MTP24, Lecture 3: Conditioning, Martingales and Convergence

Alexander Gnedin

Queen Mary, University of London

Conditioning relative to partition

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, $\Omega = \bigcup_n A_n$ partition in disjoint $A_n \in \mathcal{F}$ with $\mathbb{P}[A_n] > 0$, and let $\mathcal{G} = \sigma(A_1, A_2, \ldots)$. Given \mathcal{G} the conditional probability of $B \in \mathcal{G}$ is a r.v.

$$\mathbb{P}[B|\mathcal{G}] = \sum_{n} \mathbb{P}[B|A_{n}]\mathbf{1}_{A_{n}},$$

where $\mathbb{P}[B|A_n] = \mathbb{P}[B \cap A_n]/\mathbb{P}[A_n]$, and the conditional expectation of a r.v. X is a r.v.

$$\mathbb{E}[X|\mathcal{G}] = \sum_n rac{\mathbb{E}[X \mathbf{1}_{A_n}]}{\mathbb{P}[A_n]} \mathbf{1}_{A_n}.$$

Note:

$$\mathbb{P}[B|\mathcal{G}] = \mathbb{E}[\mathbf{1}_B|\mathcal{G}].$$

Q: How define conditioning on null events?

Examples

X, Y standard normal r.v. (and jointly normal) with $\rho = \mathbb{E}[XY]$,

$$\mathbb{E}[X|Y=y] = ?$$

• Consider Bernoulli(*P*) trials with $P \stackrel{d}{=} \text{Uniform}[0, 1]$. What is the probability of *k* 1's in *n* trials given P = p?

• Let S_n be the number of 1's in *n* Bernoulli(1/2) trials. Given $\lim_{n\to\infty} S_n/n = p$ (where $p \neq 1/2$), what is the probability that the first trial is 1?

Conditional expectation relative to σ -algebra

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, X a nonnegative r.v. and $\mathcal{G} \subset \mathcal{F}$ a sub- σ -algebra.

Definition The conditional expectation of X given G is a random variable $\mathbb{E}[X|G]$ such that

- $\mathbb{E}[X|\mathcal{G}]$ is \mathcal{G} -measurable,
- for every $A \in \mathcal{G}$

$$\int_{\mathcal{A}} X(\omega) \mathbb{P}(\mathrm{d}\omega) = \int_{\mathcal{A}} \mathbb{E}[X|\mathcal{G}] \mathbb{P}(\mathrm{d}\omega)$$

(which can also be written as $\mathbb{E}[X \mathbf{1}_A] = \mathbb{E}[\mathbb{E}[X|\mathcal{G}] \mathbf{1}_A]).$ For the general X,

$$\mathbb{E}[X|\mathcal{G}] = \mathbb{E}[X_+|\mathcal{G}] - \mathbb{E}[X_-|\mathcal{G}],$$

provided at least one of the terms is finite a.s.

Existence and uniqueness

Let $X \ge 0$, then

$$\mathbb{Q}(A) = \mathbb{E}[X \mathbf{1}_A] = \int_A X(\omega) \mathbb{P}(\mathrm{d}\omega), \quad A \in \mathcal{G}$$

is a probability measure on (Ω, \mathcal{G}) satisfying $\mathbb{P} \gg \mathbb{Q}$. By the Radon-Nikodým Theorem there exists \mathcal{G} -measurable r.v. $\xi = d\mathbb{Q}/d\mathbb{P}$ such that

$$\mathbb{Q}(A) = \int_{A} \xi(\omega) \mathbb{P}(\mathrm{d}\omega),$$

so we set $\xi =: \mathbb{E}[X|\mathcal{G}].$

• $\mathbb{E}\left[X|\mathcal{G}\right]$ is unique up to event of \mathbb{P} -probability zero, since

$$\mathbb{E}\left[X\,\mathbf{1}_{A}\right]=\mathbb{E}\left[Y\,\mathbf{1}_{A}\right],\quad A\in\mathcal{G}$$

only implies $\mathbb{P}[X = Y] = 1$.

Properties of the conditional expectation

• The conditional probability of $A \in \mathcal{F}$ given \mathcal{G} is

 $\mathbb{P}[A|\mathcal{G}] = \mathbb{E}[\mathbf{1}_A|\mathcal{G}],$

which is a random variable!

