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Example 1.1. A university student is planning her daily food budget. Based
on the British Nutrition Foundation’s guidelines for an average female of her
age she should consume the following daily amounts of vitamins:

Vitamin mg/day
B[ Thiamin 0.8
K7 Riboflavin 1.1
(373 Niacin 13
Vitamin C 35

After doing some research, she finds the following cost, calories, and vitamins
(in mg) per serving of several basic foods:

Food Cost Thiamin Riboflavin Niacin Vitamin C

Bread £0.25 0.1
Beans £0.60 0.2
Cheese £0.85 0.0
Eggs £1.00 0.2
Oranges £0.80 0.2
Potatoes £0.50 0.2

0.1 1.3 0.0
0.1 1.1 0.0
0.5 0.1 0.0
1.2 0.2 0.0
0.1 0.5 95.8
0.1 4.2 28.7

How can the student meet her daily requirements as cheaply as possible?




Mathematical Program

Goal

I 0.2521 + 0.60x5 + 0.85z5 + 1.00x4 + 0.80x5 + 0.50x

. minimise |

subject to 0.1x;1 +0.229 + 0.0x3 + 0.224 + 0.225 + 0.2 > 0.8
0.1r1 + 0.1z + 0.5253 + 1.224 + 0.125 + 0.1z > 1.1

1.321 + 1.1zo + 0.123 + 0.224 + 0.525 + 4.22¢ > 13

0.0x1 + 0.0x9 + 0.023 + 0.0x4 + 95.8x5 + 28.7x¢ > 35

L1,T2,L3, L4, L5, x6‘> O
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Example 2.1. A factory makes 2 different parts (say, part X and part Y).
Their plant has 4 separate processes in place: there are two older processes
(say, process 1 and 2) that produce parts X and Y directly, as well as two
different integrated processes for producing both X and Y simultaneously.
The 4 processes can be run simultaneously, but require labour, raw metal,
and electricity. The hourly inputs and outputs for each process are as follows:

Outputs Inputs
Process X Y Metal Electricity Labour

1 4 0 100 kg 800 kWh 16 hrs
2 0 1 70 kg 600 kWh 16 hrs
3 3 1 120 kg 2000 kWh 50 hrs
4 6 3 270 kg 4000 kWh 48 hrs

Fa-a—brpread=dey, the plant has an available stock of 6000 kg of metal, and
the has budgeted 100000 kWh of power usage, 1000 hours of labour. Suppose
that each part X sells for £1000 and each part Y sells for £1800. How should
production be scheduled to maximise daily revenue?

Tash: What choices have to be Mada @'Z
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Example 2.2. Suppose that our factory in Example 2.1 wants to determine its
daily operating budget. It has determined that there is daily demand for 120
parts X and 50 parts Y. Suppose now that there is an unlimited amount of
metal, electricity, and labour available, but the cost of metal is £5 per kg, the
cost of electricity is £0.15 per kWh, and the cost of labour is £20 per hour.
How can it schedule production to meet its demand as cheaply as possible?

Outputs Inputs
Process X Y Metal Electricity Labour
1 4 0 100 kg 800 kWh 16 hrs
2 0 1 70 kg 600 kWh 16 hrs
3 3 1 120 kg 2000 kWh 50 hrs
4 6 3 270 kg 4000 kWh 48 hrs
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Example 2.3. Suppose that our factory in the previous 2 examples now wants
to find a production schedule that maximises its daily profits defined as rev-
enue minus costs. How can this be done? You should assume that any amount
of resources are available, and that any number of parts can be sold (where
the prices are given as in the previous 2 examples).

\ J
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2 0 1 70ke 600kWh 16 hrs / alls al ERCC fand
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Example 2.4. A medical testing company is making diagnostic tests. Each
test requires a combination of 3 different reagents:

Reagents Needed

Test
1 2 3
Standard 0.9 ml 1E25ml
Rapid 1.5 ml 1.0 ml

Each reagent can be synthesised from a combination of more basic chemicals
(let’s call them chemical A B, and C), which requires some amount of lab-
oratory time. Additionally, these reagents can be purchased from a supplier
for a listed price, and any extra reagent that the company produces can also
be sold to the supplier for this price. The relevant materials and costs are
summarised in the following table:

Chemicals Needed Lab time

The company has taken on a contract to produce 1000 standard tests and
2300 rapid tests. It has 100 hours of laboratory time available at a cost of
£150 per hour, 1100ml of chemical A, 1250ml of chemical B, and 1800ml
of chemical C available. Additionally, it can purchase and sell an unlimited
amount of each reagent for the specified price. Find a production plan that
fulfils the contract at the lowest net cost, taking into account any money
recovered by the sale of excess reagents.
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Example 2.5. A mining company has 2 mines, where ore is extracted, and
3 warehouses, where ore is stored. Currently, there is 45Mg of ore divided
amongst the mining locations. In order to prepare it for sale, this ore needs to
be distributed to the warehouses. The amount of ore available at each mine,
and the amount of ore required at each warehouse is as follows:

Ore Available Ore Required
Mine 1 19 Warehouse 1 14
Mine 2 26 Warehouse 2 151
Warehouse 3 20

Due to different distances and shipping methods, the cost (in thousands of
pounds) to ship 1 Mg depends on where it is being shipped from and where
it is being shipped to, as follows:

Warehouse 1  Warehouse 2 Warehouse 3
Mine 1 10 15 1%
Mine 2 9 i 13

Suppose that these costs scale up linearly in the amount of ore that is shipped
(for example, it costs 3 - 10 to ship 3Mg of ore from Mine 1 to Warehouse 1.
How should we send the ore from the mines to the warehouses to minimise
the overall transportation cost?
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