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Plan

Utility theory

I Two goods
I Two goods and Cobb-Douglas utility

Expected Utility Theory

I Fair Bet
I Risk Aversion/Seeking/Neutrality
I Certainty Equivalent of a Gamble
I Measures of Risk Aversion
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Consumer’s Decision Problem - two goods

Any agent’s decision problem:

max u (x , y)

I such that the budget constraint is satisfied:

pxx + py y ≤ m

I px - price of x
I py - price of y
I m- total available income
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Consumer’s Decision Problem - two goods

Optimisation problem with an inequality constraint: use
Lagrangian method

I Set Lagrangian function:

L (x , y ,λ) = u (x , y) + λ (m− pxx − py y)

I λ- Lagrange multiplier
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Consumer’s Decision Problem - two goods

First Order Conditions
At the optimum:

1.
∂L
∂x
=

∂u (x , y)
∂x

− λpx = 0

2.
∂L
∂y
=

∂u (x , y)
∂y

− λpy = 0

3.
∂L
∂λ

= m− pxx − py y = 0

Solution: (x∗, y ∗,λ∗)
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Consumer’s Decision Problem - two goods

Combining 1 and 2
At the optimum:

∂u (x , y)
∂x

/
∂u (x , y)

∂y
=
px
py

or
MRSx ,y =

px
py

Together with
pxx + py y = m

Sistem of two equations, two unknowns.
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Consumer’s Decision Problem: Example

In R2+ the Cobb-Douglas utility function is given by:

u (x1, x2) = xa1 x
b
2 , with 0 < a, b ≤ 1

The consumer’s optimisation problem is:

max
x1,x2

u (x1, x2) = xa1 x
b
2 subject to

p1x1 + p2x2 ≤ m
The Langrangian function in this case is:

L (λ, x1, x2) = xa1 xb2 + λ (m− p1x1 − p2x2)
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Consumer’s Decision Problem: Example

axa−11 xb2 − λp1 = 0

bxa1 x
b−1
2 − λp2 = 0

p1x1 + p2x2 = m

This system can be simplified to:

ax2
bx1

=
p1
p2

p1x1 + p2x2 = m
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Consumer’s Decision Problem: Example

Solution:

x∗1 (p1, p2,m) =
m
p1

a
a+ b

x∗2 (p1, p2,m) =
m
p2

b
a+ b
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Consumer’s Decision Problem: Example

The second order condition for a local maximum can be written in
terms of Bordered Hessian:

∂2L
∂λ2

∂2L
∂λ∂x1

∂2L
∂λ∂x2

∂2L
∂x1∂λ

∂2L
∂x 21

∂2L
∂x1∂x2

∂2L
∂x2∂λ

∂2L
∂x2∂x1

∂2L
∂x 22

 =

 0 −p1 −p2
−p1 u11 u12
−p2 u21 u22


The determinant of the bordered Hessian is positive:∣∣∣∣∣∣

0 −p1 −p2
−p1 u11 u12
−p2 u21 u22

∣∣∣∣∣∣ > 0
As u11, u22 < 0 and u12 = u21 > 0 for all x1, x2 > 0 is satisfied.
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Expected Utility Theory

Generalise utility theory to consider situations that involve
uncertainty

I decision over investment choices

I decision maker

I utility of wealth

Any risky asset is characterised by a set of objectively known
probabilities defined on a set of possible outcomes
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Expected Utility Theory

The expected utility of a risky asset:

E [U (W )] =
N

∑
i=1
piu (wi )

When uncertainty present it is impossible to maximise utility with
complete certainty

Maximise the expected value of utility given investor’s
particular beliefs about the probability of different outcomes
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Expected Utility Theory

Assumptions

1. Completeness (or Comparability):

I either U(x) > U (y), or U(y) > U (x), or U(x) = U (y)

2. Transitivity :

I if U(x) > U (y) and U(y) > U (z), then U(x) > U (z),

3. Local non-satiation or More is Better.

I U ′ (·) > 0 - marginal utility of wealth is strictly positive
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Expected Utility Theory

