RELATIVITY - MTH6132

PROBLEM SET 2

1. Let F and F^{\prime} be two inertial frames in standard configuration with relative velocity v. Draw a combined spacetime diagram containing the (x, t) axes and $\left(x^{\prime}, t^{\prime}\right)$ axes. Setting $c=1$, and confirm that your diagram satisfies the following property: the x^{\prime}-axis rotates up from x-axis at the same angle as the t^{\prime}-axis rotates away from the t-axis. Can you prove this using the fact that c is constant to observers in any inertial reference frame?
2. Invert the Lorentz Transformations $t^{\prime}=\gamma\left(t-v x / c^{2}\right), x^{\prime}=\gamma(x-v t)$ to solve for x and t in terms of x^{\prime}, t^{\prime}. You should obtain the inverse Lorentz Transformations $t=\gamma\left(t^{\prime}+v x^{\prime} / c^{2}\right), x=\gamma\left(x^{\prime}+v t^{\prime}\right)$. In both formulae, $\gamma=\frac{1}{\sqrt{1-v^{2} / c^{2}}}$.
3. Show that the wave equation $\frac{\partial^{2} \phi}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} \phi}{\partial t^{2}}$ does not remain invariant under the 1-dimensional Galilean transformations. but that it does remain invariant under the Lorentz transformations

Hint: Recall that the chain rule for partial derivatives gives

$$
\frac{\partial}{\partial t}=\frac{\partial t^{\prime}}{\partial t} \frac{\partial}{\partial t^{\prime}}+\frac{\partial x^{\prime}}{\partial t} \frac{\partial}{\partial x^{\prime}}, \quad \frac{\partial}{\partial x}=\frac{\partial t^{\prime}}{\partial x} \frac{\partial}{\partial t^{\prime}}+\frac{\partial x^{\prime}}{\partial x} \frac{\partial}{\partial x^{\prime}} .
$$

Use these expressions twice to compute $\frac{\partial^{2} \phi}{\partial x^{2}}, \frac{\partial^{2} \phi}{\partial t^{2}}$.
4. (Extension of Problem 3) Starting from the Galilean transformation in the form $\underline{r}^{\prime}=\underline{r}-\underline{v} t, \quad \underline{v}=\left(v_{x}, v_{y}, v_{z}\right)$, show that the scalar wave equation

$$
\nabla^{2} \phi=\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}+\frac{\partial^{2} \phi}{\partial z^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} \phi}{\partial t^{2}}
$$

does not remain invariant under these transformations.
Hint: recall that $t=t\left(t^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}\right)$ and $x=x\left(t^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}\right)$. Use the chain rule of partial differentiation to show that

$$
\frac{\partial}{\partial t}=\frac{\partial}{\partial t^{\prime}}-v_{x} \frac{\partial}{\partial x^{\prime}}-v_{y} \frac{\partial}{\partial y^{\prime}}-v_{z} \frac{\partial}{\partial z^{\prime}}=\frac{\partial}{\partial t^{\prime}}-\underline{v} \cdot \nabla^{\prime}
$$

and similar formulae for $\frac{\partial}{\partial x}$ etc.
5. Starting from the Lorentz transformations between two frames F and F^{\prime} in standard configuration (with F^{\prime} moving with velocity of magnitude v relative to F) show

$$
c t^{\prime}-x^{\prime}=\epsilon(c t-x), \quad c t^{\prime}+x^{\prime}=\frac{1}{\epsilon}(c t+x)
$$

where $\epsilon=\sqrt{\frac{1+v / c}{1-v / c}}$. Hence show that the combination of two LTs is a LT.
6. Consider F and F^{\prime} in standard configuration. Let a standard clock be at rest in F^{\prime} and consider two events in this clock at times t_{1}^{\prime} and t_{2}^{\prime} so that $\Delta t^{\prime}=t_{2}^{\prime}-t_{1}^{\prime}$. What is the time interval as measured by F ? Draw and explain a spacetime diagram to accompany your calculations.
7. Consider F and F^{\prime} in standard configuration. Let a rod of length Δx^{\prime} be at rest along the x^{\prime} axis in F^{\prime}. What is the length of this rod as measured by F ? Draw and explain a spacetime diagram to accompany your calculations.
8. Charged pions are produced in an accelerator and emerge from the machine at a speed of $.996 c$. Such unstable particles decay with a half-life of 1.8×10^{-8} seconds. According to an observer in the laboratory, how far can such particles travel before half of them decay? Perform a similar calculation without time dilation and compare your results.
9. A train travels along the x-axis past a platform at a speed v. A passenger at rest in the train holds a measuring ruler of length L parallel to the x-axis. Determine the speed at which the train must be travelling in order for the length of the ruler as measured by the observer at the platform to be $L / 3$.
10. Consider two inertial systems of reference Joe and Moe. Moe moves with velocity v with respect to Joe. In Joe's frame of reference a ray of light is shot at $t=0$ from $x=L$ towards the origin where a mirror reflects it back. The ray reaches $x=2 L$ at time t_{1}. Draw a spacetime of the situation as seen by Joe. Draw also the situation as seen by Moe who is moving with positive velocity $v<c$ along Joe's x-axis.

Further Exploration. Here are some more challenging and diverse problems to consider when reading the notes:

- Show that Maxwell's equations are not invariant under the GT but are invariant under the LT (Hint: consider the easier 1 and 2-dimensional cases first).
- Look up an article on the Michelson-Morley experiment and write down the main ideas behind construction of the interferometer.

