# Introduction to Algebra 

Shu Sasaki

13th February 2024

## 1 Introduction

## 2 Revising bits and bobs from NSF

### 2.1 Integer division

### 2.2 GCD and Euclid's algorithm

### 2.3 Euclid's algorithm extended

### 2.4 Prime numbers

## 3 Modular arithmetic

### 3.1 Equivalence relations and partitions

Suppose that $S$ is a set. In NSF, a relation $\mathcal{R}$ on $S$ is defined to be a property which may, or may not, hold for each ordered pair of elements in $S$ (i.e. an element of the set $S \times S$ of ordered pairs in $S$ ).

A relation $\mathscr{R}$ is said to be

- reflexive if $a \mathfrak{R} a$ for every element $a$ of $S$,
- symmetric if $a \mathfrak{R} b$ implies $b \mathfrak{R} a$ for all elements $a, b$ of $S$,
- anti-symmetric if $a \mathfrak{R} b$ and $b \mathscr{R} a$ implies $a=b$ for all elements $a, b$ of $S$,
- transitive if $a \mathscr{R} b$ and $b \mathscr{R} c$ implies $a \Re c c$ for all elements $a, b, c$ of $S$,

A reflexive, symmetric and transitive relation is said to be an equivalence relation.
Examples/Exercises. Which of the following are equivalence relations?
(1) $S=\mathbb{R}$ and $a \mathfrak{R} b$ if and only if $a=b$ or $a=-b$. (2) $S=\mathbb{Z}$ and $a \mathscr{R} b$ if and only if $a b=0$. (3) $S=\mathbb{R}$ and $a \mathscr{R} b$ if and only if $a^{2}+a=b^{2}+b$. (4) $S=\{$ people in the world $\}$ and $a \mathscr{R} b$ if and only if $a$ lives within 100 km of $b$. (5) $S=\{$ the points in the plane $\}$ and $a \mathfrak{R} b$ if and only if $a$ and $b$ are of
the same distance from the origin. (6) $S=\{$ positive integers $\}$ and $a \mathscr{R} b$ if and only if $a b$ is a square (of positive integers). (7) $S=\{1,2,3\}$ and $a \mathfrak{R} b$ if and only if $a=1$ or $b=1$. (8) $S=\mathbb{R} \times \mathbb{R}$ and $p \mathscr{R} q$ (where $p=(x(p), y(q))$ and $q=(x(q), y(q)))$ if and only if $x(p)^{2}+y(p)^{2}=x(q)^{2}+y(q)^{2}$.
(1), (3), (5), (6) and (8) are equivalence relations.

Remark. The hardest to verify is the transitivity of $\mathscr{R}$ in (6): if $a, b$ and $c$ are positive integers and $a b$ and $b c$ are respectively squares of positive integers, then can $a c$ be a square of positive integers? Yes! To see this, suppose that $a b=r^{2}$ and $b c=s^{2}$ for some positive integers $r$ and $s$. Multiplying them together, we obtain $a b^{2} c=(r s)^{2}$. It suffices to establish that $b$ divides $r s$, as if this is the case, then $a c$ is a square of $(r s) / b$. How do we prove this? Recall from Proposition 8 that $b$ is a product of prime factors of the form $\prod_{p} p^{r_{p}}$ where $p$ ranges over the prime numbers and $r_{p}$ is a non-negative integer for every $p$. If $p^{r_{p}}$ and $q^{r_{q}}$ are prime factors of $b$ at distinct primes $p$ and $q$, and if each of them divides $r s$, then the product $p^{r_{p}} q^{r_{q}}$ divides $r s$ (this follows from the 'correct' definition of prime numbers). If we repeat the argument, then we may conclude that $\prod_{p} p^{r_{p}}$, i.e., $b$ divides $r$ s. To sum up, it boils down to showing that, for every prime number $p$ that divides $b$ (i.e. $r_{p} \geqslant 1$ ), the prime factor $p^{r_{p}}$ of $b$ divides $r$. Since $p^{r_{p}}$ divides $b$, it follows that $p^{2 r_{p}}$ divides $b^{2}$ and therefore that $p^{2 r_{p}}$ divides $(r s)^{2}$. If $p^{s_{p}}$ is the prime factor of $r s$ at $p$, then $p^{2 r_{p}}$ divides $p^{2 s_{p}}$, i.e. $2 r_{p} \leqslant 2 s_{p}$, i.e. $r_{p} \leqslant s_{p}$. This manifests that $p^{r_{p}}$ divides $r$.