• Iterated conditioning, tower property:

$$\mathcal{G}_1 \subset \mathcal{G}_2 \Rightarrow \mathbb{E}\left[\mathbb{E}\left[X | \mathcal{G}_2
ight] | \mathcal{G}_1
ight]
ight] = \mathbb{E}\left[X | \mathcal{G}_1
ight].$$

- $\mathbb{E}[aX + bY|\mathcal{G}] = a \mathbb{E}[X|\mathcal{G}] + b \mathbb{E}[Y|\mathcal{G}]$ a.s.
- If X is \mathcal{G} -measurable, then

$$\mathbb{E}[X|\mathcal{G}] = X \text{ a.s.}, \quad \mathbb{E}[XY|\mathcal{G}] = X \mathbb{E}[Y|\mathcal{G}] \text{ a.s.},$$

provided $\mathbb{E} |X| < \infty, \mathbb{E} |XY| < \infty.$

• $X \leq Y$ a.s. $\Rightarrow \mathbb{E}[X|\mathcal{G}] \leq \mathbb{E}[Y|\mathcal{G}]$ a.s.

$\mathbb{E}[X|Y] \text{ as a function of } Y$ For r.v. X, Y

$$\mathbb{E}[X|Y] := \mathbb{E}[X|\sigma(Y)]$$

• There exists a function h(y) such that

$$\mathbb{E}[X|Y](\omega) = h(Y(\omega)), \ \ \omega \in \Omega.$$

We call h(y) conditional expectation of X given Y = y and write $\mathbb{E}[X|Y = y] := h(y).$

satisfies the characteristic identity: for
$$B \subset \mathcal{B}($$

This satisfies the characteristic identity: for
$$B\in\mathcal{B}(\mathbb{R})$$

$$\mathbb{E}[X \mathbf{1}_{\{Y \in B\}}] = \int_B h(y) \mathrm{d}F_Y(y),$$

where F_Y is the c.d.f. of Y. If there exists a joint density $f_{X,Y}(x,y)$,

$$\mathbb{E}[X|Y = y] = \int_{-\infty}^{\infty} x \ f_{X|Y=y}(x) \mathrm{d}x.$$

Examples

• For X, Y $\mathcal{N}(0, 1)$ -r.v. (and jointly normal) with correlation ρ we have $h(y) = \rho y$, so

$$\mathbb{E}[X|Y] = \rho Y, \quad \mathbb{E}[X|Y = y] = \rho y.$$

• In Bernoulli(P) trials, for S_n = number of 1's

$$\mathbb{P}[S_n = k | P = p] = \binom{n}{k} p^k (1-p)^{n-k},$$

so unconditionally for $P \stackrel{d}{=} \text{Uniform}[0, 1]$

$$\mathbb{P}[S_n=k]=inom{n}{k}\int_0^1p^k(1-p)^{n-k}\mathrm{d}p=rac{1}{n+1},\quad 0\leq k\leq n.$$

Regular conditional probability

For disjoint $A_n \in \mathcal{F}$ and $\mathcal{G} \subset \mathcal{F}$

$$\mathbb{P}\left[\bigcup_{n}A_{n}\,\middle|\,\mathcal{G}\right](\omega)=\sum_{n}\mathbb{P}\left[A_{n}|\mathcal{G}\right](\omega)$$

holds only *almost surely*, so for *fixed* ω in general this cannot be considered as a probability measure on \mathcal{F} .

Definition A function $P(\omega, A)$ is called *regular conditional* probability given G if

- 1. $P(\omega, \cdot)$ is a probability measure on \mathcal{F} for every $\omega \in \Omega$,
- 2. for every $A \in \mathcal{F}$

$$P(\omega,A) = \mathbb{P}[A \,|\, \mathcal{G}](\omega) \quad \text{a.s.}$$

Regular conditional distribution

Definition/Theorem Let X be a r.v. with values in a 'good' (i.e. Borel) measurable space (E, A) then there exists a *regular* conditional distribution given G, which is a function $Q(\omega, A)$ such that

- 1. $Q(\omega, \cdot)$ is a probability measure on (E, \mathcal{A}) for every $\omega \in \Omega$,
- 2. for $A \in \mathcal{A}$ the function $Q(\cdot, A)$ satisfies

$$Q(\omega, A) = \mathbb{P}[X \in A | \mathcal{G}](\omega)$$
 a.s.

In particular, if X takes values in $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, there exists a regular conditional distribution function such that

$$F(\omega, x) = \mathbb{P}[X \le x \,|\, \mathcal{G}](\omega)$$
 a.s.

and

$$\mathbb{E}[g(X)|\mathcal{G}](\omega) = \int_{-\infty}^{\infty} g(x) \,\mathrm{d}_x F(\omega,x), \quad \omega \in \Omega.$$

Sufficiency in Statistics

Statistical model: $(\Omega, \mathcal{F}, (\mathbb{P}_{\theta}, \theta \in \Theta))$, θ unknown parameter.

