Introduction to Algebra

Shu Sasaki

13th February 2024

- 1 Introduction
- 2 Revising bits and bobs from NSF
- 2.1 Integer division
- 2.2 GCD and Euclid's algorithm
- 2.3 Euclid's algorithm extended
- 2.4 Prime numbers
- 3 Modular arithmetic

3.1 Equivalence relations and partitions

Suppose that S is a set. In NSF, a relation \mathcal{R} on S is defined to be a property which may, or may not, hold for each ordered pair of elements in S (i.e. an element of the set $S \times S$ of ordered pairs in S).

A relation \mathcal{R} is said to be

- reflexive if $a\Re a$ for every element a of S,
- symmetric if $a\Re b$ implies $b\Re a$ for all elements a,b of S,
- anti-symmetric if $a\Re b$ and $b\Re a$ implies a=b for all elements a,b of S,
- transitive if $a\Re b$ and $b\Re c$ implies $a\Re c$ for all elements a,b,c of S,

A reflexive, symmetric and transitive relation is said to be an equivalence relation.

Examples/Exercises. Which of the following are equivalence relations?

(1) $S = \mathbb{R}$ and $a\mathcal{R}b$ if and only if a = b or a = -b. (2) $S = \mathbb{Z}$ and $a\mathcal{R}b$ if and only if ab = 0. (3) $S = \mathbb{R}$ and $a\mathcal{R}b$ if and only if $a^2 + a = b^2 + b$. (4) $S = \{\text{people in the world}\}$ and $a\mathcal{R}b$ if and only if a lives within 100km of b. (5) $S = \{\text{the points in the plane}\}$ and $a\mathcal{R}b$ if and only if a and b are of

the same distance from the origin. (6) $S = \{\text{positive integers}\}\$ and $a\mathcal{R}b$ if and only if ab is a square (of positive integers). (7) $S = \{1, 2, 3\}$ and $a\mathcal{R}b$ if and only if a = 1 or b = 1. (8) $S = \mathbb{R} \times \mathbb{R}$ and $p\mathcal{R}q$ (where p = (x(p), y(q)) and q = (x(q), y(q))) if and only if $x(p)^2 + y(p)^2 = x(q)^2 + y(q)^2$.

(1), (3), (5), (6) and (8) are equivalence relations.

Remark. The hardest to verify is the transitivity of \mathcal{R} in (6): if a,b and c are positive integers and ab and bc are respectively squares of positive integers, then can ac be a square of positive integers? Yes! To see this, suppose that $ab = r^2$ and $bc = s^2$ for some positive integers r and s. Multiplying them together, we obtain $ab^2c = (rs)^2$. It suffices to establish that b divides rs, as if this is the case, then ac is a square of (rs)/b. How do we prove this? Recall from Proposition 8 that b is a product of prime factors of the form $\prod_{r} p^{r_p}$ where p ranges over the prime numbers and r_p

is a non-negative integer for every p. If p^{r_p} and q^{r_q} are prime factors of b at distinct primes p and q, and if each of them divides rs, then the product $p^{r_p}q^{r_q}$ divides rs (this follows from the 'correct' definition of prime numbers). If we repeat the argument, then we may conclude that $\prod p^{r_p}$, i.e.,

b divides rs. To sum up, it boils down to showing that, for every prime number p that divides b (i.e. $r_p \ge 1$), the prime factor p^{r_p} of b divides rs. Since p^{r_p} divides b, it follows that p^{2r_p} divides b^2 and therefore that p^{2r_p} divides $(rs)^2$. If p^{s_p} is the prime factor of rs at p, then p^{2r_p} divides p^{2s_p} , i.e. $2r_p \le 2s_p$, i.e. $r_p \le s_p$. This manifests that p^{r_p} divides rs.

If \mathcal{R} is a relation on S and a is an element of \mathcal{R} , we denote by $[a]_{\mathcal{R}}$, or simply [a] if it is clear which relation we are considering from the context, the set

$$\{b \in S \mid a\mathcal{R}b\}$$

of all elements b in S which are 'in relation to' b with respect to \mathcal{R} . If \mathcal{R} is an equivalence relation, we refer to [a] an equivalence class (represented by a).

