Actuarial Mathematics II MTH5125

Revision: Insurance benefits and Annuities Chapter 4 and 5 (DHW)

Dr. Melania Nica

Spring Term

- ► Amicable Society for a Perpetual Assurance Office:
 - ► Founded in London, 1706.
 - First company offering life insurance.
- Society for Equittable Assurances on Lives and Survivorship:
 - ▶ Also known as Equittable Life, founded in London, 1762.
 - World's oldest mutual life insurer.

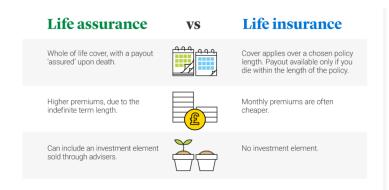
Introduction to life insurance

Samuel Huebner (1882-1964)

- ▶ One of the first insurance economists.
- ► The Economics of Life Insurance(1927):
 - ▶ Not to insure adequately through life insurance is to gamble with the greatest economic risk confronting man. If understood, the gamble is a particularly selfish one, since the blow, in the event the gamble is lost, falls upon an innocent household whose economic welfare should have been the family head's first consideration.

Life insurance vs life assurance

https://www.legalandgeneral.com/insurance/lifeinsurance/definitions/assurance-vs-insurance/



► In DHW - insurance/assurance

Insurance benefits - assumptions

- <u>Technical basis</u> = a set of assumptions used for performing life insurance or pension calculations.
- Technical basis in this chapter (used in the examples):
 - The Standard Ultimate Survival Model:

$$\mu_{x} = 0.00022 + 2.7 \times 10^{-6} \times 1.124^{x}$$

- A constant interest.
- These are (pedagogically) convenient assumptions.

Conventions:

- Time 0 = now
- Time unit is 1 year.

Insurance benefits - assumptions

Some notions of financial algebra

- *i* = annual rate of interest.
- $i^{(p)}$ = nominal interest (compounded p times per year):

$$\left(1 + \frac{i^{(p)}}{p}\right)^p = 1 + i$$

• δ = force of interest:

$$\delta = \ln\left(1+i\right)$$

• v = yearly discount factor:

$$v = \frac{1}{1+i} = e^{-\delta}$$

• d = discount rate per year:

$$d = 1 - v = i \ v = 1 - e^{-\delta}$$

• $d^{(p)} = \text{nominal discount rate (compounded } p \text{ times per year)}$:

$$d^{(p)} = p\left(1 - v^{\frac{1}{p}}\right) = i^{(p)} v^{1/p}$$

Whole life insurance - the continuous case (db payable at instant of death)

- Consider a life insurance underwritten on (x) at time 0, with a payment of 1 at T_x .
- Benefit cash flow:

$$(1, T_x)$$

Present value:

$$Z = v^{T_x} = e^{-\delta T_x}$$

Actuarial value (or EPV):

$$\overline{A}_{x} \stackrel{\text{not.}}{=} \mathbb{E}\left[e^{-\delta T_{x}}\right] = \int_{0}^{\infty} e^{-\delta t} {}_{t} p_{x} \; \mu_{x+t} \; dt \qquad (4.1)$$

Whole life insurance - the continuous case

$$\overline{A}_{x} = \int_{0}^{\infty} e^{-\delta s} p_{x} \, \mu_{x+s} \, ds$$

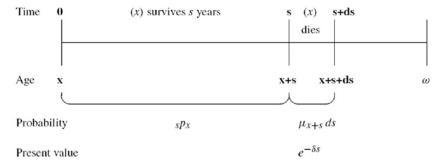


Figure 4.1 Time-line diagram for continuous whole life insurance.

Whole life insurance - the annual case (db payable at end of year of death)

- Consider a life insurance underwritten on (x) at time 0, with a payment of 1 at $K_x + 1$.
- Benefit cash flow:

$$(1, K_x + 1)$$

Present value:

$$Z = v^{K_x+1}$$

$$A_x \stackrel{\text{not.}}{=} \mathbb{E}[v^{K_x+1}] = \sum_{k=0}^{\infty} v^{k+1}_{k|q_x}$$
 (4.4)

Whole life insurance - the annual case

$$A_x = \sum_{k=0}^{\infty} v^{k+1} |_{k|} q_x$$

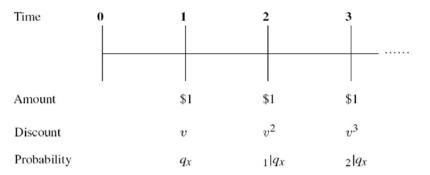


Figure 4.2 Time-line diagram for discrete whole life insurance.

