
CHAPTER 1

First examples of metric spaces

1.1. The concept of a distance

In ancient times people were thinking about the space and its properties and such notions as
proximity, distance, size etc. Historically, people came to the idea to use numbers as a measure
of length and ancient geometry grew out of the need to measure distances and to plan urban
constructions. Ancient astronomers were quite advanced, they were even able to measure distances
to the Moon and the Sun. The earliest such accurate measurement was performed by a Greek
astronomer and mathematician Hipparchus in the 2nd century BC.

Figure 1. Hipparchus.

In simple words one can describe the concept of a distance as follows. Given two points A and
B, we connect them by a straight line segment and then count how many times the standard ruler
fits into this segment, see Figure 2. Of course this elementary method will not work if we wish to
measure the distance to the Moon, and for this purpose Hipparchus invented trigonometry.

Figure 2. The ruler for measuring distances.

Another practical way to measure distances is based on using a tape measure, see Figure 3.
This method is used by builders, engineers and designers.
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Figure 3. The tape measure

In this course we shall discuss mathematical meaning of the word “distance”, we shall analyse
many interesting examples of di↵erent “distances” appearing in various situations in mathematics
and in its applications in other sciences.

We also shall use distance to measure similarity between mathematical objects (such as geo-
metric figures, functions, combinatorial structures etc.)

In Euclidean geometry one usually uses distances between points of the line by labelling its
points by the real numbers R, see Figure 4. For points on the plane we can use the theorem of

0 yx
�

Figure 4. d(x, y) = |x� y|

Pythagoras: d2 = a2 + b2 for a right triangle with sides a, b, d, see Figure 5. Using this theorem we
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Figure 5. Right triangle

may define distance between points of the 2-dimensional plane as follows. The points of the plane
are in one-to-one correspondence with pairs of real numbers and the distance between the points
A = (x1, y1) and B = (x2, y2) is given by the formula

d =
p

(x1 � x2)2 + (y1 � y2)2.(1.1)

This is illustrated by Figure 6, where the sides of the triangle have length a = |x1 � x2| and
b = |y1 � y2|. Formula (1.1) defines the Euclidean distance, or distance corresponding to the
Euclidean 2-dimensional geometry.

More generally, for points in Rm the Euclidean distance can be defined as follows. The points
v 2 Rm are represented by ordered sequences of m real numbers

v = (v1, v2, . . . , vm), vi 2 R,
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Figure 6. Euclidean distance between points of the plane

which are known as the coordinates of v. If w = (w1, w2, . . . , wm) 2 Rm is another point then the
distance between v and w is defined as follows

d(v, w) =
p
(v1 � w1)2 + · · ·+ (vm � wm)2 =

 
mX

i=1

(vi � wi)
2

!1/2

,(1.2)

in analogy with (1.1). Formula (1.2) represents the basis of Euclidean geometry.
Here is a hypothetical picture of Euclid who lived around 300 BC:

Figure 7. Euclid by Jusepe de Ribera

1.2. Hamming distance and the error correcting codes

The notion of distance is useful not only in geometry. Coding theory deals with methods of
transmission of information via channels which are not perfect and sustain some accidental errors.
The error correcting codes use the notion of distance to correct some errors, as we shall now explain.

Let ⌃ be a finite alphabet (i.e. a finite list of symbols). We are transmitting words of length n
formed from symbols of the alphabet ⌃. For example, ⌃ can be the English alphabet or ⌃ = {0, 1}
- the two element set consisting of 0 and 1. In the latter case words of length n are binary integers
of length n such as (01011) or (11010), where n = 5. The set of all words of length n in ⌃ is denoted
by ⌃n.

The Hamming distance d(w1, w2) between two words w1, w2 2 ⌃n is defined as the number of
positions where these words have distinct entries. For example, the Hamming distance between the
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words (01011) and (11010) is 2 as they have di↵erent symbols on the first and on the last positions
only.

Clearly, d(w1, w2) is an integer, which can be equal 0, 1, . . . , n, and d(w1, w2) = 0 if and only if
the words w1 and w2 are identical.

When the word w1 is transmitted by a communication channel, the obtained result w2 might
be di↵erent from the source w1, and the Hamming distance d(w1, w2) can be viewed as the measure
of quality of transmission.

Let C ⇢ ⌃n be a subset of words which we intend to transmit. This set C is “the code”, it is
known in advance to both parties involved in information transmission. The number

min{d(w1, w2)|w1, w2 2 C, w1 6= w2} = �(C)(1.3)

plays a crucial role; it is the minimal distance between distinct code words. The number �(C) is
the code distance, it characterises the ability of error correction in the communication channel.

The simplest method of error correction can work as follows. If on the receiving end a word
w 2 ⌃n has appeared, one searches for a code word w0 2 C, closest to w with respect to the
Hamming distance. The decoder can correct x errors assuming that

x < �(C)/2.

