Mathematics of Assest Management MTH6113

Topic 1

Utility Theory

Dr. Melania Nica

Plan

- ► Consumer's Decision Problem and Utility Theory
 - consumer's preferences and indifference curves
 - utility function
 - decision problem and optimisation

4 D > 4 A > 4 B > 4 B > B 9 Q C

The consumer's decision problem is characterised by:

- ► the consumer's preferences
- the budget constraint which defines different consumption bundles that consumer can afford
 - ▶ a bundle: a particular combination of two or more goods
- ► the optimisation problem
 - ► how consumer decides which consumption bundle to choose, given her preferences and budget constraint

Consumer's Preferences

An agent has preferences over a choice set X

For example: the choice set is: {apples, bananas}

- M prefers {2 apples and 3 bananas} to {1 apple and 1 banana}
- ▶ M is *indifferent* between $\{\frac{1}{2}$ apple and 2 bananas $\}$ and $\{1$ apple and 1 banana $\}$

- 1. Preference relation: a binary relation, \succsim , on the choice set X that allows the decision maker to comapre different alternative $\mathbf{x}, \mathbf{y} \in X$ (which can be $\subset \mathbb{R}^n_+$).
- ▶ If x ≿ y we say that "x is at least as good as y" for this decision maker.

Further we can define two other important relations on X:

- 2. The strict preference relation, \succ , defined as: $\mathbf{x} \succ \mathbf{y} \Leftrightarrow \mathbf{x} \succsim \mathbf{y}$ and not $\mathbf{y} \succsim \mathbf{x}$; if $\mathbf{x} \succ \mathbf{y}$ we say that " \mathbf{x} is preferred to \mathbf{y} " by the decision maker.
- 3. The indifference relation, \sim , defined as: $\mathbf{x} \sim \mathbf{y} \Leftrightarrow \mathbf{x} \succsim \mathbf{y}$ and $\mathbf{y} \succsim \mathbf{x}$; if $\mathbf{x} \sim \mathbf{y}$ we say that " \mathbf{x} is indifferent to \mathbf{y} "

Indifference curve: a set of bundles among which the consumer is indifferent

Assumptions on consumers' preferences:

- 1. Completeness: either $\mathbf{x} \succ \mathbf{y}$ or $\mathbf{y} \succ \mathbf{x}$ or $\mathbf{x} \sim \mathbf{y}$
- ► I can always rank goods
- 2. Transitivity: $\mathbf{x} \succ \mathbf{y} \succ \mathbf{z}$ then $\mathbf{z} \not\succ \mathbf{x}$
- ► There are no logical inconsistencies

We say that a decision maker with preferences satisfying completeness and transitivity is **rational**

4 D > 4 A > 4 B > 4 B > B 9 Q C

Assumptions on consumers' preferences:

- 3. Monotonicity for all $\mathbf{x}, \mathbf{y} \in X \subset \mathbb{R}^n_+$, if $\mathbf{y} \geq \mathbf{x}$ and $\mathbf{y} \neq \mathbf{x}$ implies $\mathbf{y} \succ \mathbf{x}$.
- 3'. Local Non-satiation (more is better)
 - ▶ If for all $\mathbf{x} \in X$ and every $\varepsilon > 0$, there is $\mathbf{y} \in X$ such that $||\mathbf{y} \mathbf{x}|| \le \varepsilon$ and $\mathbf{y} \succ \mathbf{x}$.
 - note that || || represents the Euclidian distance between two points.

Implication of local non-satiation: Indifference Curves cannot be thick

40 + 40 + 45 + 45 + 5 900

Local non-satiation and investment decisions

- ▶ x is a good something that we want to always consume more
- ▶ y is a "bad": e.g. polution

Investment theory - decision maker wishes to select a portfolio with high expected return and low risk (standard deviation)

▶ Indifference curve:

Local-nonsatiation will make the decision maker select a portfolio moving N-W

Marginal rate of substitution (MRS): rate at which consumer is willing to substitute one unit of one good for the other good keeping the same level of satisfaction

▶ the absolute value of the slope of the indifference curve

4 D > 4 D > 4 B > 4 B > B = 900

Diminishing marginal rate of substitution

▶ the more of good x you have, the more you are willing to give it up to get a little of good y

4 D > 4 A > 4 B > 4 B > B 9 Q C

Utility Function

A rational preference relation can be represented by a **utility** function

- ▶ Utility function: numerical representation: $u: X \to \mathbb{R}$
 - Move from real objects/goods/things to numbers
 - It measures the level of satisfaction that a consumer receives from any bundle
- ► We can use Maths to find our optimum level of consumption!

Budget set of the consumer - the set of affordable bundles/commodities

$$B = [\mathbf{x} \in \mathbf{X} : \mathbf{p}'\mathbf{x} \le m]$$

In \mathbb{R}^2_+ the budget set *B* is depicted in fig.

