'REMEMBER from last week.
$f^{\prime}\left(x_{0}\right)$ exists \Leftrightarrow There exists M, B
such $f(x)=m\left(x-x_{0}\right)+B+r_{f}(x)$
where $r_{f}(x)=0\left(x-x_{0}\right)$ e. $\lim _{x \rightarrow x_{0}} \frac{r_{f}(x)}{\left(x-x_{0}\right)}=0$. 'limiting order o()'

Properties of differentiation
Theorem 2.1. 5
Suppose I\& σ are open intervals in \mathbb{R} and $f: I \rightarrow J$ and $g: J \rightarrow \mathbb{R}$ be functions. Let f be differentiable at $c \in I$ and g be differentiable at $f(c) \in J$. Then

$$
(g \circ f)^{\prime}(c)=g^{\prime}(f(c)) \times f^{\prime}(c)
$$

where
denote $f(c)=d$

$$
(g \circ f)(c) \stackrel{\text { def }}{=} g(f(c))
$$

and $f(x)=y$

$$
(g \circ f)(c)=g(f(c))=g(d)
$$

Roof Note: $(g \circ f)(x)-(g \circ f(c)=g(f(x))-g(f(c))$

$$
\begin{aligned}
& \left.=g^{\prime}(y)-g(d)\right) ; \quad(\Rightarrow \text { by previous lemma 2.1.4) } \\
& =g^{\prime}(d)(y-d)+r_{g}(y)=g^{\prime}(d)(f(x)-f(c))+r_{g}(y) \\
& =g^{\prime}(d)\left(f^{\prime}(c)(x-c)+r_{f}(x)\right)+r_{g}(g) \quad \text { "Prop } g r_{f}(x), r_{g}()^{\prime \prime} \\
& =g^{\prime \prime}(d) f^{\prime}(c)\left(x-c^{\prime}\right)^{\prime}+g^{\prime}(d) r_{f}(x), 1 r_{g}(y) ;
\end{aligned}
$$

$$
\left.\therefore \frac{(g \circ f)(x)-(g \circ f)(c)}{(x-c)} \quad\left(g^{\prime}(d) f^{\prime}(c)\right)+g^{\prime}(d)\right)
$$

We now need to consider the limit ' $x \rightarrow$; to obtain an expression for gof:

But we know:

1. $\lim _{x \rightarrow c} \frac{r_{f}(x)}{x-c}=0$, also-
2. $\lim _{x \rightarrow c} \frac{r_{g}(y)}{x-c}=\lim _{x \rightarrow c} \frac{r_{g}(y)}{y-d} \frac{y-d}{x-c}$

$$
\begin{aligned}
& \text { Continuity of } f=\lim _{x \rightarrow c}\left(\frac{r g(y)}{y-d}\right) \cdot\left(\frac{f(x)-f^{\prime}(c)}{x-c}\right) \\
& \Rightarrow y \rightarrow d \\
& \downarrow \downarrow_{d} \Rightarrow \quad f^{\prime}(c) . \\
& c d=f(c)=0 \cdot f^{\prime}(c)=0 .
\end{aligned}
$$

$$
\therefore(g \circ f)^{\prime}(c)=\lim _{x \rightarrow c} \frac{g \circ f(x)-g \circ f(c)}{(x-c)}=g^{\prime}(f(c)) f^{\prime}(c)
$$

Theorem 2.1.6 Let $f, g: D \rightarrow \mathbb{R}$ be ditterentral functions at $x \in D$. Let $c \in \mathbb{R}$, then of, $f \circ g, f+g$ and f / g are ditterentiable at x (for f / g, we require $g(x) \neq 0$), and
i) $\left(c f^{\prime}(x)=c f^{\prime}(x)\right.$

$$
\therefore(c \cdot f)(x)=c \cdot f(x)
$$

ii) $(f+g)^{\prime}(x)=f^{\prime}(x)+g^{\prime}(x)$
' $(f+g)(x)=f(x)+g(x)$
$(f \cdot g)(x)=f(x) \cdot g(x)$
iii) $(f \circ g)^{\prime \prime}(x)=f^{\prime}(x) \cdot g(x)+f(x) g^{\prime}(x)$

$$
i(f / g)(x)=f(x) / g(x)
$$

v) $(f / g)^{\prime}(x)=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{(g(x))^{2}}$
(i)

$$
\begin{aligned}
\lim _{\omega \rightarrow x} \frac{(c f)(\omega)-(c f)(x)}{\omega-x} & =\lim _{\omega \rightarrow x} \frac{c \cdot f(\omega)-c \cdot f(x)}{\omega-x} \\
=\lim _{\omega \rightarrow x} \frac{c \cdot(f(\omega)-f(x))}{\omega-x} & =c \cdot \lim _{\omega \rightarrow x}\left(\frac{f(w)-f(x)}{\omega-x}\right)=c \cdot f^{\prime}(x) \\
\therefore(c f)^{\prime}(x) & =c \cdot f^{\prime}(x)
\end{aligned}
$$