If $\mathscr{R}$ is a relation on $S$ and $a$ is an element of $\mathscr{R}$, we denote by $[a]_{\mathcal{R}}$, or simply $[a]$ if it is clear which relation we are considering from the context, the set

$$
\{b \in S \mid a \mathfrak{R} b\}
$$

of all elements $b$ in $S$ which are 'in relation to' $b$ with respect to $\mathscr{R}$. If $\mathscr{R}$ is an equivalence relation, we refer to $[a]$ an equivalence class (represented by $a$ ).

Examples/Exercises For those relations (1)-(8) above, describe the equivalence classes.
Remark. By definition, if $\mathscr{R}$ is an equivalence relation, then $a \mathscr{R} b$ if and only if $[a]_{\mathcal{R}}=[b]_{\mathcal{R}}$. To see 'only if', let $c$ be an element of $[a]_{\mathcal{R}}$. By definition, this means that $a \mathscr{R} c$. Since $\mathscr{R}$ is reflexive, $c \mathscr{R} a$ holds. Since $a \mathscr{R} b$ by assumption, it follows from the transitivity of $\mathscr{R}$ that $c \mathscr{R} b$. By the reflexivity (again!), it then follows that $b \mathscr{R} c$, i.e. $c$ is a element of $[b]_{\mathfrak{R}}$. To sum up, we have established that $[a]_{\mathcal{R}} \subseteq[b]_{\mathcal{R}}$. Swapping the roles, it is also possible to prove $[b]_{\mathcal{R}} \subseteq[a]_{\mathcal{R}}$ (exercise!). Combining, we have $[a]_{\mathcal{R}}=[b]_{\mathcal{R}}$ as desired.

In preparation of a theorem to follow, we need:
Definition. Let $S$ be a set. A partition of $S$ is a set $\mathscr{P}$ of subsets of $S$, whose elements are called its parts, having the following properties:

- $\varnothing$ is not a part of $\mathscr{P}$.
- If $A$ and $B$ are distinct parts of $\mathscr{P}$, then $A \cap B=\varnothing$,
- The union of all parts of $\mathscr{P}$ is $S$.


## Examples.

$S=\mathbb{Z}, \mathscr{P}=\{\{$ even integers $\},\{$ odd integers $\}\}$.
$S=\{1,2,3,4,5\} .\{\{1,2\},\{3,4\},\{5\}\}$ and $\{\{1\},\{2,3,4,5\}\}$ are partitions but $\{\{1,2\},\{2,3\},\{4,5\}\}$ is not.

Theorem 9 (Equivalence Relation Theorem).

- Let $\mathscr{R}$ be an equivalence relation on a set $S$. Then the set $[a]_{\mathscr{R}}$, as $a$ ranges over $S$, form a partition of $S$.
- Conversely, given any partition $\mathscr{P}$ of $S$, there is a unique equivalence relation $\mathscr{R}$ on $S$ such that the parts of $\mathscr{P}$ are the same as the sets $[a]_{\mathcal{R}}$ for $a$ in $S$. This $\mathscr{R}$ is defined as: $a \mathscr{R} b$ if $a$ and $b$ lies in the same part defined by $\mathscr{P}$.

Proof. (a) We need to check the definitions one by one.

