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4 Inference about the regression parameters 

In our simple linear regression model of 

𝑦 =  𝛽 +  𝛽  𝑥 +  𝜀  where the 𝜀  are iid  𝜀  ~ 𝑁(0, 𝜎 ) 

we have found (see section 2.2 above) that the least squares estimates of 𝛽  and 𝛽  are given by 

𝛽 =  𝑦 −  𝛽  �̅� 

and 

𝛽 =  
∑ (𝑥 −  �̅� )(𝑦 −  𝑦)

∑ (𝑥 −  �̅�)  
 

 

4.1 Confidence Interval for 𝛽   

We found earlier that the sampling distribution of 𝛽   is  

𝛽  ~ 𝑁(𝛽  ,
𝜎

𝑆
) 

(Note that even where the yi are not normally distributed the distribution of 𝛽  is approximately 
normal.) 

We can standardise the 𝛽 , that is find the function of 𝛽  that follows a standard normal N(0,1) 
distribution, 

𝛽 −  𝛽  
𝜎   

√𝑆

 ~ 𝑁(0, 1) 

However σ2 is generally not known, so we will need to replace it with it’s estimate s2. When we do 
this, the normal distribution becomes a Student t-distribution. 

That is because, more generally, if Z ~ N(0,1) and U ~ 𝜒  then 
√ /

 ~ 𝑡   

We already have  

𝑍 =  
𝛽 −  𝛽  

𝜎  

√𝑆

 ~ 𝑁(0, 1) 

and we will see later in the course that 

𝑈 =  
(𝑛 − 2)𝑆

𝜎
 ~ 𝜒  

therefore 𝑇 =  

   

√

√
( )

( )

=  
  

√

 ~ 𝑡  
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If we have some parameter ϴ a 95% confidence interval for ϴ means to find boundaries a and b such 
that 𝑃(𝑎 < 𝜃 < 𝑏) = 0.95. More generally a 100(1 −  𝛼)% confidence interval for ϴ is to find a and 
b such that 𝑃(𝑎 < 𝜃 < 𝑏) = 1 −  𝛼. 

In practice, a confidence interval for 𝛽  will depend on the data and the estimate  𝛽  found from that 
data. Using the Student-t distribution above, and defining 𝑡  to be the quantity such that  

𝑃 |𝑡 | <  𝑡 = 1 − 𝛼 

then  

𝑃  𝛽 −  𝑡
𝑆

𝑆
<  𝛽  <  𝛽 +  𝑡

𝑆

𝑆
= 1 − 𝛼 

So for a particular data set where 𝛽  and S become values from observed data rather than random 
variables, we can calculate the 100(1 − 𝛼 )% confidence interval [a, b] for 𝛽   where 

[𝑎, 𝑏] = 𝛽 −  𝑡
𝑆

𝑆
 , 𝛽 + 𝑡

𝑆

𝑆
 

 

4.2 Testing the significance of 𝛽   

In section 3.3 above we saw that we can test the null hypothesis 𝐻 : 𝛽 = 0 using the ANOVA table 
and the F statistic. There is another way to test the same null hypothesis based upon how we have 
derived the confidence interval for 𝛽 . 

Under this null hypothesis, the slope is zero and therefore we have a constant model that can be 
written 𝑦 =  𝛽 +  𝜀  

We can test this null hypothesis using the test statistic T developed above for confidence intervals. If 
H0 is true then 𝛽  is zero and so 

𝑇 =  
𝛽

𝑆

√𝑆

 ~ 𝑡  

For a given data set we can calculate the value of T. We then reject the null hypothesis 𝐻 : 𝛽 = 0 
at significance level α if 

|𝑇| >  𝑡
𝑛−2,

𝛼
2
 

This methodology is in fact equivalent mathematically to the ANOVA table F-statistic route. 

Sometimes you will see equations such as those above for the confidence interval and the test 
statistic T written in terms of the estimated standard error of  𝛽 . The standard error se(𝛽 ) is the 
square root of the variance of  𝛽 . Our estimate of the standard error of  𝛽  is 

𝑠𝑒( 𝛽
1

) =  
𝑆

𝑆
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and using the standard error notation, the confidence interval becomes 

[𝑎, 𝑏] = 𝛽 −  𝑡  𝑠𝑒  𝛽  , 𝛽 +  𝑡  𝑠𝑒( 𝛽 )  

and the T test statistic is 

𝑇 =  
𝛽

𝑠𝑒( 𝛽 )
 ~ 𝑡  

 

4.3 Inference about 𝛽  

Because in modelling we are generally interested in the relationship between Y and X, we are usually 
most interested in parameter 𝛽 . We can however also develop confidence intervals and test 
hypotheses for 𝛽 . We found earlier that the sampling distribution of 𝛽  is, 

𝛽  ~ 𝑁(𝛽 , 𝜎 (
1

𝑛
+

�̅�

𝑆
 ) ) 

Using the same methodology as for 𝛽  above, we find that the 100(1 − 𝛼 )% confidence interval for 
𝛽  is 

[𝑎, 𝑏] = 𝛽 −  𝑡  𝑠𝑒  𝛽  , 𝛽 + 𝑡  𝑠𝑒( 𝛽 )  

and the test statistic to test the null hypothesis 𝐻 : 𝛽 = 𝐵 for some value B (which may or may not 
be zero) is 

𝑇 =  
𝛽 − 𝐵

𝑠𝑒( 𝛽 )
 ~ 𝑡  

where 𝑠𝑒( 𝛽
0

) =  𝑆 ( +  
̅

) 

 

4.4 Inference about the mean response 

We may also develop confidence intervals and test hypotheses for the mean of the response 
variable given some value of the explanatory variable, that is 𝐸[𝑌 |𝑋 = 𝑥 ] which is also often 
written as 𝜇 . 