The optimisation problem of a consumer can be written now as:

$$\max_{\mathbf{x}}u\left(\mathbf{x}\right)$$

such that the chosen commodities are affordable (in the budget set) or the budget constraint is satisfied:

$$p'x \leq m$$

In R_+^2 this problem can be seen diagramatically as:

In R_+^2 this problem can be seen diagramatically as:

4 D > 4 A > 4 E > 4 E > E 9 Q C

How we solve this problem with Calculus

Constrained optimisation use the Lagrangian Method: Lagrangian function:

$$\mathcal{L}(\mathbf{x},\lambda) = u(\mathbf{x}) + \lambda (m - \mathbf{p}'\mathbf{x})$$

where λ is the Langrange multiplier.

Differentiating the Lagrangian with respect to \mathbf{x} gives us the first order conditions:

$$\frac{\partial u\left(\mathbf{x}\right)}{\partial x_{i}}-\lambda p_{i}=0 \text{ for all } i=1,...,n.$$

If we divide the ith first order condition to the jth order condition: At the optimum:

$$rac{rac{\partial u(\mathbf{x}^*)}{\partial x_i}}{rac{\partial u(\mathbf{x}^*)}{\partial x_i}} = rac{p_i}{p_j} ext{ for all } i,j=1,...,n.$$

- ▶ these are necessary conditions for a local optimum.
- ▶ they are also sufficient conditions if u(.) is monotone and quasiconcave.
- ▶ second order condition can be written as $\mathbf{y}'H(\mathbf{x})$ $\mathbf{y} \leq \mathbf{0}$ for all \mathbf{y} such that $\mathbf{p}'\mathbf{y} = \mathbf{0}$.
 - ► Hessian matrix of the utility function is negative semidefinite for all vectors **y** orthogonal to the price vector.

4 D > 4 A > 4 B > 4 B > B 9 9 0

The consumer's optimisation problem is:

$$\max_{x_1,x_2} u(x_1,x_2) = x_1^a x_2^b$$
 subject to

$$p_1x_1+p_2x_2\leq m$$

The Langrangian function in this case is:

$$\mathcal{L}(\lambda, x_1, x_2) = x_1^a x_2^b + \lambda (m - p_1 x_1 - p_2 x_2)$$

4 D > 4 A + 4 B > 4 B > 9 Q C

First order conditions:

$$ax_1^{a-1}x_2^b - \lambda p_1 = 0$$

$$bx_1^a x_2^{b-1} - \lambda p_2 = 0$$

$$p_1x_1 + p_2x_2 = m$$

This system can be simplified to:

$$\frac{ax_2}{bx_1} = \frac{p_1}{p_2}$$

$$p_1x_1 + p_2x_2 = m$$

Solution:

$$x_1^*(p_1, p_2, m) = \frac{m}{p_1} \frac{a}{a+b}$$

 $x_2^*(p_1, p_2, m) = \frac{m}{p_2} \frac{b}{a+b}$

Note that when a+b=1 the market demands are equal to the share of income that the consumer allocates to each good.

The second order condition for a local maximum can be written in terms of Bordered Hessian:

$$\begin{pmatrix} \frac{\partial^2 \mathcal{L}}{\partial \lambda^2} & \frac{\partial^2 \mathcal{L}}{\partial \lambda \partial x_1} & \frac{\partial^2 \mathcal{L}}{\partial \lambda \partial x_2} \\ \frac{\partial^2 \mathcal{L}}{\partial x_1 \partial \lambda} & \frac{\partial^2 \mathcal{L}}{\partial x_1^2} & \frac{\partial^2 \mathcal{L}}{\partial x_1 \partial x_2} \\ \frac{\partial^2 \mathcal{L}}{\partial x_2 \partial \lambda} & \frac{\partial^2 \mathcal{L}}{\partial x_2 \partial x_1} & \frac{\partial^2 \mathcal{L}}{\partial x_2^2} \end{pmatrix} = \begin{pmatrix} 0 & -p_1 & -p_2 \\ -p_1 & u_{11} & u_{12} \\ -p_2 & u_{21} & u_{22} \end{pmatrix}$$

Remember from optimisation that the sufficient condition for a local maximum are that the leading principal minors alternate in signe starting with the third being positive.

As u_{11} , $u_{22} < 0$ and $u_{12} = u_{21} > 0$ we need :

$$\begin{vmatrix} 0 & -p_1 & -p_2 \\ -p_1 & u_{11} & u_{12} \\ -p_2 & u_{21} & u_{22} \end{vmatrix} > 0$$

Note that the determinant above is equal to $p_1p_2u_{21} + p_1p_2u_{12} - p_2^2u_{11} - p_1^2u_{22} > 0$