- No element of $\left\{[a]_{\mathcal{R}}\right\}$ is $\varnothing$. To see this, observe that, since $a \mathscr{R} a$ (since $\mathscr{R}$ is reflexive), $a$ lies in $[a]_{\mathfrak{R}}$; therefore $[a]_{\mathfrak{R}}$ is non-empty.
- If $[a]_{\mathcal{R}}$ and $[b]_{\mathcal{R}}$ are distinct, then $[a]_{\mathcal{R}} \cap[b]_{\mathscr{R}}=\varnothing$; or equivalently, if $[a]_{\mathcal{R}} \cap[b]_{\mathcal{R}} \neq \varnothing$, then $[a]_{\mathscr{R}}=[b]_{\mathfrak{R}}$. To prove the latter, let $c$ be an non-trivial element of $[a]_{\mathscr{R}} \cap[b]_{\mathfrak{R}}$ (made possible by assumption). By definition, this means that $a \mathscr{R} c$ and $b \mathscr{R} c$, or equivalently $c \mathscr{R} b$ (because $\mathscr{R}$ is symmetric). Because $\mathscr{R}$ is transitive, it follows from $a \mathscr{R} c$ and $c \mathscr{R} b$ that $a \mathscr{R} b$. From the remark above, it follows that $[a]_{\mathcal{R}}=[b]_{\mathcal{R}}$.
- The union $T$ of $[a]_{\mathscr{R}}$, as $a$ ranges over $S$, equals $S$. Since $[a]_{\mathcal{R}} \subseteq S$ as sets, $T \subseteq S$. Therefore it suffices to prove $S \subseteq T$. Let $a$ be an element of $S$. Then $a$ lies in $[a]_{\mathbb{R}}$ (see the proof for the first part). Since $[a]_{\mathfrak{R}} \subseteq S$, it follows that $a$ lies in $S$.
(b) We check the conditions of an equivalence relation one by one, following the definition of $\mathfrak{R}$ given in the statement.
- reflexive. Since $a$ and $a$ (!) both lie in the same part, $a \mathfrak{R} a$ holds.
- symmetric. If $a$ and $b$ lies in the same part, then so do $b$ and $a$. So the reflexivity follows.
- transitive. Suppose that $a$ and $b$ lies in a part $A$ of $\mathscr{P}$, i.e. a subset $A$ of $S$. Similarly, suppose that $b$ and $c$ lie in a part $B$ of $\mathscr{P}$. Since $b$ lies in both $A$ and $B$, it follows from the second condition of the definition of a partition that $A$ and $B$ are not distinct, i.e. $A=B$. Therefore $a$ and $c$ both lie in the same part $A=B$, i.e. $a \mathfrak{R} c$.

By definition, $[a]_{\mathfrak{R}}$ is the set of elements $b$ in $S$ which lie in the same part, say $A$, as $a$ does. This set is nothing other than $A$ ! Hence $[a]_{\mathscr{R}}=A$. So the partition $\mathscr{P}$ of $S$ is the subsets of the form $[a]_{\mathfrak{R}}$.

To see the uniqueness ( $\mathcal{R}$ is the only equivalence relation whose parts are the subsets $[a]_{\mathscr{R}}$ ), suppose that $\mathscr{R}$ and $\mathscr{R}^{\prime}$ are equivalence relations giving rise to the partition $\mathscr{P}$. Since the parts
$\{b \mid a \mathscr{R} b\}=[a]_{\mathscr{R}}$ and $\left\{b \mid a \mathscr{R}^{\prime} b\right\}=[a]_{\mathscr{R}^{\prime}}$ both contain $a$, they are the same subsets of $S$.
Remark. The theorem asserts that every element $a$ of $S$ belongs to exactly one equivalence class [a].

