MTH5113 (2023/24): Problem Sheet 2

All coursework should be submitted individually.

- Problems marked "[Marked]" should be submitted and will be marked.

Please submit the completed problem on QMPlus:

- At the portal for Coursework Submission 1.
(1) (Warm-up) Compute each of the following:
(a) Consider the vector-valued function

$$
\mathbf{f}: \mathbb{R} \rightarrow \mathbb{R}^{2}, \quad \mathbf{f}(\mathrm{t})=\left(\mathrm{t}^{2}, \mathrm{t}^{3}-1\right)
$$

(i) Compute $\mathbf{f}^{\prime}(\mathrm{t})$ for every $\mathrm{t} \in \mathbb{R}$.
(ii) Find the values $\mathbf{f}^{\prime}(0), \mathbf{f}^{\prime}(1)$, and $\mathbf{f}^{\prime}(-2)$.
(b) Consider the vector-valued function

$$
\mathrm{g}:(0,1) \rightarrow \mathbb{R}^{3}, \quad \mathrm{~g}(\mathrm{t})=\left(\ln \mathrm{t}, \ln (1-\mathrm{t}), \mathrm{e}^{3 \mathrm{t}}+\mathrm{t}\right)
$$

(i) What happens to $\mathbf{g}(\mathrm{t})$ as t approaches 0 ? As t approaches 1 ?
(ii) Compute $\mathbf{g}^{\prime}(\mathrm{t})$ for every $\mathrm{t} \in \mathbb{R}$.
(iii) Compute the second derivative $\mathbf{g}^{\prime \prime}(\mathrm{t})$ for every $\mathrm{t} \in \mathbb{R}$.
(2) (Warm-up) Let A denote the vector-valued function

$$
\mathbf{A}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}, \quad \mathbf{A}(x, y, z)=(x(1-z), y(1-z))
$$

(a) Compute the partial derivatives $\partial_{1} \mathbf{A}(x, y, z), \partial_{2} \mathbf{A}(x, y, z)$, and $\partial_{3} \mathbf{A}(x, y, z)$ at every point $(x, y, z) \in \mathbb{R}^{3}$.
(b) Find $\partial_{2} \mathbf{A}(1,0,3)$ and $\partial_{3} \mathbf{A}(0,-1,-1)$.
(3) (Warm-up) Let \mathbf{F} be the vector field on \mathbb{R}^{2} defined via the formula

$$
F(x, y)=(x-y, x+y)_{(x, y)}
$$

(a) Compute the following: (i) $\mathbf{F}(1,-1)$; (ii) $\mathbf{F}(-2,-1)$; (iii) $\mathbf{F}\left(-1, \frac{1}{2}\right)$.
(b) Plot the three tangent vectors from part (a) onto a Cartesian plane.
(4) [Tutorial] Consider the following vector-valued function:

$$
h:(0, \infty) \rightarrow \mathbb{R}^{2}, \quad h(t)=(t \cos t, t \sin t)
$$

(a) Sketch the values $\mathbf{h}(\mathrm{t})$, for all $0<\mathrm{t}<4 \pi$. Also, plot the values of \mathbf{h} on computer (see the Additional Resources section on the QMPlus page).
(b) Compute $\mathbf{h}(\pi)$ and $\mathbf{h}\left(\frac{5 \pi}{2}\right)$.
(c) Compute $\mathbf{h}^{\prime}(\pi)$ and $\mathbf{h}^{\prime}\left(\frac{5 \pi}{2}\right)$.
(d) Draw $\mathbf{h}^{\prime}(\pi)_{\mathbf{h}(\pi)}$ and $\mathbf{h}^{\prime}\left(\frac{5 \pi}{2}\right)_{\mathbf{h}\left(\frac{5 \pi}{2}\right)}$ on your sketch in part (a).
(5) [Marked] Let β be the vector-valued function

$$
\beta:(-2,2) \times(0,2 \pi) \rightarrow \mathbb{R}^{3}, \quad \beta(u, v)=\left\{\frac{3 u}{2}-\frac{u \cos (v)}{\sqrt{1+u^{2}}}, \sin (v), \frac{3 u^{2}}{4}+\frac{\cos (v)}{\sqrt{1+u^{2}}}\right\} .
$$

(a) Sketch the image of β (i.e. plot all values $\beta(u, v)$, for (u, v) in the domain of β).
(b) On the sketch in part (a), indicate (i) the path obtained by holding $v=\pi / 2$ and varying u, and (ii) the path obtained by holding $u=0$ and varying v.
(c) Compute the following quantities:

$$
\beta\left(0, \frac{\pi}{2}\right), \quad \partial_{1} \beta\left(0, \frac{\pi}{2}\right), \quad \partial_{2} \beta\left(0, \frac{\pi}{2}\right) .
$$

