Mathematical Tools For Assest Management MTH6113

Topic 2

Utility Theory
and Expected Utility Theory
Dr. Melania Nica

Spring Term

Plan

Utility theory

- ► Two goods
- ► Two goods and Cobb-Douglas utility

Expected Utility Theory

- ► Fair Bet
- ► Risk Aversion/Seeking/Neutrality
- Certainty Equivalent of a Gamble
- Measures of Risk Aversion

4 D > 4 A > 4 B > 4 B > B 9 Q C

Any agent's **decision problem**:

$$\max u(x, y)$$

such that the budget constraint is satisfied:

$$p_{x}x + p_{y}y \leq m$$

- \triangleright p_x price of x
- $ightharpoonup p_y$ price of y
- ▶ m- total available income

Optimisation problem with an inequality constraint: use **Lagrangian method**

► Set Lagrangian function:

$$\mathcal{L}(x, y, \lambda) = u(x, y) + \lambda (m - p_x x - p_y y)$$

λ- Lagrange multiplier

First Order Conditions

At the optimum:

1.

$$\frac{\partial \mathcal{L}}{\partial x} = \frac{\partial u(x, y)}{\partial x} - \lambda p_x = 0$$

2.

$$\frac{\partial \mathcal{L}}{\partial y} = \frac{\partial u(x, y)}{\partial y} - \lambda p_y = 0$$

3.

$$\frac{\partial \mathcal{L}}{\partial \lambda} = m - p_x x - p_y y = 0$$

Solution: (x^*, y^*, λ^*)

Combining 1 and 2

At the optimum:

$$\frac{\partial u\left(x,y\right)}{\partial x} / \frac{\partial u\left(x,y\right)}{\partial y} = \frac{p_{x}}{p_{y}}$$

or

$$MRS_{x,y} = \frac{p_x}{p_y}$$

Together with

$$p_x x + p_y y = m$$

Sistem of two equations, two unknowns.

4 D > 4 A > 4 B > 4 B > 4 D >

In R_+^2 the Cobb-Douglas utility function is given by:

$$u(x_1, x_2) = x_1^a x_2^b$$
, with $0 < a, b \le 1$

The consumer's optimisation problem is:

$$\max_{x_1,x_2} u(x_1,x_2) = x_1^a x_2^b$$
 subject to

$$p_1x_1+p_2x_2\leq m$$

The Langrangian function in this case is:

$$\mathcal{L}(\lambda, x_1, x_2) = x_1^a x_2^b + \lambda (m - p_1 x_1 - p_2 x_2)$$

$$ax_1^{a-1}x_2^b - \lambda p_1 = 0$$

$$bx_1^a x_2^{b-1} - \lambda p_2 = 0$$

$$p_1x_1 + p_2x_2 = m$$

This system can be simplified to:

$$\frac{ax_2}{bx_1} = \frac{p_1}{p_2}$$

$$p_1x_1 + p_2x_2 = m$$

Solution:

$$x_1^*(p_1, p_2, m) = \frac{m}{p_1} \frac{a}{a+b}$$

 $x_2^*(p_1, p_2, m) = \frac{m}{p_2} \frac{b}{a+b}$

The second order condition for a local maximum can be written in terms of Bordered Hessian:

$$\begin{pmatrix} \frac{\partial^2 \mathcal{L}}{\partial \lambda^2} & \frac{\partial^2 \mathcal{L}}{\partial \lambda \partial x_1} & \frac{\partial^2 \mathcal{L}}{\partial \lambda \partial x_2} \\ \frac{\partial^2 \mathcal{L}}{\partial x_1 \partial \lambda} & \frac{\partial^2 \mathcal{L}}{\partial x_1^2} & \frac{\partial^2 \mathcal{L}}{\partial x_1 \partial x_2} \\ \frac{\partial^2 \mathcal{L}}{\partial x_2 \partial \lambda} & \frac{\partial^2 \mathcal{L}}{\partial x_2 \partial x_1} & \frac{\partial^2 \mathcal{L}}{\partial x_2^2} \end{pmatrix} = \begin{pmatrix} 0 & -p_1 & -p_2 \\ -p_1 & u_{11} & u_{12} \\ -p_2 & u_{21} & u_{22} \end{pmatrix}$$

The determinant of the bordered Hessian is positive:

$$\begin{vmatrix} 0 & -p_1 & -p_2 \\ -p_1 & u_{11} & u_{12} \\ -p_2 & u_{21} & u_{22} \end{vmatrix} > 0$$

As u_{11} , $u_{22} < 0$ and $u_{12} = u_{21} > 0$ for all $x_1, x_2 > 0$ is satisfied.