Examples/Exercises For those relations (1)-(8) above, describe the equivalence classes.

Remark. By definition, if \mathcal{R} is an equivalence relation, then $a\mathcal{R}b$ if and only if $[a]_{\mathcal{R}} = [b]_{\mathcal{R}}$. To see 'only if', let c be an element of $[a]_{\mathcal{R}}$. By definition, this means that $a\mathcal{R}c$. Since \mathcal{R} is reflexive, $c\mathcal{R}a$ holds. Since $a\mathcal{R}b$ by assumption, it follows from the transitivity of \mathcal{R} that $c\mathcal{R}b$. By the reflexivity (again!), it then follows that $b\mathcal{R}c$, i.e. c is a element of $[b]_{\mathcal{R}}$. To sum up, we have established that $[a]_{\mathcal{R}} \subseteq [b]_{\mathcal{R}}$. Swapping the roles, it is also possible to prove $[b]_{\mathcal{R}} \subseteq [a]_{\mathcal{R}}$ (exercise!). Combining, we have $[a]_{\mathcal{R}} = [b]_{\mathcal{R}}$ as desired.

In preparation of a theorem to follow, we need:

Definition. Let S be a set. A partition of S is a set \mathcal{P} of subsets of S, whose elements are called its parts, having the following properties:

- \varnothing is not a part of \mathscr{P} .
- If A and B are distinct parts of \mathcal{P} , then $A \cap B = \emptyset$,

• The union of all parts of \mathcal{P} is S.

Examples.

```
S = \mathbb{Z}, \mathcal{P} = \{\{\text{even integers}\}, \{\text{odd integers}\}\}.
S = \{1, 2, 3, 4, 5\}. \{\{1, 2\}, \{3, 4\}, \{5\}\} \text{ and } \{\{1\}, \{2, 3, 4, 5\}\} \text{ are partitions but } \{\{1, 2\}, \{2, 3\}, \{4, 5\}\}  is not.
```

Theorem 9 (Equivalence Relation Theorem).

- Let \mathcal{R} be an equivalence relation on a set S. Then the set $[a]_{\mathcal{R}}$, as a ranges over S, form a partition of S.
- Conversely, given any partition \mathcal{P} of S, there is a unique equivalence relation \mathcal{R} on S such that the parts of \mathcal{P} are the same as the sets $[a]_{\mathcal{R}}$ for a in S. This \mathcal{R} is defined as: $a\mathcal{R}b$ if a and b lies in the same part defined by \mathcal{P} .

Proof. (a) We need to check the definitions one by one.

- No element of $\{[a]_{\mathcal{R}}\}$ is \varnothing . To see this, observe that, since $a\mathcal{R}a$ (since \mathcal{R} is reflexive), a lies in $[a]_{\mathcal{R}}$; therefore $[a]_{\mathcal{R}}$ is non-empty.
- If $[a]_{\mathcal{R}}$ and $[b]_{\mathcal{R}}$ are distinct, then $[a]_{\mathcal{R}} \cap [b]_{\mathcal{R}} = \emptyset$; or equivalently, if $[a]_{\mathcal{R}} \cap [b]_{\mathcal{R}} \neq \emptyset$, then $[a]_{\mathcal{R}} = [b]_{\mathcal{R}}$. To prove the latter, let c be an non-trivial element of $[a]_{\mathcal{R}} \cap [b]_{\mathcal{R}}$ (made possible by assumption). By definition, this means that $a\mathcal{R}c$ and $b\mathcal{R}c$, or equivalently $c\mathcal{R}b$ (because \mathcal{R} is symmetric). Because \mathcal{R} is transitive, it follows from $a\mathcal{R}c$ and $c\mathcal{R}b$ that $a\mathcal{R}b$. From the remark above, it follows that $[a]_{\mathcal{R}} = [b]_{\mathcal{R}}$.
- The union T of $[a]_{\mathcal{R}}$, as a ranges over S, equals S. Since $[a]_{\mathcal{R}} \subseteq S$ as sets, $T \subseteq S$. Therefore it suffices to prove $S \subseteq T$. Let a be an element of S. Then a lies in $[a]_{\mathcal{R}}$ (see the proof for the first part). Since $[a]_{\mathcal{R}} \subseteq S$, it follows that a lies in S.
- (b) We check the conditions of an equivalence relation one by one, following the definition of \mathcal{R} given in the statement.
 - reflexive. Since a and a (!) both lie in the same part, $a\Re a$ holds.
 - \bullet symmetric. If a and b lies in the same part, then so do b and a. So the reflexivity follows.
 - transitive. Suppose that a and b lies in a part A of \mathcal{P} , i.e. a subset A of S. Similarly, suppose that b and c lie in a part B of \mathcal{P} . Since b lies in both A and B, it follows from the second condition of the definition of a partition that A and B are not distinct, i.e. A = B. Therefore a and c both lie in the same part A = B, i.e. $a\mathcal{R}c$.

