

MTH5114 Linear Programming and Game Theory, Spring 2024 Week 1 Coursework Questions Viresh Patel

These exercises should be completed individually and submitted (together with those of weeks 2 and 3) via the course QMPlus page by 9am on Monday 19 February 2024.

Make sure you clearly write your **name** and **student ID** number at the top of your submission.

1. Say whether or not each of the following is a linear program. If it is a linear program, then reformulate it in standard inequality form, giving the values of the vectors **c** and **b**, and the matrix A. If it is not a linear program, write a sentence or two explaining why.

Note: to make your answers easier to mark, please order your vector of variables by subscript. If 2 variables have the same subscript (because you have split a variable x_i into x_i^+ and x_i^-) list x_i^+ first followed by x_i^- . For example: $\mathbf{x}^{\mathsf{T}} = (x_1, \bar{x}_2, x_3, x_4^+, x_4^-, x_5)$ is ordered as described.

 $x_1, x_2, x_3 > 0$

(a) minimize
$$5x_1 + 6x_3$$

subject to $2.9x_1 + 6x_2 + 8x_3 \ge 6.2$,
 $(x_1 - x_3)^2 \ge 16$,
 $1.5x_1 - 18x_2 \le 14$,
 $x_1, x_2, x_3 \ge 0$
(b) maximize $5x_1(1 - 3x_2 + x_3) - x_2$
subject to $x_1 + 3x_2 + x_3 \ge 4$,
 $-x_1 + x_2 - x_3 \le 3$,
 $-2x_1 + x_2 \le 7$,

(c) maximize
$$2x_1 + x_2 - x_3$$

subject to $4x_1 + x_2 + 3x_3 \le 1$,
 $-2x_2 + x_3 \le x_1$,
 $4x_2 + 2x_3 = -7$,
 x_1 unrestricted,
 $x_2 \le 0$,
 $x_3 \ge 0$