Mathematics of Assest Management MTH6113

Topic 1

Utility Theory

Dr. Melania Nica

Plan

- Consumer's Decision Problem and Utility Theory
- consumer's preferences and indifference curves
- utility function
- decision problem and optimisation

Consumer's Decision Problem

The consumer's decision problem is characterised by:

- the consumer's preferences
- the budget constraint which defines different consumption bundles that consumer can afford
- a bundle: a particular combination of two or more goods
- the optimisation problem
- how consumer decides which consumption bundle to choose, given her preferences and budget constraint

Consumer's Decision Problem

Consumer's Preferences

An agent has preferences over a choice set X
For example: the choice set is: \{apples, bananas\}

- M prefers $\{2$ apples and 3 bananas $\}$ to $\{1$ apple and 1 banana\}
- M is indifferent between $\left\{\frac{1}{2}\right.$ apple and 2 bananas $\}$ and $\{1$ apple and 1 banana \}

Consumer's Decision Problem

1. Preference relation: a binary relation, \succsim, on the choice set X that allows the decision maker to comapre different alternative $\mathbf{x}, \mathbf{y} \in X$ (which can be $\subset \mathbb{R}_{+}^{n}$).

- If $\mathbf{x} \succsim \mathbf{y}$ we say that " \mathbf{x} is at least as good as \mathbf{y} " for this decision maker.

Further we can define two other important relations on X :
2. The strict preference relation, \succ, defined as: $\mathbf{x} \succ \mathbf{y} \Leftrightarrow \mathbf{x} \succsim \mathbf{y}$ and not $\mathbf{y} \succsim \mathbf{x}$; if $\mathbf{x} \succ \mathbf{y}$ we say that " \mathbf{x} is preferred to \mathbf{y} " by the decision maker.
3. The indifference relation, \sim, defined as: $\mathbf{x} \sim \mathbf{y} \Leftrightarrow \mathbf{x} \succsim \mathbf{y}$ and $\mathbf{y} \succsim \mathbf{x}$; if $\mathbf{x} \sim \mathbf{y}$ we say that " \mathbf{x} is indifferent to \mathbf{y} "

Consumer's Decision Problem

Indifference curve: a set of bundles among which the consumer is indifferent

Consumer's Decision Problem

Assumptions on consumers' preferences:

1. Completeness: either $\mathbf{x} \succ \mathbf{y}$ or $\mathbf{y} \succ \mathbf{x}$ or $\mathbf{x} \sim \mathbf{y}$

- I can always rank goods

2. Transitivity: $\mathbf{x} \succ \mathbf{y} \succ \mathbf{z}$ then $\mathbf{z} \nsucc \mathbf{x}$

- There are no logical inconsistencies

We say that a decision maker with preferences satisfying completeness and transitivity is rational

Consumer's Decision Problem

Assumptions on consumers' preferences:
3. Monotonicity for all $\mathbf{x}, \mathbf{y} \in X \subset \mathbb{R}_{+}^{n}$, if $\mathbf{y} \geq \mathbf{x}$ and $\mathbf{y} \neq \mathbf{x}$ implies $\mathbf{y} \succ \mathbf{x}$.
3'. Local Non-satiation (more is better)

- If for all $\mathbf{x} \in X$ and every $\varepsilon>0$, there is $\mathbf{y} \in X$ such that $\|\mathbf{y}-\mathbf{x}\| \leq \varepsilon$ and $\mathbf{y} \succ \mathbf{x}$.
- note that || || represents the Euclidian distance between two points.

Consumer's Decision Problem

Implication of local non-satiation: Indifference Curves cannot be thick

$$
\mathrm{x}_{1}
$$

Consumer's Decision Problem

Local non-satiation and investment decisions

- x is a good - something that we want to always consume more
- \mathbf{y} is a "bad": e.g. polution

Investment theory - decision maker wishes to select a portfolio with high expected return and low risk (standard deviation)

- Indifference curve:

Local-nonsatiation will make the decision maker select a portfolio moving N-W

Consumer's Decision Problem

Marginal rate of substitution (MRS): rate at which consumer is willing to substitute one unit of one good for the other good keeping the same level of satisfaction

- the absolute value of the slope of the indifference curve

Consumer's Decision Problem

Diminishing marginal rate of substitution

- the more of good x you have, the more you are willing to give it up to get a little of good y

Utility Function

A rational preference relation can be represented by a utility function

- Utility function: numerical representation: $u: X \rightarrow \mathbb{R}$
- Move from real objects/goods/things to numbers
- It measures the level of satisfaction that a consumer receives from any bundle
- We can use Maths to find our optimum level of consumption!

Consumer's Decision Problem

Budget set of the consumer - the set of affordable bundles/commodities

$$
B=\left[\mathbf{x} \in \mathbf{X}: \mathbf{p}^{\prime} \mathbf{x} \leq m\right]
$$

In \mathbb{R}_{+}^{2} the budget set B is depicted in fig.