By definition, $[a]_{\mathcal{R}}$ is the set of elements b in S which lie in the same part, say A, as a does. This set is nothing other than A! Hence $[a]_{\mathcal{R}} = A$. So the partition \mathscr{P} of S is the subsets of the form $[a]_{\mathcal{R}}$.

To see the uniqueness (\mathcal{R} is the only equivalence relation whose parts are the subsets $[a]_{\mathcal{R}}$), suppose that \mathcal{R} and \mathcal{R}' are equivalence relations giving rise to the partition \mathcal{P} . Since the parts

 $\{b \mid a\mathcal{R}b\} = [a]_{\mathcal{R}}$ and $\{b \mid a\mathcal{R}'b\} = [a]_{\mathcal{R}'}$ both contain a, they are the same subsets of S. \square

Remark. The theorem asserts that every element a of S belongs to exactly one equivalence class [a].

Example. Let $S = \{1, 2, 3\}$.

Partition	Relations	Equivalence classes			
$\overline{\{1,2,3\}}$	$a\mathcal{R}b$ for all $a,b\in\{1,2,3\}$	[1]			
{1}, {2,3}	$1\mathcal{R}1,$ $a\mathcal{R}b \text{ for all } a,b \in \{2,3\}$	[1], [2]			
$\{2\}, \{1,3\}$	$2\mathcal{R}2,$ $a\mathcal{R}b$ for all $a,b\in\{1,3\}$	[2], [1]			
{3}, {1, 2}	$3\mathcal{R}3,$ $a\mathcal{R}b$ for all $a,b\in\{1,2\}$	[3], [1]			
{1}, {2}, {3}	$1\mathcal{R}1, \\ 2\mathcal{R}2, \\ 3\mathcal{R}3$	[1], [2], [3]			

3.2 Congruence mod *n*

Let n be a positive integer.

Definition. We define a relation \equiv on the set \mathbb{Z} as follows:

if a and b are elements of \mathbb{Z} (i.e. integers), then $a \equiv b$ if and only if b-a is divisible by n.

Proposition 10. \equiv on \mathbb{Z} is an equivalence relation.

Proof. We need to check that it is reflexive, symmetric and transitive.

• $a \equiv a$.

Since a - a = 0 and this is divisible by n (or any integer, for that matter), $a \equiv a$.

- If $a \equiv b$, then $b \equiv a$. Since $a \equiv b$, there exists b - a is divisible by n, i.e., there exists an integer r such that b - a = rn. It then follows that a - b = (-r)n, i.e. a - b is divisible by n, hence $b \equiv a$.
- If $a \equiv b$ and $b \equiv c$, then $a \equiv c$. By assumption, there exist integers r and s such that b-a=rn and c-b=sn. It then follows that c-a=(c-b)+(b-a)=rn+sn=(r+s)n, hence $a \equiv c$. \square

This means that the set of integers is partitioned into equivalence classes by \equiv .

