Week 2
S3 Modular arithmetic Suppress S is a \$et In NS'F, a relation Q on S is defined to be a property that may, or may not, holt for end n ordered pair of elements in S

Can element of

$$
(2 \times S)
$$

Def
A relation \otimes on S
is reflexive is aRa hots for every element

$$
\text { a of } s
$$

Symmetric is $a \not Q b$ implies $b R a$ for all elements $a s b$

Hansitive if $a \not Q b$
ad $b \& c$
implies a $Q C$ for all a, b, c
in S.
(1) $S=\mathbb{R}$

Define $a R b$ is $a=b$

$$
a=-b
$$

holk.
(2) $S=\mathbb{Z}$
$a 2 b$ if $a b=0$
(3) $S=\mathbb{R}$
$a R b$ if $a^{2}+a=b^{2}+b$
(4) $S=\{$ people in te wortd $\}$
$a R b$ is a Trues within 100 km of 6 .
(1) I\$ $a R a$? $\quad \forall \quad a \in S$

Yes, becurse $a=a$.
Dos $a R b \Rightarrow b R a$
Yes, because

$$
\begin{aligned}
a R b & \Rightarrow=b \\
& \text { or } a=-b
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad b=a \\
& \quad r b=-a \\
& \Rightarrow \quad b \& a .
\end{aligned}
$$

$$
\begin{gathered}
\text { Dres } a R b \Rightarrow a \notin c \text { ? } \\
b R c \\
a R b \Rightarrow a=b^{(1)} \\
a=-b^{(2)} \\
b R c \Rightarrow b=c^{(3)} \text { ar } b=-c
\end{gathered}
$$

If (1) 8 (3) hoks thon $a=b=c$
(1) $\$(4)$ holds tan $a \neq b=-2$
(2) 8 (3) hoks ton $a=-b=-c$
(2) 8 (4) houks tan $\begin{aligned} & a=-b \\ & =c\end{aligned}$

In all cheses, $a=c$

$$
\text { or } a=-c
$$

So it is an equiv. relation
(2) It is NoT!
$a=1 \quad$ ter
aRa dues not hold.
because $a \times a=1 \times 1=1$
(3)
a Ra holds becarifo

$$
a^{2}+a=a^{2}+a
$$

- Does $a R b \Rightarrow b R a$?

$$
a^{2}+a=b^{2}+b
$$

$$
\Rightarrow b^{2}+b=a^{2}+a .
$$

- Does $a R b \Rightarrow a \notin c$? bR 2

$$
\left.\begin{array}{rl}
a^{2}+a=b^{2}+b \\
b^{2}+b=c^{2}+c
\end{array} \Rightarrow c^{2}+a\right)
$$

Therefore this is an equiv textion
(4) This is NOT an equiv. relation

Does $a, R b \Rightarrow a R c$?
bRC
For example $a \frac{80 \mathrm{~km}}{b} \cdot \frac{40 \mathrm{~km}}{} \cdot \mathrm{c}$ γ this fails tremitivity-
(b) $S=\{$ positive integers $\}$ $a R b$ if $a b$ is a sfouve of a poritive intager.

$$
\begin{aligned}
& a= 4 \quad b=9 \\
& 429 \\
& \text { * hearse } \quad 4 \cdot 9=3 b=6^{2} \\
& a= 2 \cdot 5^{2} \quad b=2 \cdot 4^{2} \quad 2^{2} \cdot 5^{2} \cdot 4^{2} \\
&=50 \quad=32 \quad 2 \cdot 5 \cdot 2 \cdot 2 \cdot 4^{2}
\end{aligned}
$$

50232 because 50.32

$$
\begin{aligned}
& =1600 \\
& =40^{2}
\end{aligned}
$$

I_{ϕ}
PaRa?
Yes because $a \times a=a^{2}$.
Dos $a R b \Rightarrow b R a$?

Yes because

$$
\begin{aligned}
a R b & \Rightarrow a b \text { is a square } \\
& \Rightarrow b a \text { is -11- } \\
& \Rightarrow b R a .
\end{aligned}
$$

$$
\begin{align*}
\text { Mas } \begin{aligned}
a R b \\
b R c
\end{aligned} \Rightarrow a R c ? \\
a R b \Rightarrow a b=m^{2}
\end{align*}
$$

for some positive inter

$$
\begin{equation*}
b R<\Rightarrow b c=n^{2} \tag{*}
\end{equation*}
$$

for some pistivivinger
Multiplying \circledast and $\because\left({ }^{*}\right)$, we get

$$
a b^{2} c=m^{2} n^{2}
$$

suffices to show that
b divides $m n$.
Inced, if this holds

$$
a c=\frac{m^{2} n^{2}}{b^{2}}=\left(\frac{m n}{b}\right)^{2}
$$

where mu/b is a positive integer.