Consumer's Decision Problem

The optimisation problem of a consumer can be written now as:

$$
\max _{\mathbf{x}} u(\mathbf{x})
$$

such that the chosen commodities are affordable (in the budget set) or the budget constraint is satisfied:

$$
\mathbf{p}^{\prime} \mathbf{x} \leq m
$$

Consumer's Decision Problem

In R_{+}^{2} this problem can be seen diagramatically as:

Consumer's Decision Problem

In R_{+}^{2} this problem can be seen diagramatically as:

Consumer's Decision Problem

How we solve this problem with Calculus
Constrained optimisation use the Lagrangian Method:
Lagrangian function:

$$
\mathcal{L}(\mathbf{x}, \lambda)=u(\mathbf{x})+\lambda\left(m-\mathbf{p}^{\prime} \mathbf{x}\right)
$$

where λ is the Langrange multiplier.
Differentiating the Lagrangian with respect to \mathbf{x} gives us the first order conditions:

$$
\frac{\partial u(\mathbf{x})}{\partial x_{i}}-\lambda p_{i}=0 \text { for all } i=1, \ldots, n
$$

Consumer's Decision Problem

If we divide the i th first order condition to the j th order condition: At the optimum:

$$
\frac{\frac{\partial u\left(\mathbf{x}^{*}\right)}{\partial x_{i}}}{\frac{\partial u\left(\mathbf{x}^{*}\right)}{\partial x_{j}}}=\frac{p_{i}}{p_{j}} \text { for all } i, j=1, \ldots, n .
$$

- these are necessary conditions for a local optimum.
- they are also sufficient conditions if $u($.$) is monotone and$ quasiconcave.
- second order condition can be written as $\mathbf{y}^{\prime} H(\mathbf{x}) \mathbf{y} \leq \mathbf{0}$ for all y such that $\mathbf{p}^{\prime} \mathbf{y}=\mathbf{0}$.
- Hessian matrix of the utility function is negative semidefinite for all vectors \mathbf{y} orthogonal to the price vector.

Consumer's Decision Problem - Cobb-Douglas utility

The consumer's optimisation problem is:

$$
\begin{gathered}
\max _{x_{1}, x_{2}} u\left(x_{1}, x_{2}\right)=x_{1}^{a} x_{2}^{b} \text { subject to } \\
p_{1} x_{1}+p_{2} x_{2} \leq m
\end{gathered}
$$

The Langrangian function in this case is:

$$
\mathcal{L}\left(\lambda, x_{1}, x_{2}\right)=x_{1}^{a} x_{2}^{b}+\lambda\left(m-p_{1} x_{1}-p_{2} x_{2}\right)
$$

Consumer's Decision Problem - Cobb-Douglas utility

First order conditions:

$$
\begin{aligned}
a x_{1}^{a-1} x_{2}^{b}-\lambda p_{1} & =0 \\
b x_{1}^{a} x_{2}^{b-1}-\lambda p_{2} & =0 \\
p_{1} x_{1}+p_{2} x_{2} & =m
\end{aligned}
$$

This system can be simplified to:

$$
\begin{aligned}
\frac{a x_{2}}{b x_{1}} & =\frac{p_{1}}{p_{2}} \\
p_{1} x_{1}+p_{2} x_{2} & =m
\end{aligned}
$$

Consumer's Decision Problem - Cobb-Douglas utility

Solution:

$$
\begin{aligned}
x_{1}^{*}\left(p_{1}, p_{2}, m\right) & =\frac{m}{p_{1}} \frac{a}{a+b} \\
x_{2}^{*}\left(p_{1}, p_{2}, m\right) & =\frac{m}{p_{2}} \frac{b}{a+b}
\end{aligned}
$$

Note that when $a+b=1$ the market demands are equal to the share of income that the consumer allocates to each good.

Consumer's Decision Problem - Cobb-Douglas utility

The second order condition for a local maximum can be written in terms of Bordered Hessian:

$$
\left(\begin{array}{lll}
\frac{\partial^{2} \mathcal{L}}{\partial \lambda^{2}} & \frac{\partial^{2} \mathcal{L}}{\partial \lambda \partial x_{1}} & \frac{\partial^{2} \mathcal{L}}{\partial \lambda \lambda_{2}} \\
\frac{\partial^{2} \mathcal{L}}{\partial x_{1} \partial \lambda} & \frac{\partial^{2} \mathcal{L}}{\partial x_{1}^{2}} & \frac{\partial^{2} \mathcal{L}}{\partial x^{2} \partial x_{2}} \\
\frac{\partial^{2} \mathcal{L}}{\partial x_{2} \partial \lambda} & \frac{\partial^{2} \mathcal{L}}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} \mathcal{L}}{\partial x_{2}^{2}}
\end{array}\right)=\left(\begin{array}{lll}
0 & -p_{1} & -p_{2} \\
-p_{1} & u_{11} & u_{12} \\
-p_{2} & u_{21} & u_{22}
\end{array}\right)
$$

Remember from optimisation that the sufficient condition for a local maximum are that the leading principal minors alternate in signe starting with the third being positive.
As $u_{11}, u_{22}<0$ and $u_{12}=u_{21}>0$ we need:

$$
\left|\begin{array}{lll}
0 & -p_{1} & -p_{2} \\
-p_{1} & u_{11} & u_{12} \\
-p_{2} & u_{21} & u_{22}
\end{array}\right|>0
$$

Note that the determinant above is equal to $p_{1} p_{2} u_{21}+p_{1} p_{2} u_{12}-p_{2}^{2} u_{11}-p_{1}^{2} u_{22}>0$