Definition. We write \mathbb{Z}_n for the set of equivalence classes modulo n. Personally, I prefer to write $\mathbb{Z}/n\mathbb{Z}$. When n is a prime number p, we write \mathbb{F}_p instead of ' \mathbb{Z}_p '.

Examples

$$\mathbb{Z}_{5} = \left\{ \begin{array}{ccccc} \vdots & \vdots & \vdots & \vdots & \vdots \\ [-5] & [-4] & [-3] & [-2] & [-1] \\ || & || & || & || & || \\ |[0] & [1] & [2] & [3] & [4] \\ || & || & || & || & || \\ [5] & [6] & [7] & [8] & [9] \\ || & || & || & || & || \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{array} \right\}$$

In a standard clock, keeping track of hours $= \mathbb{Z}_{12}$ while minutes $= \mathbb{Z}_{60}$.

Proposition 11. The cardinality of \mathbb{Z}_n is n, i.e. there are exactly n equivalence classes with respect to \equiv modulo n, namely $[0], [1], \ldots, [n-1]$.

Proof. Firstly, we show that every integer s belongs to one of the congruence classes $[0], \ldots, [n-1]$. Indeed, there exist integers q and $0 \le r \le n-1$ such that s = nq + r, i.e. $s \equiv r \mod n$. Therefore s lies in [r].

Suppose r and s are integers satisfying $0 \le r < s \le n-1$. If [r] = [s], then it would follow that r-s is divisible by n. But this contradicts 0 < r-s < n-1. \square

3.3 Arithmetic with congruence classes

We define addition, subtraction and multiplication on \mathbb{Z}_n as follows:

$$[a] + [b] = [a + b]$$

 $[a] - [b] = [a - b]$
 $[a][b] = [ab]$

What about 'division'? Can we make sense of it? It is NOT true that when we divide [a] by [b], we get $\left[\frac{a}{b}\right]$. In the first place, $\frac{a}{b}$ might not even be an integer! Would it be surprising if I tell you, for example, that when n=11, we can even divide [1] by [3] to get [4]! This is because [3][4]=[12]=[1].

Examples

$$\mathbb{Z}_3 = \mathbb{F}_3 = \{[0], [1], [2]\}$$
. Then $[1] + [2] = [1+2] = [3] = [0]$ while $[2][2] = [2 \times 2] = [4] = [1]$.

$$\mathbb{Z}_6 = \{[0], [1], [2], [3], [4], [5]\}$$
. Then $[2] + [5] = [2+5] = [7] = [1]$ while $[2][3] = [2 \times 3] = [6] = [0]$. Since 2 divides 6, we know very well that $\frac{6}{2} = 3$ but $\frac{[6]}{[2]} = [3]$? In the first place, $[6] = [0]$, so this should mean the same thing as $\frac{[0]}{[2]} = [3]$ but if we allowed $\frac{[0]}{[2]} = [\frac{0}{2}] = [0]$, then we would get $[0] = [3]$ which is evidently false!

It is necessary to check that these definitions do not depend on our choice of representatives. For example, we've seen [1] + [2] = [0] in \mathbb{Z}_3 but we could have had [4] instead of [1], as [1] = [4]. In this case, [4] + [2] = [6] = [0], so it does not matter whether we choose 1 or 4 (or any integer congruent to 1 mod 3 for that matter) as a representative of the equivalence class [1].

More rigorously, suppose that a, b and c are integers and that $a \equiv b \mod n$. To show that the definition of 'addition' does not depend on choice of representatives, we need to show [a] + [c] = [b] + [c]. Since the LHS (resp. RHS) is defined to be [a+c] (resp. [b+c]), this is equivalent to showing that [a+c] = [b+c]. However, it follows from $a \equiv b \mod n$ that (a+c) - (b+c) is divisible by n and therefore that $(a+c) \equiv (b+c) \mod n$. It follows that [a+c] = [b+c].