4 D > 4 A + 4 B > 4 B > 9 Q C

Generalise utility theory to consider situations that involve **uncertainty**

- decision over investment choices
- decision maker
- utility of wealth

Any **risky asset** is characterised by a set of objectively known probabilities defined on a set of possible outcomes

The expected utility of a risky asset:

$$E[U(W)] = \sum_{i=1}^{N} p_i u(w_i)$$

When uncertainty present it is impossible to maximise utility with complete certainty

Maximise the expected value of utility given investor's particular beliefs about the probability of different outcomes

Assumptions

- 1. Completeness (or Comparability):
- lacktriangledown either $U(\mathbf{x}) > U\left(\mathbf{y}
 ight)$, or $U(\mathbf{y}) > U\left(\mathbf{x}
 ight)$, or $U(\mathbf{x}) = U\left(\mathbf{y}
 ight)$
- 2. Transitivity:
- ▶ if $U(\mathbf{x}) > U(\mathbf{y})$ and $U(\mathbf{y}) > U(\mathbf{z})$, then $U(\mathbf{x}) > U(\mathbf{z})$,
- 3. Local non-satiation or More is Better.
- $ightharpoonup U'\left(\cdot
 ight)>0$ marginal utility of wealth is strictly positive

4. Independence

- ▶ If an investor is indifferent between two certain outcomes, **x** and **y**, then he is also indifferent between the gambles (or lotteries):
 - **x** with probability p and **z** with probability (1-p), and
 - **y** with probability p and z with probability (1-p).

$$pU(\mathbf{x}) + (1-p)U(\mathbf{z}) = pU(\mathbf{y}) + (1-p)U(\mathbf{z})$$

5. Certainty Equivalence

▶ If

$$U(\mathbf{x}) > U(\mathbf{y}) > U(\mathbf{z})$$

then there exists a unique 0 such that

$$\rho U(\mathbf{x}) + (1-\rho)U(\mathbf{z}) = U(\mathbf{y})$$

- **y** the certain level of wealth that yields the same certain utility as the expected utility yielded by the gamble
- **y** loosely speaking the maximum price that an investor would be willing to pay to accept a gamble

4 D > 4 A > 4 B > 4 B > B 9 Q C

Uncertainty involves taking risks

What is our attitude towards risk?

► Example: I toss a fair coin. If it is a head, you give me £5 and if it is a tail, I give you £5 Would you accept this gamble?

$$E(w) = \frac{1}{2}(w_0 - 5) + \frac{1}{2}(w_0 + 5) = w_0$$

- ▶ If the expected wealth is equal to initial wealth (w_0) the gamble is fair
- ► However, different people have different attitudes towards risk:

$$E(U(w))$$
 ? $U(w_0)$

Risk aversion

A risk averse investor will reject a fair gamble

▶ he attaches a lower utility to an incremental increase in wealth to an incremental decrease so U''(w) < 0

The utility function of a risk averse investor:

- ▶ is a strictly concave function of wealth
- hence, exhibits diminishing marginal utility of wealth

Risk Aversion

Risk seeking

A risk seeking investor will seek a fair gamble

▶ he attaches a higher utility to an incremental increase in wealth to an incremental decrease so $U^{''}(w) > 0$

The utility function of a risk seeking investor:

- ▶ is a strictly convex function of wealth
- hence, exhibits increasing marginal utility of wealth

Risk seeking

20 of 28

(□) (□) (□) (□) (□) (□) (□)

Risk neutrality

A risk neutral investor is indifferent to weather to accept or not a fair gamble

1 U P 1 OP P 1 = P 1 = P 3 (

The certainty equivalent of a gamble x, denoted c_x is determined by

$$E\left(U\left(w+x\right)\right)=U\left(w-c_{x}\right)$$

22 of 28

If that the gamble takes values: $\{-x_1, x_2\}$ with probabilities $\{p, (1-p)\}$, c_x diagramatically c_x is:

23 of 28

If the gamble is fair then a risk averse investor will reject a fair gamble i.e. keep their current wealth

$$E\left(U\left(w+x\right)\right) = U\left(w-c_{x}\right) < U\left(w\right)$$

The investor pays c_x to avoid the gamble (or has to be paid to take the gamble)

The principal underlying insurance

- Degree of risk aversion reflected in the degree of concavity of the utility function
- Attitude to risk may change depending on current level of wealth
 - need to take account of the initial wealth

Absolute risk aversion

- ▶ The investor exhibits decreasing (increasing) absolute risk aversion (ARA) if c_x decreases (increases) as wealth increases
 - Decreasing ARA: as wealth increases the absolute amount of wealth in risky assets increases

Relative risk aversion

- ► The investor exhibits decreasing (increasing) relative risk aversion (*RRA*) if $\frac{c_x}{w}$ decreases (increases) as wealth increases
 - ► Decreasing RRA: as wealth increases the relative amount of wealth in risky assets increases

Arrow-Pratt measures of Risk Aversion

Absolute Risk Aversion

$$A(w) = -\frac{U''(w)}{U'(w)}$$

Relative Risk Aversion

$$R(w) = -w \frac{U''(w)}{U'(w)}$$

Based on c_x proportional to $\frac{U''(w)}{U'(w)}$

4 D > 4 A > 4 B > 4 B > B 9 9 0

Risk Aversion: Absolute and Relative

CDA

 $\Lambda D \Lambda$

	AKA	CKA
Decreasing	A'(w) > 0 A'(w) < 0 A'(w) = 0	R'(w) < 0

4 D > 4 A > 4 B > 4 B > B 9 Q C