Example. Let $S=\{1,2,3\}$.

| Partition | Relations | Equivalence classes |
| :---: | :---: | :---: |
| \{1, 2, 3\} | $a \mathfrak{R} b$ for all $a, b \in\{1,2,3\}$ | [1] |
| $\{1\},\{2,3\}$ | $\begin{gathered} 1 \mathscr{R} 1, \\ a \mathscr{R} b \text { for all } a, b \in\{2,3\} \end{gathered}$ | [1], [2] |
| $\{2\},\{1,3\}$ | $\begin{gathered} 2 \mathscr{R} 2, \\ a \mathfrak{R} b \text { for all } a, b \in\{1,3\} \end{gathered}$ | [2], [1] |
| $\{3\},\{1,2\}$ | $3 \mathscr{R} 3$, $a \mathfrak{R} b$ for all $a, b \in\{1,2\}$ | [3], [1] |
| $\{1\},\{2\},\{3\}$ | $\begin{gathered} 1 \mathfrak{R} 1, \\ 2 \mathfrak{R} 2, \\ 3 R 3 \end{gathered}$ | [1], [2], [3] |

### 3.2 Congruence $\bmod n$

Let $n$ be a positive integer.
Definition. We define a relation $\equiv$ on the set $\mathbb{Z}$ as follows:
if $a$ and $b$ are elements of $\mathbb{Z}$ (i.e. integers), then $a \equiv b$ if and only if $b-a$ is divisible by $n$.
Proposition $10 . \equiv$ on $\mathbb{Z}$ is an equivalence relation.
Proof. We need to check that it is reflexive, symmetric and transitive.

- $a \equiv a$.

Since $a-a=0$ and this is divisible by $n$ (or any integer, for that matter), $a \equiv a$.

- If $a \equiv b$, then $b \equiv a$.

Since $a \equiv b$, there exists $b-a$ is divisible by $n$, i.e., there exists an integer $r$ such that $b-a=r n$. It then follows that $a-b=(-r) n$, i.e. $a-b$ is divisible by $n$, hence $b \equiv a$.

- If $a \equiv b$ and $b \equiv c$, then $a \equiv c$.

By assumption, there exist integers $r$ and $s$ such that $b-a=r n$ and $c-b=s n$. It then follows that $c-a=(c-b)+(b-a)=r n+s n=(r+s) n$, hence $a \equiv c$.

This means that the set of integers is partitioned into equivalence classes by $\equiv$.
Definition. We write $\mathbb{Z}_{n}$ for the set of equivalence classes modulo $n$. Personally, I prefer to write $\mathbb{Z} / n \mathbb{Z}$. When $n$ is a prime number $p$, we write $\mathbb{F}_{p}$ instead of $\mathbb{Z}_{p}$ '.

## Examples

$$
\mathbb{Z}_{5}=\left\{\begin{array}{ccccc}
\vdots & \vdots & \vdots & \vdots & \vdots \\
{[-5]} & {[-4]} & {[-3]} & {[-2]} & {[-1]} \\
\| & \| & \| & \| & \| \\
{[0]} & {[1]} & {[2]} & {[3]} & {[4]} \\
\| & \| & \| & \| & \| \\
{[5]} & {[6]} & {[7]} & {[8]} & {[9]} \\
\| & \| & \| & \| & \| \\
\vdots & \vdots & \vdots & \vdots & \vdots
\end{array}\right\}
$$

In a standard clock, keeping track of hours $=\mathbb{Z}_{12}$ while minutes $=\mathbb{Z}_{60}$.
Proposition 11. The cardinality of $\mathbb{Z}_{n}$ is $n$, i.e. there are exactly $n$ equivalence classes with respect to $\equiv$ modulo $n$, namely $[0],[1], \ldots,[n-1]$.

Proof. Firstly, we show that every integer $s$ belongs to one of the congruence classes $[0], \ldots,[n-$ 1]. Indeed, there exist integers $q$ and $0 \leqslant r \leqslant n-1$ such that $s=n q+r$, i.e. $s \equiv r \bmod n$. Therefore $s$ lies in $[r]$.