Under the simple linear regression model, 

𝜇 =  𝐸[𝑌 |𝑋 = 𝑥 ] =  𝛽 +  𝛽 𝑥  

and the least squares estimator of 𝜇  is given by 

𝜇 =  𝛽 +  𝛽 𝑥  

so that for any value of the explanatory variable 𝑥  we can estimate the mean response. 

Under the simple linear regression model, the sampling distribution of 𝜇  is also Normal, 
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𝜇  ~ 𝑁(𝜇 ,  𝜎 (
1

𝑛
+

(𝑥 −  �̅�)

𝑆
 ) ) 

which allows us to obtain a 100(1 − 𝛼 )% confidence interval for 𝜇  which is 

[𝑎, 𝑏] = 𝜇 −  𝑡  𝑠𝑒( 𝜇 ) , 𝜇 + 𝑡  𝑠𝑒( 𝜇 )  

 

and we can test the null hypothesis, 𝐻 : 𝜇 = 𝑀 for some value M, with the test statistic 

𝑇 =  
𝜇 − 𝑀

𝑠𝑒( 𝜇 )
 ~ 𝑡  

where 𝑠𝑒( 𝜇
𝑖
) =  𝑆 ( +  

(  ̅)
) 

We should note here though that the value of 𝑥  should be within the range of observed data values 
for X for this estimation of the mean response to be valid. The model has said nothing about the 
applicability of the linear regression beyond that data range and this should not be used as a method 
of extrapolation. What we can do though, and will consider next, is to use the model to predict the 
value of the response variable when presented with some new value for 𝑥  for which yi has not yet 
been observed. 

 

4.5 A Prediction Interval for a new observation 

More precisely we can develop what is known as a Prediction Interval (sometimes just PI) for some 
new observation. Let us say that we have a new value for 𝑥  which we will label 𝑥 . We have yet to 
observe the response for 𝑥  but we wish to predict it, which we will do by way of an interval rather 
than a single value given the stochastic nature of our model. 

We seek 𝑦  where 𝑦 =  𝜇 +  𝜀  and the point “prediction” for this would be  

𝑦 =  𝜇 =  𝛽 +  𝛽 𝑥  

We know that 

𝜇  ~ 𝑁(𝜇 ,  𝜎 (
1

𝑛
+

(𝑥 − �̅�)

𝑆
 ) ) 

and therefore the distribution of 𝜇 −  𝜇  is 

𝜇 −  𝜇   ~ 𝑁(0,  𝜎 (
1

𝑛
+

(𝑥 −  �̅�)

𝑆
 ) ) 

To gain a prediction interval we would like to have the distribution for 𝑦 −  𝑦  rather than 𝜇 −  𝜇  

So taking our previous equation and then adding and subtracting 𝜀  to the left-hand side 

𝜇 − (𝜇 + 𝜀 ) +  𝜀   ~ 𝑁(0,  𝜎 (
1

𝑛
+

(𝑥 − �̅�)

𝑆
 ) ) 

but the term in the brackets (𝜇 + 𝜀 ) is 𝑦  and 𝑦 =  𝜇  so we can re-write this equation as 
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𝑦 − 𝑦 +  𝜀   ~ 𝑁(0,  𝜎 (
1

𝑛
+

(𝑥 −  �̅�)

𝑆
 ) ) 

and because we know 𝜀   ~ 𝑁(0,  𝜎 ) from the original specification of the simple linear model we 
have 

𝑦 − 𝑦   ~ 𝑁(0,  𝜎
1

𝑛
+

(𝑥 −  �̅�)

𝑆
 +   𝜎  ) 

or 

𝑦 −  𝑦   ~ 𝑁(0,  𝜎 1 +
1

𝑛
+

(𝑥 −  �̅�)

𝑆
 ) 

 

To find a formula for the prediction interval we need to standardise the normal distribution, that is 
find the function of 𝑦 − 𝑦  that follows N(0,1). 

𝑦 −  𝑦

 𝜎 1 +
1
𝑛 +

𝑥 −  �̅�
𝑆  

  ~ 𝑁(0, 1) 

and if we replace  𝜎  with its estimator S2 we have 

𝑦 −  𝑦

 𝑆 1 +
1
𝑛 +

(𝑥 −  �̅�)
𝑆  

  ~ 𝑡  

which allows us to find the 100(1 − 𝛼 )% prediction interval for y0 which is 

𝑦  ± 𝑡   𝑆 1 +
1

𝑛
+

(𝑥 −  �̅�)

𝑆
  

 

The prediction interval for 𝑦  is usually much wider than the confidence interval for 𝜇  at the same 
value of α. This is because the random variability term 𝜀  impacts the prediction interval. 

 

  