Haw do we show b divides $m n$?
Suppose p is a prime number that divides b.
and let p^{r} be the highest power of p that divides b.
What we want follows if pr divides mn. as b is te product od these
prime factors.
Since p^{r} divides b,
$p^{2 r}$ divides b^{2}
(Since $b=p^{r} q$,

$$
\begin{gathered}
\left.b^{2}=\left(p^{r} q\right)^{2}=p^{2 r} q^{2}\right) \\
\Rightarrow p^{2 r} \text { divides } b^{2}
\end{gathered}
$$

$\Rightarrow p^{2 r}$ divides $a b^{2} c$
$\Rightarrow p^{2 r}$ clivkes $m^{2} n^{2}=(m n)^{2}$
$\Rightarrow p^{r}$ divides $m n$.
as desired
More precisely, is
ps is the highest power
P dividing $m n$.
Hen $p^{2 \$}$ is $-\cdots$ —

$$
p^{2 r}\left|(m n)^{2} \Rightarrow p^{2 r}\right| p^{2 r}
$$

$$
\begin{aligned}
& \Rightarrow r \leq s \\
& \Rightarrow p^{r} \mid \mathrm{mn}
\end{aligned}
$$

If Q is a relation on S, and a is an dement of s, we witty $[a]_{Q}$ or $[a]$ to mean tho set

$$
\{b \in S \mid a R b\} \leq \underset{\substack{a \\ a \\ \text { suse }}}{\leq}
$$

In particular, is P iss an equivalence relation on S,

We call [a] to equivalence class' teppessented by a.
Rt If 2 is an equivalence relation and $a \& b$.
Hen $[a]=[b]$
Any b in S sit. $a R b$ holds can represent the same equivalence class

Why $[a]=[b]$?
To prove this, we need to show
$\circledast[a] \leq[b]$
as well as

$$
[a] \supseteq[b]
$$

Well check *).
To do this, we need to show that any $c \in[a]$ also satisfies $c \in[b]$

Since $c \in[a]$, it follows br def ${ }^{n}$ that a RC ...(ल)
OTOH, wo are given $a R b$
$\$ 6$ bRa …(00)
(Sine R is symmetric)
(ll) 8 (On) together with He transitivity of \mathbb{R}
implies

$$
b R c, \text { ie. } c \in[b] \text {. }
$$

Ererife Check $[b] \leq[a]$.
In preparation of a theorem to we need to following: follow,

Def Let S be a set.
A paction of S is a set P
of subsets of S satisfying He following properties:

* $\phi(t$, empty set $) \& P$
* If $A, B \in \mathcal{P}$
(A and B are subsets
8 is they are distinct, is s) then $A \cap B=\phi$
* The union of all elements in P is S.

Example: $\$=\mathbb{Z}$

$$
P=\{\{\text { all even integers }\}
$$

\{all add integers 3 \}

$$
\begin{aligned}
& S=\{1,2.3,4,5\} . \\
& P=\{\{1,2,3\},\{4\}, 25\}\} \\
& P=\{\{1,2,3\},\{3,4\}, \\
& \{5\}\}
\end{aligned}
$$

is NoT a partition.
because $A=\{1.2 .3\} \cap B=\{3.4\}$ $\neq \phi$

Df Elements of a partion P are parts of P

Therean 9 (Eqquivaleve telation therem)

- Let Q be an equininene relation on S.
Then $\left\{[a]_{\mathbb{R}}\right\}_{a \in S}$ deffins
a putition of S.
- Conversely, given any partition P of S, thane is a whine equivalence relation
\nRightarrow on s
suds that the parts of P
are exactly $\left\{[a]_{\mathbb{Q}}\right\} \quad a \in S$.
This \& is defined as follows: $a R b$ if a and b lie in the same part it P.

RK The theorem says having an equivalence relation
is the same os having a partition.
Example $S=\{1,2,3\}$

$\{\{1\},\{2\},\{3\}\}$	$1 Q 1$	$[1]$
	$2 Q 2$	$[2]$
	$3 Q 3$.	$[3]$

$p \backslash b$

* GU(t)

$$
b=p^{r} q^{s}
$$

wati to knlw ion blmn

