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Conditioning relative to partition

Let (22, F,P) be a probability space, Q = U,A, partition in disjoint
An € F with P[A;] > 0, and let G = 0(A1, Az, ...). Given G the
conditional probability of B € G is a r.v.

P[BIG] = 3 P[BIA,]14,

where P[B|A,] = P[BN A,]/P[A,], and the conditional expectation
ofarv. Xisar.v.

E[X|G] = E][;EAI:‘]"] 1n,.

n

Note:
P[B|G] = E[1]d].



Q: How define conditioning on null events?
Examples

X, Y standard normal r.v. (and jointly normal) with p = E[XY],

E[X|Y = y] =7

e Consider Bernoulli(P) trials with P g Uniform[0, 1]. What is the
probability of k 1's in n trials given P = p?

o Let S, be the number of 1's in n Bernoulli(1/2) trials. Given
limp—00 Sn/n = p (where p # 1/2), what is the probability that
the first trial is 17



Conditional expectation relative to o-algebra

Let (2, F,P) be a probability space, X a nonnegative r.v. and
G C F a sub-o-algebra.

Definition The conditional expectation of X given G is a random
variable E[X|G] such that

e E[X|G] is G-measurable,
e for every Ac G

/ X (w)P(dw) = / E[X|] P(dw)
A A

(which can also be written as E[X 14] = E[E[X|G] 14]).
For the general X,

E[X[G] = E[X;|G] — E[X_|9],

provided at least one of the terms is finite a.s.



Existence and uniqueness

Let X > 0, then
Q(A) = EX 14 = [ X(@)P(@w). Acg
A
is a probability measure on (R, G) satisfying P > Q. By the

Radon-Nikodym Theorem there exists G-measurable r.v.
¢ = dQ/dP such that

Q(A) = /A £(w)P(dw),

so we set & =: E[X]F].
e [E [X|G] is unique up to event of P-probability zero, since
E[X].A]:E[Y].A], Aeg

only implies P[X = Y] =1.



Properties of the conditional expectation

e The conditional probability of A € F given G is
P[A|G] = E[14]],

which is a random variable!
e |terated conditioning, tower property:

G1 C Go = E[E[X|G] | G1]] = E[X[G:].

e E[aX + bY|G] = aE[X|G] + bE[Y|]] a.s.

o If X is G-measurable, then
E[X[G] = X as., E[XY|G] = XE[Y|]G] as.,

provided E | X]| < o0, E |XY| < 0.
e X <Y as. = E[X|G] <E[Y]|]] as.



E[X|Y] as a function of Y

Forrv. X, Y
E[X|Y] :=E[X|o(Y)]

e There exists a function h(y) such that
E[X|Y](w) = h(Y(w)), w e Q.
We call h(y) conditional expectation of X given Y = y and write
E[X]Y = y] := h(y).

This satisfies the characteristic identity: for B € B(R)

EIX 1pycs)] = /B hy)dFy (y).

where Fy is the c.d.f. of Y.
If there exists a joint density fx y(x,y),

o0

EX|Y =y] = / X fx|y—y(x)dx.

—0o0



Examples
e For X, Y N(0,1)-r.v. (and jointly normal) with correlation p we
have h(y) = py, so

E[X|Y]=pY, E[X|Y =y]=py.

e In Bernoulli(P) trials, for S,= number of 1's
]P’[Sn = k‘P = P] = <Z>pk(1 _ p)n—k7

so unconditionally for P g Uniform[0, 1]

n 1 _ 1
P[S, = k] = (k>/o p“(1—p)" de:ma 0<k<n



Regular conditional probability
For disjoint A, € F and G C F
P [U A,

holds only almost surely, so for fixed w in general this cannot be
considered as a probability measure on F.

Q] (@) = P[AG](w)

Definition A function P(w, A) is called regular conditional
probability given G if
1. P(w, -) is a probability measure on F for every w € ,
2. for every Ae F

P(w,A) =P[A|G](w) a.s.



Regular conditional distribution

Definition/Theorem Let X be a r.v. with values in a ‘good’ (i.e.
Borel) measurable space (E,.A) then there exists a regular
conditional distribution given G, which is a function Q(w, A) such
that

1. Q(w,-) is a probability measure on (E,.A) for every w € Q,
2. for A € A the function Q( -, A) satisfies

Q(w,A) =P[X € A|G](w) as.
In particular, if X takes values in (R, B(R)), there exists a regular
conditional distribution function such that
F(w,x) =P[X < x|G](w) a.s.
and

o0

Elg(X)|0](w) = / £ F(w.x), we.

— 00



Sufficiency in Statistics

Statistical model: (Q, F,(Py,0 € ©)), € unknown parameter.

Definition A o-algebra G C F is sufficient for (Pg, 0 € ©) if for
alfe©and Ac F

]Pg(A]Q) = P(w,A) Pg — a.s.

Factorisation Theorem Suppose 1 > Py for a o-finite measure p
on (2, F), and let

_dr
=
be the Radon-Nikodym derivative. Then G is sufficient if and ony
if,

fo(w)

fo(w) = go(w)h(w)

for some G-measurable function gy(w) and F-measurable h(w).