Similarly, it is necessary to check that [a][c] = [b][c], i.e. [ac] = [bc]. Since n divides a - b, it also divides a - b = ac - bc. Therefore $ac \equiv ab$, i.e. [ac] = [ab].

3.4 Modular inverses

Let n be a fixed positive integer. Throughout this section, \equiv denotes the 'congruence modulo n' and [a] denote the congruence class of integers congruent to a modulo n.

Definition. We say that [a] has a multiplicative inverse if there exists an integer b such that [a][b] = [1].

Remark. The multiplicative inverse, if exists, is unique. Indeed, if [b] and [c] are elements of \mathbb{Z}_n satisfying [a][b] = [1] and [a][c] = [1], then multiplying [b] on both sides of [c][a] = [1] yields [c][a][b] = [1][b], i.e. [c][1] = [b], i.e. [c] = [b].

Theorem 12. The elements [a] of \mathbb{Z}_n has a multiplicative inverse if and only if gcd(a, n) = 1.

Proof. Suppose that [a] has a multiplicative inverse, i.e. [b] such that [a][b] = [1], i.e. [ab] = [1]. This means that ab - 1 is divisible by n, hence there exists an integer c such that ab + (-c)n = 1. As gcd(a, n) divides the LHS, it does so the RHS, i.e. 1. The only non-negative integer diving 1 is 1, so gcd(a, n) = 1.

Conversely, suppose $\gcd(a,n)=1$. By Bezout, there exist integers b and c such that ab+nc=1. Since $ar\equiv 1 \bmod n$, it follows that [a][b]=[ab]=[1]. The multiplicative inverse of [a] is therefore [b]. \square

Examples.

What is the multiplicative inverse of $[4]_{21}$? Since $\gcd(4,21)=1$, the theorem assures us of the multiplicative inverse. How do we compute it? The proof indeed explains how. Since $\gcd(4,21)=1$, Euclid's algorithm (backed up by Bezout) gives us a pair of integers r and s such that $4r+21s=\gcd(4,21)=1$. Indeed, (r,s)=(-5,1) does the job. In particular, $4r\equiv 1$ mod 21 and it therefore follows that [4][r]=[4r]=[1]. So [-5]=[16] is the multiplicative inverse of [4].

What is the multiplicative inverse of $[23]_{2023}$? Firstly, we compute gcd(23, 2023) by Euclid's algorithm:

$$2023 = 23 \cdot 87 + 22$$
$$23 = 22 \cdot 1 + 1.$$

Hence $1 = 23 - 1 \cdot 22 = 23 - 1 \cdot (2023 - 23 \cdot 87) = (-1) \cdot 2023 + 88 \cdot 23$ and [88] is the multiplicative inverse of [23].

What is the multiplicative inverse of $[17]_{2023}$? Since $2023 = 119 \cdot 17$ and 17 is a prime number, gcd(2023, 17) = 17. It follows from the theorem above that [17] has no multiplicative inverse.

If p is a prime number, then $\mathbb{Z}_p = \{[0], [1], \dots, [p-1]\}$ and, by the theorem, it follows that $\gcd(a, p-1) = 1$ if and only if a is prime to p. Therefore the congruence classes $[1], \dots, [p-1]$ all have inverses.

Proposition 13. Suppose n > 1. The element [a] of \mathbb{Z}_n has no multiplicative inverse if and only if there exists an integer b, not congruent to 0 modulo n, such that [a][b] = [0].

Proof. Suppose that [a] has no multiplicative inverse. It then follow from the theorem above that $c = \gcd(a, n) > 1$. If we let b = n/c, then b is a positive integer not congruent to $0 \mod n$ (if it were congruent to $0 \mod n$, then b would be n and force c = 1). By definition, ab = an/c = (a/c)n is divisible by n, for a/c is an integer. It follows that $ab \equiv 0 \mod n$, hence that [a][b] = [ab] = [0].

