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Conditioning relative to partition

Let (Ω,F ,P) be a probability space, Ω = ∪nAn partition in disjoint
An ∈ F with P[An] > 0, and let G = σ(A1,A2, . . .). Given G the
conditional probability of B ∈ G is a r.v.

P[B|G] =
∑
n

P[B|An]1An ,

where P[B|An] = P[B ∩An]/P[An], and the conditional expectation
of a r.v. X is a r.v.

E[X |G] =
∑
n

E[X 1An ]

P[An]
1An .

Note:
P[B|G] = E[1B |G].



Q: How define conditioning on null events?

Examples

X ,Y standard normal r.v. (and jointly normal) with ρ = E[XY ],

E[X |Y = y ] =?

• Consider Bernoulli(P) trials with P
d
= Uniform[0, 1]. What is the

probability of k 1’s in n trials given P = p?

• Let Sn be the number of 1’s in n Bernoulli(1/2) trials. Given
limn→∞ Sn/n = p (where p ̸= 1/2), what is the probability that
the first trial is 1?



Conditional expectation relative to σ-algebra

Let (Ω,F ,P) be a probability space, X a nonnegative r.v. and
G ⊂ F a sub-σ-algebra.

Definition The conditional expectation of X given G is a random
variable E[X |G] such that

• E[X |G] is G-measurable,

• for every A ∈ G∫
A
X (ω)P(dω) =

∫
A
E[X |G]P(dω)

(which can also be written as E[X 1A] = E[E[X |G] 1A]).

For the general X ,

E[X |G] = E[X+|G]− E[X−|G],

provided at least one of the terms is finite a.s.



Existence and uniqueness

Let X ≥ 0, then

Q(A) = E[X 1A] =

∫
A
X (ω)P(dω), A ∈ G

is a probability measure on (Ω,G) satisfying P ≫ Q. By the
Radon-Nikodým Theorem there exists G-measurable r.v.
ξ = dQ/dP such that

Q(A) =

∫
A
ξ(ω)P(dω),

so we set ξ =: E [X |G].

• E [X |G] is unique up to event of P-probability zero, since

E [X 1A] = E [Y 1A], A ∈ G

only implies P[X = Y ] = 1.



Properties of the conditional expectation

• The conditional probability of A ∈ F given G is

P[A|G] = E[1A|G],

which is a random variable!
• Iterated conditioning, tower property:

G1 ⊂ G2 ⇒ E [E [X |G2] | G1]] = E [X |G1].

• E[aX + bY |G] = aE[X |G] + bE[Y |G] a.s.

• If X is G-measurable, then

E[X |G] = X a.s., E[XY |G] = X E[Y |G] a.s.,

provided E |X | < ∞,E |XY | < ∞.

• X ≤ Y a.s. ⇒ E[X |G] ≤ E[Y |G] a.s.



E[X |Y ] as a function of Y
For r.v. X ,Y

E[X |Y ] := E[X |σ(Y )]

• There exists a function h(y) such that

E[X |Y ](ω) = h(Y (ω)), ω ∈ Ω.

We call h(y) conditional expectation of X given Y = y and write

E[X |Y = y ] := h(y).

This satisfies the characteristic identity: for B ∈ B(R)

E[X 1{Y∈B}] =

∫
B
h(y)dFY (y),

where FY is the c.d.f. of Y .

If there exists a joint density fX ,Y (x , y),

E[X |Y = y ] =

∫ ∞

−∞
x fX |Y=y (x)dx .



Examples
• For X ,Y N (0, 1)-r.v. (and jointly normal) with correlation ρ we
have h(y) = ρy , so

E[X |Y ] = ρY , E[X |Y = y ] = ρy .

.
• In Bernoulli(P) trials, for Sn= number of 1’s

P[Sn = k |P = p] =

(
n

k

)
pk(1− p)n−k ,

so unconditionally for P
d
= Uniform[0, 1]

P[Sn = k] =

(
n

k

)∫ 1

0
pk(1− p)n−kdp =

1

n + 1
, 0 ≤ k ≤ n.