(d) Draw the following tangent vectors on your sketch in part (a):

$$
X_{1}=\partial_{1} \beta\left(0, \frac{\pi}{2}\right)_{\beta\left(0, \frac{\pi}{2}\right)}, \quad X_{2}=\partial_{2} \beta\left(0, \frac{\pi}{2}\right)_{\beta\left(0, \frac{\pi}{2}\right)}
$$

(6) (Compute ' n ' plot) Let λ denote the vector-valued function

$$
\lambda: \mathbb{R} \rightarrow \mathbb{R}^{2}, \quad \lambda(\mathrm{t})=\left(\mathrm{t}, \mathrm{t}^{2}-1\right) .
$$

(a) Compute the following: $\lambda(-2), \lambda(-1), \lambda(0), \lambda(1)$, and $\lambda(2)$.
(b) Compute the following: $\lambda^{\prime}(-2), \lambda^{\prime}(-1), \lambda^{\prime}(0), \lambda^{\prime}(1)$, and $\lambda^{\prime}(2)$.
(c) Sketch the values $\lambda(t)$, for all $-3<t<3$, on a Cartesian plane.
(d) Draw the following tangent vectors as arrows on your sketch in part (a):

$$
\lambda^{\prime}(-2)_{\lambda(-2)}, \quad \lambda^{\prime}(-1)_{\lambda(-1)}, \quad \lambda^{\prime}(0)_{\lambda(0)}, \quad \lambda^{\prime}(1)_{\lambda(1)}, \quad \lambda^{\prime}(2)_{\lambda(2)} .
$$

(7) (Compute ' n ' plot II) Consider the vector-valued function

$$
\sigma: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}, \quad \sigma(u, v)=((2+\cos u) \cos v,(2+\cos u) \sin v, \sin u) .
$$

(See also Question 8 from Problem Sheet 1.)
(a) Sketch the image of σ. (Use a computer to help if needed; see the Additional Resources section on the QMPlus page)
(b) On the sketch in part (a), indicate (i) the path obtained by holding $u=\frac{\pi}{2}$ and varying v, and (ii) the path obtained by holding $v=\frac{\pi}{2}$ and varying u.
(c) Compute the partial derivatives $\partial_{1} \sigma(u, v)$ and $\partial_{2} \sigma(u, v)$ for all $(u, v) \in \mathbb{R}^{2}$.
(d) Draw the following tangent vectors on your sketch in part (a):

$$
X_{1}=\partial_{1} \sigma\left(\frac{\pi}{2}, \frac{\pi}{2}\right)_{\sigma\left(\frac{\pi}{2}, \frac{\pi}{2}\right)}, \quad X_{2}=\partial_{2} \sigma\left(\frac{\pi}{2}, \frac{\pi}{2}\right)_{\sigma\left(\frac{\pi}{2}, \frac{\pi}{2}\right)} .
$$

(8) (Gradients ' n ' plot) Consider the function

$$
p: \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad p(x, y)=x-y^{2}
$$

(a) Sketch the following sets on a Cartesian plane:
(i) $\left\{(x, y) \in \mathbb{R}^{2} \mid p(x, y)=0\right\}$.
(ii) $\left\{(x, y) \in \mathbb{R}^{2} \mid p(x, y)=2\right\}$.
(iii) $\left\{(x, y) \in \mathbb{R}^{2} \mid p(x, y)=-2\right\}$.
(b) Compute the gradient $\nabla \mathfrak{p}(x, y)$ for all $(x, y) \in \mathbb{R}^{2}$.
(c) Plot the following values onto your sketch from part (a):
(i) $\nabla \mathfrak{p}(0,0)$.
(ii) $\nabla \mathrm{p}(-1,-1)$.
(ii) $\nabla \mathrm{p}(-1,1)$.
(9) (Connections to "Convergence and Continuity") Consider the following subsets of \mathbb{R}^{2} :

$$
V=\left\{(x, y) \in \mathbb{R}^{2} \mid x>0\right\}, \quad L=\left\{(x, y) \in \mathbb{R}^{2} \mid x=0\right\}
$$

(a) Give an informal justification of the following: (i) V is open; (ii) L is not open.
(b) (Not examinable) Give a rigorous proof of the two statements in part (a).
(c) Is the following subset of \mathbb{R}^{2} connected:

$$
\mathrm{Q}=\left\{(\mathrm{x}, \mathrm{y}) \in \mathbb{R}^{2} \mid \mathrm{y} \neq 0\right\} ?
$$

Give a brief (informal) justification of your answer.
(10) (Good derivative, bad derivative)
(a) (Not examinable) Give an example of a function $\mathfrak{b}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that (i) $\partial_{1} \mathrm{~b}(\mathrm{x}, \mathrm{y})$ exists for all $(x, y) \in \mathbb{R}^{2}$, but (ii) $\partial_{2} b(x, y)$ fails to exist for some (x, y).
(b) (Fun! But not examinable) Give an example of a function $\mathbf{b}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that (i) $\partial_{1} b(x, y)$ exists for all $(x, y) \in \mathbb{R}^{2}$, but (ii) $\partial_{2} b(x, y)$ fails to exist for any (x, y).