Term insurance (policies of duration n): continuous case

Continuous case

- Consider a term life insurance underwritten on (x) at time 0, with a payment of 1 at T_x , provided $T_x < n$.
- Benefit cash flow:

$$(1_{\{T_x\leq n\}}, T_x)$$

• Present value:

$$Z = e^{-\delta T_x} 1_{\{T_x \le n\}}$$

$$\overline{A}_{x:\overline{n}|}^{1} \stackrel{\text{not.}}{=} \mathbb{E}[Z] = \int_{0}^{n} e^{-\delta t} {}_{t} p_{x} \mu_{x+t} dt$$
 (4.9)

Term insurance (policies of duration n): annual case

Annual case

- Consider a term life insurance underwritten on (x) at time 0, with a payment of 1 at $K_x + 1$, provided $K_x + 1 \le n$.
- Benefit cash flow:

$$\left(1_{\left\{K_{x}+1\leq n\right\}},\ K_{x}+1\right)$$

• Present value:

$$Z = v^{K_x + 1} \, 1_{\{K_x + 1 \le n\}}$$

$$A_{x:\overline{n}|}^{1} \stackrel{\text{not.}}{=} \mathbb{E}[Z] = \sum_{k=0}^{n-1} v^{k+1}{}_{k|} q_x$$
 (4.10)

Pure endowment

- Consider a pure endowment insurance underwritten on (x) at time 0, with a payment of 1 at time n, provided $T_x > n$.
- Benefit cash flow:

$$(1_{\{T_x>n\}}, n)$$

Present value:

$$Z = v^n \, 1_{\{T_x > n\}}$$

Actuarial value:

$$\left| {}_{n}E_{x} \stackrel{\text{not.}}{=} \mathbb{E}[Z] = v^{n}{}_{n}p_{x} \right| \tag{4.13}$$

• Alternate notation:

$$A_{x:\overline{n}}$$

Endowment insurance:continuous case

Continuous case

- Consider an endowment insurance underwritten on (x) at time 0, with a payment of 1 at time T_x , provided $T_x \leq n$, and a payment of 1 at time n, provided $T_x > n$.
- Benefit cash flow:

$$(1,\min\left(T_{\scriptscriptstyle X},n\right)) = \left(1_{\left\{T_{\scriptscriptstyle X} \leq n\right\}},T_{\scriptscriptstyle X}\right) + \left(1_{\left\{T_{\scriptscriptstyle X} > n\right\}},\ n\right)$$

• Present value:

$$Z = v^{\min(T_x,n)}$$

$$\overline{A_{x:\overline{n}}} \stackrel{\text{not.}}{=} \mathbb{E}[Z] = \overline{A}_{x:\overline{n}}^1 + {}_{n}E_{x}$$
(4.17)

Endowment insurance: annual case

- Consider an endowment insurance underwritten on (x) at time 0, with a payment of 1 at time $K_x + 1$, provided $K_x + 1 \le n$, and a payment of 1 at time n, provided $K_x + 1 > n$.
- Benefit cash flow:

$$(1, \min(K_X + 1, n)) = (1_{\{K_X + 1 \le n\}}, K_X + 1) + (1_{\{K_X + 1 > n\}}, n)$$

• Present value:

$$Z = v^{\min(K_x+1,n)}$$

$$A_{x:\overline{n}} \stackrel{\text{not.}}{=} \mathbb{E}[Z] = A_{x:\overline{n}}^1 + {}_{n}E_x$$
 (4.19)

Deferred insurance

- Consider a deferred term insurance underwritten on (x) at time 0, with a payment of 1 at T_x , provided $u < T_x \le u + n$.
- Benefit cash flow:

$$\left(1_{\{u< T_x\leq u+n\}}, T_x\right)$$

• Present value:

$$Z = e^{-\delta T_x} 1_{\{u < T_x \le u + n\}}$$

Annuities

- Life annuity: series of payments as long as a given person is alive on the payment dates.
- Payments:
 - at regular intervals,
 - (usually) of the same amount.
- Used for calculating:
 - pension benefits,
 - premiums,
 - policy values.

