the both sides of [7][X] = [1] by [8],

we then get

The LHS, [8][7] is [1], without computing as [8 - 7] = [56] = [1], because we know that [8] is the
multiplicative inverse of [7] so by defmition [8][7] = [1]. The RHS is [8]. Putting these together,
we see that [X] = [8].

The second approach suggests it should be possible to solve equations of the form [a][X]+[b] =
c] if ged(a,n) = 1 (or equivalently the liner congruence equation aX = ¢ mod n). Indeed, the
equation is equivalent to [a][X] = [¢ — b]. By Theorem 12, there exists a multiplicative inverse,
denoted [a] ™!, of [a]. Multiplying [a][X] = [¢ — b] by [a] ™!, we obrain

[X] = lc = b][a] ™
(not that the RHS is NOT [¢ — b]/a])).

[t is possible to solve equations as above, even it ged(a, n) > 1 but we shall not touch upon
these in this module. Go to Number Theory in Year 2, if you are interested.