Suppose $r$ and $s$ are integers satisfying $0 \leqslant r<s \leqslant n-1$. If $[r]=[s]$, then it would follow that $r-s$ is divisible by $n$. But this contradicts $0<r-s<n-1$.

### 3.3 Arithmetic with congruence classes

We define addition, subtraction and multiplication on $\mathbb{Z}_{n}$ as follows:

$$
\begin{aligned}
{[a]+[b] } & =[a+b] \\
{[a]-[b] } & =[a-b] \\
{[a][b] } & =[a b]
\end{aligned}
$$

What about 'division'? Can we make sense of it? It is NOT true that when we divide $[a]$ by $[b]$, we get $\left[\frac{a}{b}\right]$. In the first place, $\frac{a}{b}$ might not even be an integer! Would it be surprising if I tell you, for example, that when $n=11$, we can even divide [1] by [3] to get [4]! This is because $[3][4]=[12]=[1]$.

## Examples

$\mathbb{Z}_{3}=\mathbb{F}_{3}=\{[0],[1],[2]\}$. Then $[1]+[2]=[1+2]=[3]=[0]$ while $[2][2]=[2 \times 2]=[4]=$ [1].
$\mathbb{Z}_{6}=\{[0],[1],[2],[3],[4],[5]\}$. Then $[2]+[5]=[2+5]=[7]=[1]$ while $[2][3]=[2 \times 3]=$ $[6]=[0]$. Since 2 divides 6 , we know very well that $\frac{6}{2}=3$ but $\frac{[6]}{[2]}=[3]$ ? In the first place, $[6]=[0]$, so this should mean the same thing as $\frac{[0]}{[2]}=[3]$ but if we allowed $\frac{[0]}{[2]}=\left[\frac{0}{2}\right]=[0]$, then we would get $[0]=[3]$ which is evidently false!

It is necessary to check that these definitions do not depend on our choice of representatives. For example, we've seen $[1]+[2]=[0]$ in $\mathbb{Z}_{3}$ but we could have had [4] instead of $[1]$, as $[1]=[4]$. In this case, $[4]+[2]=[6]=[0]$, so it does not matter whether we choose 1 or 4 (or any integer congruent to $1 \bmod 3$ for that matter) as a representative of the equivalence class [1].

More rigorously, suppose that $a, b$ and $c$ are integers and that $a \equiv b \bmod n$. To show that the definition of 'addition' does not depend on choice of representatives, we need to show $[a]+[c]=$ $[b]+[c]$. Since the LHS (resp. RHS) is defined to be $[a+c]$ (resp. $[b+c]$ ), this is equivalent to showing that $[a+c]=[b+c]$. However, it follows from $a \equiv b \bmod n$ that $(a+c)-(b+c)$ is divisible by $n$ and therefore that $(a+c) \equiv(b+c) \bmod n$. It follows that $[a+c]=[b+c]$.

Similarly, it is necessary to check that $[a][c]=[b][c]$, i.e. $[a c]=[b c]$. Since $n$ divides $a-b$, it also divides $c(a-b)=a c-b c$. Therefore $a c \equiv a b$, i.e. $[a c]=[a b]$.

### 3.4 Modular inverses

Let $n$ be a fixed positive integer. Throughout this section, $\equiv$ denotes the 'congruence modulo $n$ ' and $[a]$ denote the congruence class of integers congruent to $a$ modulo $n$.

Definition. We say that $[a]$ has a multiplicative inverse if there exists an integer $b$ such that $[a][b]=[1]$.

Remark. The multiplicative inverse, if exists, is unique. Indeed, if $[b]$ and $[c]$ are elements of $\mathbb{Z}_{n}$ satisfying $[a][b]=[1]$ and $[a][c]=[1]$, then mutiplying $[b]$ on both sides of $[c][a]=[1]$ yields $[c][a][b]=[1][b]$, i.e. $[c][1]=[b]$, i.e. $[c]=[b]$.