Regular conditional probability

For disjoint An ∈ F and G ⊂ F

P

[⋃
n

An

∣∣∣∣G
]
(ω) =

∑
n

P [An|G](ω)

holds only almost surely, so for fixed ω in general this cannot be
considered as a probability measure on F .

Definition A function P(ω,A) is called regular conditional
probability given G if

1. P(ω, ·) is a probability measure on F for every ω ∈ Ω,

2. for every A ∈ F

P(ω,A) = P[A | G](ω) a.s.



Regular conditional distribution
Definition/Theorem Let X be a r.v. with values in a ‘good’ (i.e.
Borel) measurable space (E ,A) then there exists a regular
conditional distribution given G, which is a function Q(ω,A) such
that

1. Q(ω, ·) is a probability measure on (E ,A) for every ω ∈ Ω,

2. for A ∈ A the function Q( · ,A) satisfies

Q(ω,A) = P[X ∈ A|G](ω) a.s.

In particular, if X takes values in (R,B(R)), there exists a regular
conditional distribution function such that

F (ω, x) = P[X ≤ x | G](ω) a.s.

and

E[g(X )|G](ω) =
∫ ∞

−∞
g(x) dxF (ω, x), ω ∈ Ω.



Sufficiency in Statistics

Statistical model: (Ω,F , (Pθ, θ ∈ Θ)), θ unknown parameter.

Definition A σ-algebra G ⊂ F is sufficient for (Pθ, θ ∈ Θ) if for
all θ ∈ Θ and A ∈ F

Pθ(A|G) = P(ω,A) Pθ − a.s.

Factorisation Theorem Suppose µ ≫ Pθ for a σ-finite measure µ
on (Ω,F), and let

fθ(ω) =
dPθ

dµ

be the Radon-Nikodým derivative. Then G is sufficient if and ony
if,

fθ(ω) = gθ(ω)h(ω)

for some G-measurable function gθ(ω) and F-measurable h(ω).



Example For the multivariate normal distribution

fθ(x1, . . . , xn) =
1

(2πθ)n/2
exp

(
−x21 + . . .+ x2n

2θ

)
, θ > 0

in (Rn,B(Rn) a sufficient σ-algebra is G = σ(T ), where
T (x1, . . . , xn) = x21 + · · ·+ x2n . The factorisation holds with

gθ(x1, . . . , xn) =
1

(2πθ)n/2
exp

(
−T (x1, . . . , xn)

2θ

)
and h(x1, . . . , xn) ≡ 1. If (X1, . . . ,Xn) has this density fθ, then the
conditional distribution of (X1, . . . ,Xn) given T (X1, . . . ,Xn) = r2

is the uniform distribution of the sphere with radius r (for every
θ > 0).
Example For n Bernoulli(p) trials a sufficient statistic is Sn (the
number of 1’s).



Martingales

Definition A sequence of (real-valued) r.v.’s (Xn, n ≥ 0) is adapted
to given filtration of σ-algebras F0 ⊂ F1 ⊂ · · · if Xn is measurable
w.r.t. Fn. The sequence is a martingale if E|Xn| ≤ ∞ and

E[Xn+1|Fn] = Xn, n = 0, 1, . . .

submartingale if E[Xn+1|Fn] ≥ Xn, supermartingale if
E[Xn+1|Fn] ≤ Xn.

• For X1,X2, . . . i.i.d. with E[X1] = µ, the random walk

Sn = ξ1 + · · ·+ ξn

is a martingale adapted to the filtration Fn = σ(ξ0, . . . , ξn) if
µ = 0 (submartingale if µ > 0, supermartingale if µ < 0).



• For ξ1, ξ2, . . . i.i.d. with E[ξ1] = 1,

Πn =
n∏

j=1

ξj

is a martingale adapted to Fn = σ(ξ0, . . . , ξn).

• If (Xn) is a martingale and g(x) convex function, then
Yn = g(Xn) is a submartingale (by Jensen’s inequality).