To prove the converse, suppose that [a] has a multiplicative inverse—we aim at establishing that no integer b, not congruent to n, satisfies [a][b] = [0]. By assumption, there exists an integer c such that [a][c] = [1]. Let b be an integer not congruent to $0 \mod n$. Multiplying the both sides of [a][c] = [1] by [b], we obtain [b] = [b][a][c] = [c]([a][b]). If [a][b] = [0], then the RHS is [0], hence the LHS [b] is [0], in other words, b is divisible by b. However this contradicts the assumption that b is not. \Box

Remark. Proposition 13 is paraphrasing gcd(a, n) > 1.

Given a positive integer n, how many elements in \mathbb{Z}_n has multiplicative inverses? In theory, we ask, for every $0 \le a \le n-1$, whethere $\gcd(a,n)=1$ (or not) to compile a list. For example, if $n=24,\{1,5,7,11,13,17,19,23\}$ (incidentally they are all prime numbers!) is the set of integers $0 \le a \le n-1=23$ such that $\gcd(a,24)=1$. Hence there are 8 elements in total.

What about n = 108? That seems to entail a lot of computations. There is a formula!— it goes by the name of Euler's totient function. Recall from the fundamental theorem of arithmetic that n may be written as the product $\prod_{p} p^{r_p}$ of prime factors. Then the number we are looking for is computed by

$$\phi(n) = \prod_{p} (p-1)p^{r_p-1}.$$

For example, $24=2^3\cdot 3$, so $\phi(24)=(2-1)2^2\cdot (3-1)=8$ which is consistent with the computation above. Similarly, $108=3^3\cdot 2^2$, so $\phi(108)=(3-1)\cdot 3^2\cdot (2-1)\cdot 2=36$. Is this consistent with your computation?

What are multiplicative inverses useful for? They are useful in solving linear congruence equations.

Example. Solve $7X \equiv 1 \mod 11$, or equivalently $[7]_{11}[X]_{11} = [1]_{11}$ in \mathbb{F}_{11} .

The first approach: Since $\mathbb{F}_{11} = \{[0], [1], \dots, [10]\}$, we do trial and error.

[X]	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]
$\overline{[7][X]}$	[0]	[7]	[3]	[10]	[6]	[3]	[9]	[5]	[1]	[8]	[4]
[7][X] - [1]	[10]	[6]	[2]	[9]	[5]	[2]	[8]	[4]	[0]	[7]	[3]

so [X] = [8] is the solution.

The second approach: Firstly, we find the multiplicative inverse of [7] by Euclid's algorithm

$$11 = 7 \cdot 1 + 4
7 = 4 \cdot 1 + 3
4 = 3 \cdot 1 + 1
3 = 1 \cdot 3$$

hence $1 = 4 - 1 \cdot 3 = 4 - 1 \cdot (7 - 1 \cdot 4) = 2 \cdot 4 - 1 \cdot 7 = 2 \cdot (11 - 1 \cdot 7) - 1 \cdot 7 = 2 \cdot 11 - 3 \cdot 7$. So [-3] = [8] is the multiplicative inverse of [7]. Multiplying the both sides of [7][X] = [1] by [8], we then get

$$[8][7][X] = [8][1].$$

The LHS, [8][7] is [1], without computing as $[8 \cdot 7] = [56] = [1]$, because we know that [8] is the multiplicative inverse of [7] so by definition [8][7] = [1]. The RHS is [8]. Putting these together, we see that [X] = [8].

The second approach suggests it should be possible to solve equations of the form [a][X]+[b]=[c] if $\gcd(a,n)=1$ (or equivalently the liner congruence equation $aX\equiv c \mod n$). Indeed, the equation is equivalent to [a][X]=[c-b]. By Theorem 12, there exists a multiplicative inverse, denoted $[a]^{-1}$, of [a]. Multiplying [a][X]=[c-b] by $[a]^{-1}$, we obtain

$$[X] = [c - b][a]^{-1}$$

(not that the RHS is NOT [c-b]/[a]!).

It is possible to solve equations as above, even if gcd(a, n) > 1 but we shall not touch upon these in this module. Go to Number Theory in Year 2, if you are interested.