Theorem 12. The elements $[a]$ of $\mathbb{Z}_{n}$ has a multiplicative inverse if and only if $\operatorname{gcd}(a, n)=1$.
Proof. Suppose that $[a]$ has a multiplicative inverse, i.e. $[b]$ such that $[a][b]=[1]$, i.e. $[a b]=[1]$. This means that $a b-1$ is divisible by $n$, hence there exists an integer $c$ such that $a b+(-c) n=1$. As $\operatorname{gcd}(a, n)$ divides the LHS, it does so the RHS, i.e. 1 . The only non-negative integer diving 1 is 1 , so $\operatorname{gcd}(a, n)=1$.

Conversely, suppose $\operatorname{gcd}(a, n)=1$. By Bezout, there exist integers $b$ and $c$ such that $a b+n c=1$. Since $a r \equiv 1 \bmod n$, it follows that $[a][b]=[a b]=[1]$. The multiplicative inverse of $[a]$ is therefore [b].

## Examples.

What is the multiplicative inverse of $[4]_{21}$ ? Since $\operatorname{gcd}(4,21)=1$, the theorem assures us of the multiplicative inverse. How do we compute it? The proof indeed explains how. Since $\operatorname{gcd}(4,21)=1$, Euclid's algorithm (backed up by Bezout) gives us a pair of integers $r$ and $s$ such that $4 r+21 s=\operatorname{gcd}(4,21)=1$. Indeed, $(r, s)=(-5,1)$ does the job. In particular, $4 r \equiv 1 \bmod$ 21 and it therefore follows that $[4][r]=[4 r]=[1]$. So $[-5]=[16]$ is the multiplicative inverse of [4].

What is the multiplicative inverse of $[23]_{2023}$ ? Firstly, we compute $\operatorname{gcd}(23,2023)$ by Euclid's algorithm:

$$
\begin{aligned}
2023 & =23 \cdot 87+22 \\
23 & =22 \cdot 1+1
\end{aligned}
$$

Hence $1=23-1 \cdot 22=23-1 \cdot(2023-23 \cdot 87)=(-1) \cdot 2023+88 \cdot 23$ and $[88]$ is the multiplicative inverse of [23].

What is the multiplicative inverse of $[17]_{2023}$ ? Since $2023=119 \cdot 17$ and 17 is a prime number, $\operatorname{gcd}(2023,17)=17$. It follows from the theorem above that $[17]$ has no multiplicative inverse.

If $p$ is a prime number, then $\mathbb{Z}_{p}=\{[0],[1], \ldots,[p-1]\}$ and, by the theorem, it follows that $\operatorname{gcd}(a, p-1)=1$ if and only if $a$ is prime to $p$. Therefore the congruence classes [1], $\ldots,[p-1]$ all have inverses.

Proposition 13. Suppose $n>1$. The element $[a]$ of $\mathbb{Z}_{n}$ has no multiplicative inverse if and only if there exists an integer $b$, not congruent to 0 modulo $n$, such that $[a][b]=[0]$.

Proof. Suppose that $[a]$ has no multiplicative inverse. It then follow from the theorem above that $c=\operatorname{gcd}(a, n)>1$. If we let $b=n / c$, then $b$ is a positive integer not congruent to $0 \bmod n$ (if it were congruent to $0 \bmod n$, then $b$ would be $n$ and force $c=1$ ). By definition, $a b=a n / c=(a / c) n$ is divisible by $n$, for $a / c$ is an integer. It follows that $a b \equiv 0 \bmod n$, hence that $[a][b]=[a b]=[0]$.

To prove the converse, suppose that $[a]$ has a multiplicative inverse- we aim at establishing that no integer $b$, not congruent to $n$, satisfies $[a][b]=[0]$. By assumption, there exists an integer $c$ such that $[a][c]=[1]$. Let $b$ be an integer not congruent to $0 \bmod n$. Multiplying the both sides of $[a][c]=[1]$ by $[b]$, we obtain $[b]=[b][a][c]=[c]([a][b])$. If $[a][b]=[0]$, then the RHS is $[0]$, hence the LHS $[b]$ is $[0]$, in other words, $b$ is divisible by $n$. However this contradicts the assumption that $b$ is not.