$$
\begin{aligned}
& \text { (ii) } \quad \begin{array}{l}
(f \pm g)(\omega) ; \\
\Rightarrow \lim _{\omega \rightarrow x} \frac{(f \pm g)(x)}{\omega-x}=(\omega)-(f \pm g)(x)=\lim _{\omega \rightarrow x} \frac{f(\omega)-f(x)}{\omega-x} \pm \lim _{\omega \rightarrow x} \frac{g(\omega)-g(x)}{\omega-x} \\
\Leftrightarrow(f+g)^{\prime}(x)=f^{\prime}(x) \pm g^{\prime}(x)
\end{array}
\end{aligned}
$$

NOT $\quad g \circ f(x)=g(f(x))$ and $f \cdot g(x)=f(x) \cdot g(x)$

$$
\text { (iii) } \begin{aligned}
&(f \cdot g)(\omega)-(f \cdot g) x=f(\omega) \cdot g(\omega)-f(x) \cdot g(x) \\
&\left.=f(\omega) g(\omega) \theta^{\prime} f(x) g(\omega)\right)(\oplus(x) g(\omega) \prime-f(x) g(x) \\
&=g(\omega)(f(\omega)-f(x)+f(x)(g(\omega)-g(x)) \\
&=g(\omega)\left(f^{\prime}(x)(\omega-x)+r_{f}(x)\right)+f(x)\left(g^{\prime}(x)(\omega-x)+r_{g}(x)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \lim _{\omega \rightarrow x} \frac{(f \cdot g)(\omega)-(f \cdot g)(x)}{\omega-x} \\
& \quad=\lim _{\omega \rightarrow x}\left(g(\omega)\left(f^{\prime}(x)+\frac{r_{f}(x)}{\omega-x}\right)+\lim _{\omega \rightarrow x}\left(f(x) g^{\prime}(x)+\frac{r_{g}(x)}{\omega-x}\right)\right.
\end{aligned}
$$

Note $\lim _{\omega \rightarrow x} \frac{r_{f}(\omega)}{\omega-x}=\lim _{\omega \rightarrow x} \frac{r_{g}(x)}{\omega-x}=0 \quad\left(\operatorname{Limmax}_{x} 2.1 .4\right)$
Therefore

$$
\begin{aligned}
& \lim _{\omega \rightarrow x} \frac{(f \circ g l(\omega)-(f \circ g)(x)}{\omega-x}=\lim _{\omega \rightarrow x} f^{\prime}(x) \cdot g(\omega)+f(x) \cdot g^{\prime}(x) \\
& \Rightarrow(f \cdot g)^{\prime}(x)=f^{\prime}(x) \cdot g(x)+f(x) \cdot g^{\prime}(x)
\end{aligned}
$$

\$3. Mean value theoven
A function $f: \Omega \rightarrow \mathbb{R}$ has a local maximum at $c \in \Omega$ if 7 an open interval $I \subset \Omega$ with $c \in I$ and $f(c) \geqslant f(x), \forall x \in I$. Also $x=c$ is a

- strict maximum if $f(c)>f(x)$. \}
$\left.\begin{array}{l}\text { - strict maximum if } f(c)>f(x) \\ \text { - cal minimum } \\ \text { - strict } f(c) \leq f(x)\end{array}\right\} \forall x \in I$

Theorm 3.1.1 Suppose $f:(a, b) \rightarrow \mathbb{R}$ is a function and appse f has a lical exremum at $c \in(a, b)$. If $f^{\prime}(c)$ brists then $f^{\prime}(c)=0$.
(Assume the case of istel raximumr)
Assume $x=c$ is a local maximam forf on an unterval $I=(c-\varepsilon, c+\varepsilon) \subseteq \frac{(a, b)}{1}$
Define $q(x)=\left\{\begin{array}{ll}\frac{(f(x)-f(c))}{(x-c)} & x \neq c \\ f^{\prime}(c) & x=c\end{array}\right\} x \in I$.
Note for $q(x) \quad x<c \quad f(x)-f(c) \leqslant 0, x-c<0 \quad q(x) \geqslant 0$, $x>e \quad f(x)-f(1) \leqslant 0, x-c>0 \quad q(x) \leqslant 0$;

For $\left.\begin{array}{ll}x<c & q(x) \geqslant 0 \\ x>c & q(x) \leqslant 0\end{array}\right\}+$ continuity of $f: \operatorname{Prop} 2.2$, ' $\operatorname{diff} \Rightarrow$ cout, '

$$
\Rightarrow q(c)=0=f^{\prime}(c) \quad \underset{\substack{q(x) \\ x \rightarrow 6}}{=\frac{f(x)-f(c)}{x-c} f^{\prime}(c)}
$$