Example For the multivariate normal distribution

1 X2 4. X2
f; ey Xn) = s B ELEAS LR
9(X17 7X ) (27‘(‘9)”/2 eXp( 29 )? 0>0
in (R", B(R") a sufficient o-algebra is G = o(T), where
T(x1,.-., %) = x2 + - - + x2. The factorisation holds with

1 T(x1,.-y%n)
go(x1, .., Xn) = WGXP I Y

and h(xy,...,xp) = 1. If (X1,...,X,) has this density fy, then the
conditional distribution of (Xi,...,X,) given T(Xy,...,X,) = r?
is the uniform distribution of the sphere with radius r (for every

6 > 0).

Example For n Bernoulli(p) trials a sufficient statistic is S, (the
number of 1's).



Martingales

Definition A sequence of (real-valued) r.v.'s (X,, n > 0) is adapted
to given filtration of o-algebras Fo C F1 C --- if X, is measurable
w.r.t. Fp. The sequence is a martingale if E|X,| < co and

E[Xps1|Fn] = Xa, n=0,1,...

submartingale if E[X,41|Fn] = Xn, supermartingale if
E[X,,+1|]-',,] < Xn-

e For X1, Xo, ... i.i.d. with E[Xj] = u, the random walk
Sn:£1+"'+£n

is a martingale adapted to the filtration 7, = o(o, ..., &n) if
1 =0 (submartingale if © > 0, supermartingale if 1 < 0).



o For &1,&p, ... iid. with E[&] =1,

I_In = ng
j=1

is a martingale adapted to F, = o(o, ..., &n).

e If (X,) is a martingale and g(x) convex function, then
Y, = g(Xp,) is a submartingale (by Jensen's inequality).

e For r.v. & with E[¢| < oo Doob martingale is

Xo=E[¢| Fn], n=>0.



Martingale convergence

Theorem Let (X,,n > 0) be a submartingale with
sup, E|X,| < co. Then the exists a r.v. Xy with E|X,| < co such
that

Xp — Xso @S n — 00 a.s.

If the uniform integrability condition holds
Jim supE[|Xa[ 1(]Xn| > c)] = 0,
then also E|X, — Xs| — 0.
Example (Doob martingale) If E|{| < oo then for F := o (UpFp)

E[¢|Fn] = E[§|Foo]  as.



Application to exchangeable processes
Let &1,&, ... be 0-1 r.v.’s which are exchangeable: for every n >'1
and permutation 7 : {1,...,n} = {1,...,n}

(fl---afn) g (£7r1"'7§ﬂ'n)'

Let S, = S+ + &, Gn = U(Sna Sn+17 . . ')7 Goo 1= NnGn.
By the backward martingale convergence theorem applied to the
backward Doob martingale P[S; = 1|G,] (which is adapted to the
falling tower of o-algebras Go D G1 D ---) we obtain

P[S1 = 1|Gn] — P[S1 = 1|Gx] aus.

But S, is a sufficient statistic for (£1...,&,), and by
exchangeability

Sn
P[S; = 1|F,] = P[S1 = 1|S,] = —

so Sp/n converges a.s. to some G,-measurable r.v. P and

PIS; = 1/F,] = P[S; = 1|Fa] = lim 2",

n—oo N



We obtain
P[S: =1|P]=P

under every P making £1,&>, ... exchangeable, and finally
P[S1 =1|P =p] = p.

This holds for any 0-1-valued exchangeable &1,&5, ..., in particular
for Bernoulli(1/2).



Stopping times
Definition Stopping time adapted to filtration Fo C F1 C --- is a
r.v. 7 with values in {0,1,--- ,00}, s.t.

{r=n}eF, n=0,1,...
If 7 < 0o a.s. the stopping time is called finite.

For &g, &1, ... with natural filtration, examples of stopping times
are T =min{n: &, > ch,7=min{n>0:&, > &} etc.

The stopped variable is defined as

&= &nlir—n)
n=0
and the stopped process as

{T/\nv n Z 0.

Proposition If (X,) is a martingale (sub-, super-) then
(Xran, n > 0) is a martingale (sub-, super-) too.



Doob's optional sampling

Theorem Let (X,) be supermartingale, 7 stopping time. Then

E[X;] < E[Xo]
if at least one of the following holds:
(i) P(t < K) =1 for some K > 0,
(i) sup,|Xn| < K a.s.
(iii) E[r] < oo and sup, E[|Xnt1 — Xa| | Fn] < K,
(iv) (Xp) is uniformly integrable.



Application to Gambler's Ruin

Symmetric random walk S, = &1 + ...+ &,,n > 0, with i.i.d.
increments, P[¢, = £1] = 1/2, Sg = 0. Duration of the game with
(positive) initial fortunes A, B is the stopping time

T =min{n:S, € {—A,B}}.
The Optional Sampling gives
0 = E[S;] = —AP[S; = —A] + BP[S; = B].

Solving this together with the total probability equation
P[S; = —A] + P[S; = B] = 1, the ruin probabilities are found as

B A