Remark. Proposition 13 is paraphrasing $\operatorname{gcd}(a, n)>1$.
Given a positive integer $n$, how many elements in $\mathbb{Z}_{n}$ has multiplicative inverses? In theory, we ask, for every $0 \leq a \leq n-1$, whethere $\operatorname{gcd}(a, n)=1$ (or not) to compile a list. For example, if $n=24,\{1,5,7,11,13,17,19,23\}$ (incidentally they are all prime numbers!) is the set of integers $0 \leq a \leq n-1=23$ such that $\operatorname{gcd}(a, 24)=1$. Hence there are 8 elements in total.

What about $n=108$ ? That seems to entail a lot of computations. There is a formula!- it goes by the name of Euler's totient function. Recall from the fundamental theorem of arithmetic that $n$ may be written as the product $\prod_{p} p^{r_{p}}$ of prime factors. Then the number we are looking for is computed by

$$
\phi(n)=\prod_{p}(p-1) p^{r_{p}-1}
$$

For example, $24=2^{3} \cdot 3$, so $\phi(24)=(2-1) 2^{2} \cdot(3-1)=8$ which is consistent with the computation above. Similarly, $108=3^{3} \cdot 2^{2}$, so $\phi(108)=(3-1) \cdot 3^{2} \cdot(2-1) \cdot 2=36$. Is this consistent with your computation?

What are multiplicative inverses useful for? They are useful in solving linear congruence equations.

Example. Solve $7 X \equiv 1 \bmod 11$, or equivalently $[7]_{11}[X]_{11}=[1]_{11}$ in $\mathbb{F}_{11}$.

The first approach: Since $\mathbb{F}_{11}=\{[0],[1], \ldots,[10]\}$, we do trial and error.

so $[X]=[8]$ is the solution.
The second approach: Firstly, we find the multiplicative inverse of [7] by Euclid's algorithm

$$
\begin{aligned}
11 & =7 \cdot 1+4 \\
7 & =4 \cdot 1+3 \\
4 & =3 \cdot 1+1 \\
3 & =1 \cdot 3
\end{aligned}
$$

hence $1=4-1 \cdot 3=4-1 \cdot(7-1 \cdot 4)=2 \cdot 4-1 \cdot 7=2 \cdot(11-1 \cdot 7)-1 \cdot 7=2 \cdot 11-3 \cdot 7$. So $[-3]=[8]$ is the multiplicative inverse of $[7]$. Multiplying the both sides of $[7][X]=[1]$ by $[8]$, we then get

$$
[8][7][X]=[8][1] .
$$

The LHS, $[8][7]$ is $[1]$, without computing as $[8 \cdot 7]=[56]=[1]$, because we know that $[8]$ is the multiplicative inverse of $[7]$ so by definition $[8][7]=[1]$. The RHS is $[8]$. Putting these together, we see that $[X]=[8]$.

The second approach suggests it should be possible to solve equations of the form $[a][X]+[b]=$ $[c]$ if $\operatorname{gcd}(a, n)=1$ (or equivalently the liner congruence equation $a X \equiv c \bmod n$ ). Indeed, the equation is equivalent to $[a][X]=[c-b]$. By Theorem 12, there exists a multiplicative inverse, denoted $[a]^{-1}$, of $[a]$. Multiplying $[a][X]=[c-b]$ by $[a]^{-1}$, we obtain

$$
[X]=[c-b][a]^{-1}
$$

(not that the RHS is NOT $[c-b] /[a]!$ ).
It is possible to solve equations as above, even if $\operatorname{gcd}(a, n)>1$ but we shall not touch upon these in this module. Go to Number Theory in Year 2, if you are interested.