(Nolè $\left.\quad \begin{array}{c}q(x) \\ x \rightarrow c \\ x \rightarrow 0 \\ \text { 11 contrinwons }\end{array} \lim _{x \rightarrow 0} \frac{f(x)-f(c)}{x-c}=f^{\prime}(c)=0 ; 1\right)$

$$
q(c)=0
$$

Note the converse is not true. if $f(x)=x^{3}, f^{\prime}(x)=3 x^{2}$ is zero for $x=0$, but $x=0$ is neither a maximum nor minimum but a paint of inflexion

Further ante:
Converse of $P \Rightarrow Q$

$$
\text { is } Q \Rightarrow P \text { ? }
$$

Which may or ut be true!
Different Com
Ex 1
$P=$ sum of two old integers
$Q=$ even integer

$$
P \Rightarrow Q
$$

Contrapositive
$P \Rightarrow Q \Leftrightarrow n Q \Rightarrow n P$.
$Q \neq P$ counterexample $4=2+2$
Converse is not true!

Theorem 3.1.2 (Rolle's Theorem)
Suppose $f:[a, b \tau \rightarrow \mathbb{R}$ is continuous on $[a, b]$ and differentiable on (a, b).
If $f(a)=f(b)$, then $\exists c \in[a, b]$ such that $f^{\prime}(c)=0$.

Proof If $f(x)=f(a)$

$$
f^{c}(c)=0
$$

$$
\begin{aligned}
& \forall x \in[a, b], \text { then } \\
& f=\operatorname{const} f(x) \equiv f(a) \\
& \therefore f^{\prime}(x)=0 \text { \& thesentive }
\end{aligned}
$$

So assume $\exists x_{0} \in(a, b)$

$$
f\left(x_{0}\right)>f(a)=f(b) .
$$

Note the maximum of of f on (a, b) will be

$$
\geqslant f\left(x_{0}\right)>f(a)=f(b)
$$

Now f is a continuous function on $[a, b]$ By the boundeness theorem ($1,1.3$) f attains its maximum at some $c \in(a, b)$

Since $f(c)>f(a)=f(b), c \neq a, b$, 1.e By theorem 3.1.1, $f^{\prime}(c)=0$.

Theorem 3.1.3 (Mean Value Theorem for Derivatives)
Suppose $f:[a, b] \rightarrow \mathbb{R}$ is continuous on $[a, b]$, differentiable (a, b), then $\exists c \in(a, b)$ such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$

$f(b)$ Note: Slope of the line $f(a)$ is $f(b)$, i.e.
$\frac{f(b)-f(a)}{b-a}$ is the slope of
the line joining $(a, f(a))$ is $(b, f(b))$
occurs at some point $C \in(a, b)$

Proof Let $\varphi(x)=f(x)-f(a)-\frac{(f(b)-f(a))}{(b-a)}(x-a)$
Then

$$
\begin{aligned}
& \varphi(a)=\varphi(b)=0 \quad \text { (substitution) } \\
& \varphi^{\prime}(x)=f^{\prime}(x)-\frac{(f(b)-f(a))}{(b-a)}(x-a)
\end{aligned}
$$

ϕ satisfies the hypotheses of Rule's Theorem (Theorem 3.1.2): $\exists c \in(a, b)$ such that $\phi^{\prime}(c)=0$ and so $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$ (substitution in $\phi^{\prime}(x)$

Note: Roller The and the MVT are Equivalent each car be proven from the other
(1) Assume $M V T$: Let $f(a)=f(b)$, then $\mathcal{A}<\in(a, b)$ with $f^{\prime}(c)=0$ (which is Rollés Theorem)
(2) Assume Rolles Theorem:
use $Q(x)=f(x)-f(a)-\frac{(f(b)-f(a)}{(b-a)}(x-a)$
and apply Rollés Theorem
to $\exists c \in(a, b)$ such that $\phi^{\prime}(c)=0$

$$
\Rightarrow f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Application of Hear Value Theorem
Thu 3.1.4 Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous on $[a, b]$ and differentiable on (a, b).
If $f^{\prime}(x)=0 \quad \forall x \in(a, b)$, then f is constant an $[a, b]$,
1.e. $f(x) \equiv c$, for some $c \in \mathbb{R}$.