Under this assumption the closest code word w0 2 C is unique. We refer the reader to the book [1]
for further information about the error correcting codes.

1.3. Definition of a metric space

We start this section with a formal definition of a metric space.

Definition 1.1. A metric space is a pair (X, d) where X is a non-empty set and

d : X ⇥X ! R(1.4)

is a function (called the metric) satisfying the following three conditions:

(M1) for all x, y 2 X one has d(x, y) � 0 and d(x, y) = 0 if and only if x = y;
(M2) d(x, y) = d(y, x) for x, y 2 X;
(M3) for all x, y, z 2 X one has

d(x, z)  d(x, y) + d(y, z).(1.5)

The latter inequality is known as the triangle inequality. This inequality states that a side of a
triangle cannot be longer than the sum of the two other sides.

We now consider examples of metric spaces.

Example 1.2. Let X = R and d(x, y) = |x�y|. The axioms (M1), (M2) and (M3) are satisfied.
In the case of (M3) we have

|x� z|  |x� y|+ |y � z|
which is equivalent to

|a+ b|  |a|+ |b|(1.6)

where a = x� y, b = y� z. The inequality (1.6) is an equality when the numbers a and b are both
positive or both negative; otherwise one has a strict inequality in (1.6).
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Example 1.3. Let X be an arbitrary set. Define the metric d : X ⇥X ! R by

d(x, y) =

⇢
0, if x = y,
1, if x 6= y.

For |X| equal 3 and 4 this metric spaces are shown on Figure 8. They can be viewed as the sets

|X | = 3 |X | = 4

Figure 8. Equilateral metric space

of vertexes of a regular triangle or a regular tetrahedron in the 3-dimensional space. It is obvious
that the axioms (M1) - (M3) are satisfied.

Example 1.4. Here is a generalisation of the previous example. Let � be a graph with the
vertex set V . We may define a metric on V by setting d�(x, y) = 1 if x, y 2 V are two distinct
vertexes connected by an edge; besides, we shall set d�(x, y) = 2 for any pair of distinct vertexes
not connected by an edge. The axioms (M1) - (M3) are satisfied.

This example shows that the graphs are in 1-1 correspondence with metric spaces such that
their metric takes the values 0, 1, 2.

Example 1.5. Consider the space X = Rm with the Euclidean metric (1.2). The properties
(M1) and (M2) are obvious. (M3) in this case reads

vuut
mX

i=1

(xi � zi)2 

vuut
mX

i=1

(xi � yi)2 +

vuut
mX

i=1

(yi � zi)2.

Denoting ai = xi � yi and bi = yi � zi the above inequality can be wiritten as
vuut

mX

i=1

(ai + bi)2 

vuut
mX

i=1

a2i +

vuut
mX

i=1

b2i .

To prove the latter inequality we note that

mX

i=1

(ai + bi)
2 =

mX

i=1

a2i + 2
mX

i=1

aibi +
mX

i=1

b2i


mX

i=1

a2i + 2

vuut
mX

i=1

a2i ·

vuut
mX

i=1

b2i +
mX

i=1

b2i

=

0

@

vuut
mX

i=1

a2i +

vuut
mX

i=1

b2i

1

A
2
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Here we used the Cauchy inequality

mX

i=1

aibi 

vuut
mX

i=1

a2i ·

vuut
mX

i=1

b2i ,(1.7)

which follows from the following identity
 

mX

i=1

aibi

!2

=
mX

i=1

a2i ·
mX

i=1

b2i �
1

2

X

i,j

(aibj � biaj)
2.(1.8)

1.4. Spaces Rm
p

Let p 2 [1,1) be a fixed real number. In analogy with the Euclidean metric (1.2) we shall
define the following metric

dp : Rm ⇥Rm ! R,(1.9)

where

dp(v, v
0) =

 
mX

i=1

|xi � x0
i|p
!1/p

(1.10)

for v = (x1, . . . , xm) and v0 = (x0
1, . . . , x

0
m). Clearly dp coincides with the Euclidean metric for

p = 2.
Note also that for m = 1 (the real line R) the metrics dp are equal to each other and coincide

with the metric of Example 1.2.
The properties (M1) and (M2) are obvious. The property (M3) amounts to the inequality

 
mX

i=1

|xi � zi|p
!1/p


 

mX

i=1

|xi � yi|p
!1/p

+

 
mX

i=1

|yi � zi|p
!1/p

(1.11)

known as the Minkowski inequality. It will be proven in the following section.
The case p = 1 is easy since for any i = 1, . . . ,m we have

|xi � zi|  |xi � yi|+ |yi � zi|.