• For r.v. ξ with E|ξ| < ∞ Doob martingale is

Xn = E[ξ | Fn], n ≥ 0.



Martingale convergence

Theorem Let (Xn, n ≥ 0) be a submartingale with
supn E|Xn| < ∞. Then the exists a r.v. X∞ with E|Xn| < ∞ such
that

Xn → X∞ as n → ∞ a.s.

If the uniform integrability condition holds

lim
c→∞

sup
n

E [|Xn| 1(|Xn| > c)] = 0,

then also E|Xn − X∞| → 0.

Example (Doob martingale) If E|ξ| < ∞ then for F∞ := σ (∪nFn)

E[ξ|Fn] → E[ξ|F∞] a.s.



Application to exchangeable processes
Let ξ1, ξ2, . . . be 0-1 r.v.’s which are exchangeable: for every n ≥ 1
and permutation π : {1, . . . , n} → {1, . . . , n}

(ξ1 . . . , ξn)
d
= (ξπ1 . . . , ξπn).

Let Sn = ξ1 + · · ·+ ξn, Gn = σ(Sn, Sn+1, . . .),G∞ := ∩nGn.

By the backward martingale convergence theorem applied to the
backward Doob martingale P[S1 = 1|Gn] (which is adapted to the
falling tower of σ-algebras G0 ⊃ G1 ⊃ · · · ) we obtain

P[S1 = 1|Gn] → P[S1 = 1|G∞] a.s.

But Sn is a sufficient statistic for (ξ1 . . . , ξn), and by
exchangeability

P[S1 = 1|Fn] = P[S1 = 1|Sn] =
Sn
n
,

so Sn/n converges a.s. to some G∞-measurable r.v. P and

P[S1 = 1|Fn] → P[S1 = 1|F∞] = lim
n→∞

Sn
n
.



We obtain
P[S1 = 1|P] = P

under every P making ξ1, ξ2, . . . exchangeable, and finally

P[S1 = 1|P = p] = p.

This holds for any 0-1-valued exchangeable ξ1, ξ2, . . . , in particular
for Bernoulli(1/2).



Stopping times
Definition Stopping time adapted to filtration F0 ⊂ F1 ⊂ · · · is a
r.v. τ with values in {0, 1, · · · ,∞}, s.t.

{τ = n} ∈ Fn, n = 0, 1, . . .

If τ < ∞ a.s. the stopping time is called finite.

For ξ0, ξ1, . . . with natural filtration, examples of stopping times
are τ = min{n : ξn > c}, τ = min{n > 0 : ξn > ξ0} etc.

The stopped variable is defined as

ξτ =
∞∑
n=0

ξn1{τ=n}

and the stopped process as

ξτ∧n, n ≥ 0.

Proposition If (Xn) is a martingale (sub-, super-) then
(Xτ∧n, n ≥ 0) is a martingale (sub-, super-) too.



Doob’s optional sampling

Theorem Let (Xn) be supermartingale, τ stopping time. Then

E[Xτ ] ≤ E[X0]

if at least one of the following holds:

(i) P(τ < K ) = 1 for some K > 0,

(ii) supn |Xn| < K a.s.

(iii) E[τ ] < ∞ and supn E [|Xn+1 − Xn| |Fn] < K ,

(iv) (Xn) is uniformly integrable.



Application to Gambler’s Ruin

Symmetric random walk Sn = ξ1 + . . .+ ξn, n ≥ 0, with i.i.d.
increments, P[ξn = ±1] = 1/2, S0 = 0. Duration of the game with
(positive) initial fortunes A,B is the stopping time

τ = min{n : Sn ∈ {−A,B}}.

The Optional Sampling gives

0 = E[Sτ ] = −AP[Sτ = −A] + B P[Sτ = B].

Solving this together with the total probability equation
P[Sτ = −A] + P[Sτ = B] = 1, the ruin probabilities are found as

P[Sτ = −A] =
B

A+ B
, P[Sτ = B] =

A

A+ B
.