Definition A σ -algebra $\mathcal{G} \subset \mathcal{F}$ is sufficient for $(\mathbb{P}_{\theta}, \theta \in \Theta)$ if for all $\theta \in \Theta$ and $A \in \mathcal{F}$

$$\mathbb{P}_{\theta}(A|\mathcal{G}) = P(\omega, A) \quad \mathbb{P}_{\theta} - \text{a.s.}$$

Factorisation Theorem Suppose $\mu \gg \mathbb{P}_{\theta}$ for a σ -finite measure μ on (Ω, \mathcal{F}) , and let

$$f_{\theta}(\omega) = rac{\mathrm{d}\mathbb{P}_{ heta}}{\mathrm{d}\mu}$$

be the Radon-Nikodým derivative. Then ${\mathcal{G}}$ is sufficient if and ony if,

$$f_{\theta}(\omega) = g_{\theta}(\omega)h(\omega)$$

for some \mathcal{G} -measurable function $g_{\theta}(\omega)$ and \mathcal{F} -measurable $h(\omega)$.

Example For the multivariate normal distribution

$$f_{\theta}(x_1,\ldots,x_n)=\frac{1}{(2\pi\theta)^{n/2}}\exp\left(-\frac{x_1^2+\ldots+x_n^2}{2\theta}\right), \ \theta>0$$

in $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$ a sufficient σ -algebra is $\mathcal{G} = \sigma(T)$, where $T(x_1, \ldots, x_n) = x_1^2 + \cdots + x_n^2$. The factorisation holds with

$$g_{\theta}(x_1,\ldots,x_n)=rac{1}{(2\pi\theta)^{n/2}}\exp\left(-rac{T(x_1,\ldots,x_n)}{2 heta}
ight)$$

and $h(x_1, \ldots, x_n) \equiv 1$. If (X_1, \ldots, X_n) has this density f_{θ} , then the conditional distribution of (X_1, \ldots, X_n) given $T(X_1, \ldots, X_n) = r^2$ is the uniform distribution of the sphere with radius r (for every $\theta > 0$).

Example For *n* Bernoulli(*p*) trials a sufficient statistic is S_n (the number of 1's).

Martingales

Definition A sequence of (real-valued) r.v.'s $(X_n, n \ge 0)$ is *adapted* to given filtration of σ -algebras $\mathcal{F}_0 \subset \mathcal{F}_1 \subset \cdots$ if X_n is measurable w.r.t. \mathcal{F}_n . The sequence is a *martingale* if $\mathbb{E}|X_n| \le \infty$ and

$$\mathbb{E}[X_{n+1}|\mathcal{F}_n] = X_n, \quad n = 0, 1, \dots$$

submartingale if $\mathbb{E}[X_{n+1}|\mathcal{F}_n] \ge X_n$, supermartingale if $\mathbb{E}[X_{n+1}|\mathcal{F}_n] \le X_n$.

• For X_1, X_2, \ldots i.i.d. with $\mathbb{E}[X_1] = \mu$, the random walk

$$S_n = \xi_1 + \cdots + \xi_n$$

is a martingale adapted to the filtration $\mathcal{F}_n = \sigma(\xi_0, \dots, \xi_n)$ if $\mu = 0$ (submartingale if $\mu > 0$, supermartingale if $\mu < 0$).

• For ξ_1, ξ_2, \ldots i.i.d. with $\mathbb{E}[\xi_1] = 1$,

$$\Pi_n = \prod_{j=1}^n \xi_j$$

is a martingale adapted to $\mathcal{F}_n = \sigma(\xi_0, \ldots, \xi_n)$.

- If (X_n) is a martingale and g(x) convex function, then $Y_n = g(X_n)$ is a submartingale (by Jensen's inequality).
- For r.v. ξ with $\mathbb{E}|\xi| < \infty$ Doob martingale is

$$X_n = \mathbb{E}[\xi \,|\, \mathcal{F}_n], \quad n \ge 0.$$

Martingale convergence

Theorem Let $(X_n, n \ge 0)$ be a submartingale with $\sup_n \mathbb{E}|X_n| < \infty$. Then the exists a r.v. X_∞ with $\mathbb{E}|X_n| < \infty$ such that

$$X_n \to X_\infty$$
 as $n \to \infty$ a.s.

If the uniform integrability condition holds

$$\lim_{c\to\infty}\sup_{n}\mathbb{E}\left[|X_n|\mathbf{1}(|X_n|>c)\right]=0,$$

then also $\mathbb{E}|X_n - X_{\infty}| \to 0$.

Example (Doob martingale) If $\mathbb{E}|\xi| < \infty$ then for $\mathcal{F}_{\infty} := \sigma (\cup_n \mathcal{F}_n)$

$$\mathbb{E}[\xi|\mathcal{F}_n] \to \mathbb{E}[\xi|\mathcal{F}_\infty]$$
 a.s.

