QUEEN MARY UNIVERSITY OF LONDON

MTH5120

Solutions to Exercise Sheet 1

1. (a) First of all we need to define the values of x and y from the lectures:
```
> x <- c(2.1,2.4,2.5,3.2, 3.6, 3.8, 4.1, 4.2, 4.5, 5.0)
> y <- c(2.18, 2.06, 2.54, 2.61, 3.67, 3.25, 4.02, 3.71, 4.38, 4.45)
```

Then we compute the $\sum x_{i}$ and $\sum y_{i}$ in R

```
> sum(x)
[1] 35.4
> sum(y)
[1] 32.87
```

Then we compute the $\sum x_{i} y_{i}, \sum x_{i}^{2}$ and $\sum y_{i}^{2}$ in R

```
> sum(x*y)
[1] 123.81
> sum(x^2)
[1] 133.76
> sum(y^2)
[1] 115.2025
```

(b) First of all we compute the mean of x and y

```
mean(x)
[1] 3.54
> mean(y)
[1] 3.287
```

Secondly for computing $S_{y y}, S_{x x}$ and $S_{x y}$, we need to the following commands

```
> sum(x^2)-(sum(x)^2)/10
[1] 8.444
> sum(y^2)-(sum(y)^2)/10
[1] 7.15881
> sum(x*y)-(sum(x)*sum(y))/10
[1] 7.4502
```

Analogously, one can also compute the variance and the covariance of x and y

```
var(y)*9
[1] 7.15881
var(x)*9
[1] 8.444
> cov (x,y)*9
[1] 7.4502
```

2. (a) By using the command
plot(x,y,main="Settlement payments for claims") we can see the data in the following figure

Settlement payments for claims

Figure 1.1: Plot of the payments against the claims.
From Figure 1.1, we have a linear relationship between the payment and the claims.
(b) We use the command 1 lm for estimating the intercept and the slope

```
> payment <- lm(y~x)
Call:
lm(formula = y ~ x)
Coefficients:
(Intercept) x
    0.1636 0.8823
```

By using the command summary we have a better representation of the estimation:

```
> summary(payment)
Call:
lm(formula = y ~ x)
Residuals:
    Min 1Q Median 3Q Max
-0.37702 -0.20571 0.01918 0.22183 0.33006
Coefficients:
* Estimate Std. Error t value Pr(>|t|)
x 0.88231 0.09309 9.478 1.27e-05 ***
```

```
Signif. codes: 0 `\star**' 0.001 `**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.2705 on 8 degrees of freedom
Multiple R-squared: 0.9182,Adjusted R-squared: 0.908
F-statistic: 89.82 on 1 and 8 DF, p-value: 1.265e-05
```

Thus the estimates of the intercept is 0.16363 and of the slope is 0.88231 .
(c) To Figure 1.1, we can add the fitted line of the model previously estimated as stated

```
> plot(x,y,main="Settlement payments for claims")
> abline(payment)
```

and it can be represented in the following Figure.

Settlement payments for claims

Figure 1.2: Plot of the payments against the claims.
(d) We predict a new value of y such that $x=3$ by using

```
> predict(payment, newdata=data.frame(x=3))
```

 1
 2.810554

Thus the predicted value is 2.81 when $x=3$.
3. (a) The $\boldsymbol{L} \boldsymbol{S}$ estimators of the model parameters α and β minimize the sum of squares of errors, that is

$$
S(\alpha, \beta)=\sum_{i=1}^{n} \epsilon_{i}^{2}=\sum_{i=1}^{n}\left[y_{i}-\left(\alpha+\beta\left(x_{i}-\bar{x}\right)\right)\right]^{2} .
$$

S is a function of the parameters and so to find its minimum we differentiate it with respect to α and β, then equate the derivatives to zero.

$$
\left\{\begin{array}{l}
\frac{\partial S}{\partial \alpha}=-2 \sum_{i=1}^{n}\left[y_{i}-\left(\alpha+\beta\left(x_{i}-\bar{x}\right)\right)\right]=0 \\
\frac{\partial S}{\partial \beta}=-2 \sum_{i=1}^{n}\left[y_{i}-\left(\alpha+\beta\left(x_{i}-\bar{x}\right)\right)\right]\left(x_{i}-\bar{x}\right)=0
\end{array}\right.
$$

This set of equations can be written as

$$
\left\{\begin{array}{l}
n \widehat{\alpha}+\widehat{\beta} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)=\sum_{i=1}^{n} y_{i} \\
\widehat{\alpha} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)+\widehat{\beta} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) y_{i}
\end{array}\right.
$$

Since $\sum_{1=1}^{n}\left(x_{i}-\bar{x}\right)=0$, the solutions to these equations are

$$
\begin{aligned}
\widehat{\alpha} & =\frac{1}{n} \sum_{i=1}^{n} y_{i} \\
& =\bar{y}
\end{aligned}
$$

and, from the second equation

$$
\widehat{\beta}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) y_{i}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}=\frac{S_{x y}}{S_{x x}} .
$$

To check that $S(\alpha, \beta)$ attains a minimum at $(\widehat{\alpha}, \widehat{\beta})$ we calculate second derivatives and evaluate the determinant

$$
\left|\begin{array}{cc}
\frac{\partial^{2} S}{\partial \alpha^{2}} & \frac{\partial S}{\partial \alpha \partial \beta} \\
\frac{\partial S}{\partial \beta \partial \alpha} & \frac{\partial^{2} S}{\partial \beta^{2}}
\end{array}\right|=\left|\begin{array}{cc}
2 n & 0 \\
0 & 2 \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
\end{array}\right|=4 n \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}>0
$$

for all α, β.
(b) Also, $\frac{\partial^{2} S}{\partial \alpha^{2}}>0$ for all α, β. This means that the function $S(\alpha, \beta)$ attains a minimum at $(\widehat{\alpha}, \widehat{\beta})$.