We may also include the case p = 1 by defining

d1(v, v0) = sup
i=1,...,m

|xi � x0
i|.(1.12)

The triangle inequality for d1 looks as follows:

sup
i

|xi � zi|  sup
i

|xi � yi|+ sup
i

|yi � zi|

which can equivalently be written as

sup
i

|ai + bi|  sup
i

|ai|+ sup
i

|bi|(1.13)

where ai = xi � yi and bi = yi � zi. Inequality (1.13) follows from |ai + bi|  |ai| + |bi| by taking
the supremum on both sides.

Our next task is to prove the Minkowski inequality (1.11) in the case p 2 (1,1).
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1.5. Young’s inequality

Theorem 1.6. Let p, q > 1 be such that

1

p
+

1

q
= 1.(1.14)

Then for any a � 0 and b � 0 one has

ab  ap

p
+

bq

q
.(1.15)

Moreover, the equality in (1.15) holds if and only if ap = bq.

Proof. Consider the graph of the function � = ↵p�1 and the areas S1 and S2 indicated on
Figure 9. Geometrically it is obvious (see Figure 10) that

�

� � = �p�1

a

b

S1
S2

Figure 9

S1 + S2 � ab(1.16)

and the equality holds i↵ b = ap�1. Note that the product ab is the area of the rectangle built on

b b b

aa a

Figure 10

a and b, see Figure 10. Computing S1 we obtain

S1 =

Z a

0
↵p�1d↵ =

ap

p
.

To compute S2 we express ↵ as a function of �. Since � = ↵p�1 one has

↵ = �
1

p�1 = �q�1

where we used the equality q � 1 = 1
p�1 which follows from (1.14). Therefore,

S2 =

Z b

0
�q�1d� =

bq

q
.

Our statement now follows from (1.16). ⇤
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1.6. Hölder’s inequality

For p 2 (1,1) define the norm
|| · ||p : Rm ! R

as follows

||v||p =

 
mX

i=1

|xi|p
!1/p

, v = (x1, . . . , xm) 2 Rm.(1.17)

Theorem 1.7. For p, q 2 (1,1) satisfying

1

p
+

1

q
= 1

and for any two vectors v, w 2 Rm one has

v · w  ||v||p · ||w||q,(1.18)

where v · w denotes the scalar product, i.e.

v · w =
mX

i=1

xiyi, v = (x1, . . . , xm), w = (y1, . . . , ym).

Note that Hölder’s inequality (1.18) in the special case p = 2 = q turns into Cauchy’s inequality
(3.2).

Proof. Since each side of the inequality (1.18) is homogeneous with respect to v and w, we
may assume without loss of generality that ||v||p = 1 and ||w||q = 1.

For any i = 1, . . . ,m, Young’s inequality (1.15) gives

|xiyi| 
|xi|p

p
+

|yi|q

q
.

Summing up we obtain

v · w =
mX

i=1

xiyi 
mX

i=1

|xiyi| 
1

p

mX

i=1

|xi|p +
1

q

mX

i=1

|yi|q =
1

p
+

1

q
= 1.

⇤

1.7. Minkowski’s inequality

Theorem 1.8. For every real p 2 [1,1] and every vectors v, w 2 Rm one has the inequality

||v + w||p  ||v||p + ||w||p.(1.19)

Proof. The cases p = 1 and p = 1 were considered earlier in §1.4; we shall assume below
that p 2 (1,1).

For v = (x1, . . . , xm) and w = (y1, . . . , ym) one has

|xi + yi|p  |xi + yi|p�1 · |xi|+ |xi + yi|p�1 · |yi|(1.20)

and applying Hölder’s inequality twice we obtain

(||v + w||p)p =
mX

i=1

|xi + yi|p 
 

mX

i=1

|xi + yi|(p�1)q

!1/q

· (||v||p + ||w||p)(1.21)
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where p�1 + q�1 = 1 and hence (p� 1) · q = p. Therefore
 

mX

i=1

|xi + yi|(p�1)q

!1/q

= (||v + w||p)p/q .

Thus, (1.21) reads

(||v + w||p)p  (||v + w||p)p/q · (||v||p + ||w||p) .
Dividing both sides of this inequality by (||v + w||p)p/q and taking into account that p� p

q = 1 we

obtain (1.19). ⇤
Exercise 1.9. Show that the Hamming distance d : ⌃n ⇥ ⌃n ! R (defined in §1.2) satisfies

the axioms (M1), (M2), (M3) of §1.3.

Exercise 1.10. For p 2 (0, 1) consider the function || · ||p : Rm ! R where for v 2 Rm the
“norm” ||v||p is defined by formula (1.17). Show that the Minkowski inequality

||v + w||p  ||v||p + ||w||p,
is not satisfied for some v, w 2 Rm if m > 1.

Exercise 1.11. Show that for any two fixed vectors v, v0 2 Rm and for p 2 (1,1) the distance
dp(v, v0) tends to d1(v, v0) when p ! 1.