Application to exchangeable processes

Let ξ_1, ξ_2, \ldots be 0-1 r.v.'s which are *exchangeable*: for every $n \ge 1$ and permutation $\pi : \{1, \ldots, n\} \rightarrow \{1, \ldots, n\}$

$$(\xi_1\ldots,\xi_n)\stackrel{d}{=}(\xi_{\pi_1}\ldots,\xi_{\pi_n}).$$

Let $S_n = \xi_1 + \cdots + \xi_n$, $\mathcal{G}_n = \sigma(S_n, S_{n+1}, \ldots), \mathcal{G}_\infty := \cap_n \mathcal{G}_n$.

By the backward martingale convergence theorem applied to the backward Doob martingale $\mathbb{P}[S_1 = 1|\mathcal{G}_n]$ (which is adapted to the falling tower of σ -algebras $\mathcal{G}_0 \supset \mathcal{G}_1 \supset \cdots$) we obtain

$$\mathbb{P}[S_1 = 1 | \mathcal{G}_n] \to \mathbb{P}[S_1 = 1 | \mathcal{G}_\infty]$$
 a.s.

But S_n is a sufficient statistic for $(\xi_1 \dots, \xi_n)$, and by exchangeability

$$\mathbb{P}[S_1=1|\mathcal{F}_n]=\mathbb{P}[S_1=1|S_n]=\frac{S_n}{n},$$

so S_n/n converges a.s. to some $\mathcal{G}_\infty ext{-measurable r.v.}$ P and

$$\mathbb{P}[S_1 = 1 | \mathcal{F}_n] \to \mathbb{P}[S_1 = 1 | \mathcal{F}_\infty] = \lim_{n \to \infty} \frac{S_n}{n}$$

We obtain

$$\mathbb{P}[S_1=1|P]=P$$

under every \mathbb{P} making ξ_1, ξ_2, \ldots exchangeable, and finally

$$\mathbb{P}[S_1=1|P=p]=p.$$

This holds for any 0-1-valued exchangeable ξ_1, ξ_2, \ldots , in particular for Bernoulli(1/2).

Stopping times

Definition Stopping time adapted to filtration $\mathcal{F}_0 \subset \mathcal{F}_1 \subset \cdots$ is a r.v. τ with values in $\{0, 1, \cdots, \infty\}$, s.t.

$$\{\tau = n\} \in \mathcal{F}_n, \quad n = 0, 1, \dots$$

If $\tau < \infty$ a.s. the stopping time is called *finite*.

For ξ_0, ξ_1, \ldots with natural filtration, examples of stopping times are $\tau = \min\{n : \xi_n > c\}, \tau = \min\{n > 0 : \xi_n > \xi_0\}$ etc.

The stopped variable is defined as

$$\xi_{\tau} = \sum_{n=0}^{\infty} \xi_n \mathbf{1}_{\{\tau=n\}}$$

and the stopped process as

$$\xi_{\tau \wedge n}, \ n \geq 0.$$

Proposition If (X_n) is a martingale (sub-, super-) then $(X_{\tau \wedge n}, n \ge 0)$ is a martingale (sub-, super-) too.

Doob's optional sampling

Theorem Let (X_n) be supermartingale, τ stopping time. Then

$$\mathbb{E}[X_{\tau}] \leq \mathbb{E}[X_0]$$

if at least one of the following holds:

(i)
$$\mathbb{P}(\tau < K) = 1$$
 for some $K > 0$,

(ii)
$$\sup_n |X_n| < K$$
 a.s.

(iii)
$$\mathbb{E}[\tau] < \infty$$
 and $\sup_n \mathbb{E}[|X_{n+1} - X_n| |\mathcal{F}_n] < K$,

(iv) (X_n) is uniformly integrable.

Application to Gambler's Ruin

Symmetric random walk $S_n = \xi_1 + \ldots + \xi_n$, $n \ge 0$, with i.i.d. increments, $\mathbb{P}[\xi_n = \pm 1] = 1/2$, $S_0 = 0$. Duration of the game with (positive) initial fortunes A, B is the stopping time

$$\tau = \min\{n : S_n \in \{-A, B\}\}.$$

The Optional Sampling gives

$$0 = \mathbb{E}[S_{\tau}] = -A \mathbb{P}[S_{\tau} = -A] + B \mathbb{P}[S_{\tau} = B].$$

Solving this together with the total probability equation $\mathbb{P}[S_{\tau} = -A] + \mathbb{P}[S_{\tau} = B] = 1$, the ruin probabilities are found as

$$\mathbb{P}[S_{\tau} = -A] = \frac{B}{A+B}, \quad \mathbb{P}[S_{\tau} = B] = \frac{A}{A+B}.$$