4. Independence

I If an investor is indifferent between two certain outcomes, x
and y, then he is also indifferent between the gambles (or
lotteries):

I x with probability p and z with probability (1− p), and
I y with probability p and z with probability (1− p).

pU(x) + (1− p)U(z) = pU(y) + (1− p)U(z)
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Expected Utility Theory

5. Certainty Equivalence

I If
U(x) > U(y) > U(z)

then there exists a unique 0 < p < 1 such that

pU(x) + (1− p)U(z) = U(y)

y - the certain level of wealth that yields the same certain utility as
the expected utility yielded by the gamble

y - loosely speaking - the maximum price that an investor would be
willing to pay to accept a gamble
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Expected Utility Theory

Uncertainty involves taking risks

What is our attitude towards risk?

I Example: I toss a fair coin. If it is a head, you give me £ 5 and
if it is a tail, I give you £ 5 Would you accept this gamble?

E (w) =
1
2
(w0 − 5) +

1
2
(w0 + 5) = w0

I If the expected wealth is equal to initial wealth (w0) the
gamble is fair

I However, different people have different attitudes towards risk:

E (U (w)) ? U (w0)
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Utility Theory and Risk

Risk aversion
A risk averse investor will reject a fair gamble

I he attaches a lower utility to an incremental increase in wealth
to an incremental decrease so U

′′
(w) < 0

The utility function of a risk averse investor:

I is a strictly concave function of wealth

I hence, exhibits diminishing marginal utility of wealth
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Utility Theory and Risk

Risk Aversion
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Utility Theory and Risk

Risk seeking
A risk seeking investor will seek a fair gamble

I he attaches a higher utility to an incremental increase in
wealth to an incremental decrease so U

′′
(w) > 0

The utility function of a risk seeking investor:

I is a strictly convex function of wealth

I hence, exhibits increasing marginal utility of wealth
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Utility Theory and Risk

Risk seeking
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Utility Theory and Risk

Risk neutrality
A risk neutral investor is indifferent to weather to accept or not a
fair gamble
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Utility Theory and Risk

The certainty equivalent of a gamble x , denoted cx is
determined by

E (U (w + x)) = U (w − cx )
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Utility Theory and Risk

If that the gamble takes values: {−x1, x2} with probabilities
{p, (1− p)}, cx diagramatically cx is:
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Utility Theory and Risk

If the gamble is fair then a risk averse investor will reject a fair
gamble i.e. keep their current wealth

E (U (w + x)) = U (w − cx ) < U (w)

The investor pays cx to avoid the gamble (or has to be paid to
take the gamble)

The principal underlying insurance
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Utility Theory and Risk

I Degree of risk aversion reflected in the degree of concavity of
the utility function

I Attitude to risk may change depending on current level of
wealth

I need to take account of the initial wealth
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Utility Theory and Risk

Absolute risk aversion

I The investor exhibits decreasing (increasing) absolute risk
aversion (ARA) if cx decreases (increases) as wealth increases

I Decreasing ARA: as wealth increases the absolute amount of
wealth in risky assets increases

Relative risk aversion

I The investor exhibits decreasing (increasing) relative risk
aversion (RRA) if cxw decreases (increases) as wealth increases

I Decreasing RRA: as wealth increases the relative amount of
wealth in risky assets increases
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Utility Theory and Risk

Arrow-Pratt measures of Risk Aversion

Absolute Risk Aversion

A (w) = −U
′′ (w)
U ′ (w)

Relative Risk Aversion

R (w) = −w U
′′ (w)
U ′ (w)

Based on cx proportional to
U ′′(w )
U ′(w )
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Utility Theory and Risk

Risk Aversion: Absolute and Relative

ARA CRA

Increasing A′ (w) > 0 R ′ (w) > 0
Decreasing A′ (w) < 0 R ′ (w) < 0
Constant A′ (w) = 0 R ′ (w) = 0
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