Proof Let $x \in[a, b]$ and consider f on $[a, x]$ f satisties The conditions of the MUT on $[a, b]$ and therefore also on $[a, x]$ $x \neq a$ Therefore,

$$
\begin{aligned}
& \text { re, } \\
& f(x)-f(a)=f^{\prime}\left(c_{x, a}\right)(x-a)
\end{aligned}
$$

$$
\begin{gathered}
{[a,(x)] \subseteq[a, b]} \\
M \backsim T h
\end{gathered}
$$

for some $c_{x, a} \in(a, x)$.

$$
\therefore f(x)=f(a) \text { since } f^{\prime}\left(c_{x, a}\right)=0 \text {. }
$$

Given $x \in[a, b]$ was chosen arbitranily,

$$
\begin{aligned}
& \frac{f(x)=f(a)}{f(x)} \text { 三const. }
\end{aligned}
$$

Them 3.1.5 Assume that $\left|f^{\prime}(x)\right| \leq M, x \in[a, b]$ and f is continuous on $[a, b]$, then

$$
|f(x)-f(y)| \leqslant M|x-y|
$$

Proof WLOG assume $y>x_{1}$
Apply MVT on $[x, y]$, and we get,
for rome $c_{(x, y) \in(x, y)}^{\frac{|f(x)-f(y)| \mid}{1}=\frac{\left|f^{\prime}\left(c_{(x, y)}\right)^{\prime}(x-y)\right|}{11}}$

$$
\therefore \quad|f(x)-f(y)| \leqslant\left|f^{\prime}(c(x, y))\right||x-y| \leqslant M|x-y|
$$

This gives a bound an $|f(x)-f(y)|$

Thu 3.1.6 Assume $f:[a, b] \longrightarrow \mathbb{R}$ is continuous on $[a, b]$ and diff on (a, b). non-decreamp $x<y \Rightarrow f(x) \leqslant f(y)$ Then, for $\forall x \in(a, b)$,
(1) $f^{\prime} \geqslant 0, f$ is non-decreasing
(ii) $f^{\prime} \leqslant 0, f$ is non-increasing
(iii) $f^{\prime}>0, f$ is strictly increasing
(iv) $f^{\prime}<0, f$ is strictly decreasing

CONVERSES for Thu 3.1.6?
Be careful int converses (iii) converse not true
Note $f(x)=x^{3}, \quad f$ is strictly increasing s but f^{\prime} is only $f^{\prime} \geqslant 0$ why?
let $x<y$:: $\quad y^{3}-x^{3}=(y-x)\left(x^{2}+x y+y^{2}\right)$

- $0 \leqslant x<y$: then $y-x>0$ and $x^{2}+x y+y^{2}>0, \therefore y^{3}>x^{3}$
$-x<y<0$: then $y-x>0$ and $x^{2}+x y+y^{2}>0 \therefore y^{3}>x^{3}$ (x y 2 negatives is portive)

$$
\begin{aligned}
& -x \leq 0 \leq y: x \neq y, x^{3} \leq 0, y^{3} \geqslant 0 \\
& \Rightarrow x^{3}<y^{3} \text { if either } x \text { or } y \neq 0
\end{aligned}
$$

Proof
We prove (i) and leave (ii), (iii), (iv) as exercises
Let $x, y \in(a, b)$ and assure $x<y$.
By the MVT on $[x, y]$,

$$
f(y)-f(x)=f^{\prime}(c)(y-x)
$$

for some $c \in(x, y)$.
Now $y>x$ \& $f^{\prime}(c) \geqslant 0 \Rightarrow f(y) \geqslant f(x)$ for $y \geqslant x$
The inverse to (iii) \& (iv) is att true!
e.g. $f(x)=x^{3}, x \in[-1,1]$ satisfies $f^{\prime}(x) \geqslant 0\left(f^{\prime}(0)=0\right)$
but $y>x \Rightarrow f(y)>f(x)$.

MINIMUM $f^{\prime \prime}>0$
$f \& f^{\prime}, f^{\prime}>0 \Rightarrow f$ increases

MAXIMUM $f^{\prime \prime}<0$
$f \& f^{\prime}, f^{\prime}<0, f$ decreases

$$
f^{\prime \prime}>0
$$

SLOPE $1 \rightarrow 0 \rightarrow-1$
f^{\prime} decreases as x increases

Theoreur 3.1.7 Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous on $[a, b]$. Assume f is twice diff on (a, b) Let $x_{0} \in(a, b)$, then
(i) $f^{\prime}\left(x_{0}\right)=0, \underline{f^{\prime \prime}\left(x_{0}\right)>0 \Rightarrow x_{0} \text { is a loonl minimum }}$
(ii) $f^{\prime}\left(x_{0}\right)=0, f^{\prime \prime}\left(x_{0}\right)<0 \Rightarrow x_{0}$ is a local maximinn

Proof Let's prove (i), otherwise consides -f.
By detination

$$
f^{\prime \prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} \frac{f^{\prime}(x)-f^{\prime}\left(x_{0}\right)}{x-x_{0}}=\lim _{x \rightarrow x_{0}} \frac{f^{\prime}(x)}{x-x_{0}}:>0 ;
$$

But f^{\prime} is ditterentiable, theretive contunuons at x.