Annuities-certain

Annuity-due:

$$\ddot{a}_{\overline{n}|} = 1 + v + \dots + v^{n-1} = \frac{1 - v^n}{d}$$
 (5.1)

Annuity-immediate:

$$a_{\overline{n}|} = v + ... + v^n = \frac{1 - v^n}{i}$$

Continuous annuity:

$$\bar{a}_{\overline{n}|} = \int_0^n v^t dt = \frac{1 - v^n}{\delta}$$
 (5.2)

• Annuity-due with 1/m-thly payments:

$$\ddot{a}_{\overline{n}|}^{(m)} = \frac{1}{m} \left(1 + v^{\frac{1}{m}} + \dots + v^{n - \frac{1}{m}} \right) = \frac{1 - v^n}{d^{(m)}}$$

• Annuity-immediate with 1/m-thly payments:

$$a_{\overline{n}|}^{(m)} = \frac{1}{m} \left(v^{\frac{1}{m}} + ... + v^{n - \frac{1}{m}} + v^n \right) = \frac{1 - v^n}{i^{(m)}}$$

- Consider an annuity underwritten to (x) at time 0. It pays 1 annually in advance as long as (x) is alive.
- Benefit cash flow:

$$\sum_{k=0}^{K_{x}} (1, k)$$

Present value:

$$Y = 1 + v + ... + v^{K_x} = \ddot{a}_{\overline{K_x + 1}} = \frac{1 - v^{K_x + 1}}{d}$$

$$\ddot{\mathbf{a}}_{X} \stackrel{\text{not.}}{=} \mathbb{E}[Y] = \frac{1 - \mathbb{E}[v^{K_{X} + 1}]}{d} = \frac{1 - A_{X}}{d}$$
 (5.3)

• Benefit cash flow:

$$\sum_{t=0}^{K_{\scriptscriptstyle X}}\left(1,\ t
ight)=\sum_{t=0}^{\infty}\left(1_{\left\{T_{\scriptscriptstyle X}>t
ight\}},t
ight)$$

• Present value:

$$Y = \sum_{t=0}^{\infty} v^t \, \mathbf{1}_{\{T_x > t\}}$$

20 of 32

$$\ddot{\mathbf{a}}_{x} = \mathbb{E}\left[Y\right] = \sum_{t=0}^{\infty} v^{t}_{t} p_{x}$$
 (5.5)

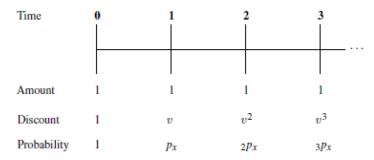


Figure 5.1 Time-line diagram for whole life annuity-due.

Benefit cash flow:

$$\sum_{k=0}^{K_{x}} (1, k)$$

• Present value:

$$Y = \ddot{a}_{\overline{K_x+1}}$$

$$\ddot{a}_{x} = \mathbb{E}\left[Y\right] = \sum_{k=0}^{\infty} \ddot{a}_{\overline{k+1}} \times {}_{k|}q_{x}$$
 (5.6)

- Consider an annuity underwritten to (x) at time 0. It pays 1 at times $0, 1, \ldots, n-1$, provided (x) is alive.
- Benefit cash flow:

$$\sum_{t=0}^{\min(K_x,n-1)} (1,t)$$

• Present value:

$$Y = 1 + v + ... + v^{\min(K_x, n-1)} = \ddot{a}_{\min(K_x + 1, n)} = \frac{1 - v^{\min(K_x + 1, n)}}{d}$$

$$\ddot{\mathbf{a}}_{\mathbf{x}:\overline{n}|} \stackrel{\mathsf{not.}}{=} \mathbb{E}\left[Y\right] = \frac{1 - \mathbb{E}\left[v^{\mathsf{min}(K_{\mathbf{x}} + 1, n)}\right]}{d} = \frac{1 - A_{\mathbf{x}:\overline{n}|}}{d}$$
(5.7)

• Benefit cash flow:

$$\sum_{t=0}^{\min(K_x,n-1)} (1,t) = \sum_{t=0}^{n-1} (1_{\{T_x > t\}},t)$$

Present value:

$$Y = \sum_{t=0}^{n-1} v^t \ 1_{\{T_x > t\}}$$

$$\ddot{\mathbf{a}}_{x:\overline{n}} \stackrel{\text{not.}}{=} \mathbb{E}[Y] = \sum_{t=0}^{n-1} v^t {}_t p_x$$
 (5.8)

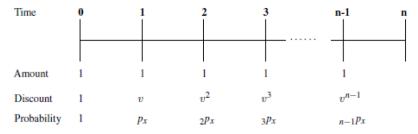


Figure 5.2 Time-line diagram for term life annuity-due.

• Benefit cash flow:

$$\sum_{t=0}^{\min(K_x,n-1)} (1,t)$$

• Present value:

$$Y = \ddot{a}_{min(K_x+1,n)}$$

$$\ddot{\mathbf{a}}_{\mathbf{x}:\overline{n}|} = \mathbb{E}\left[Y\right] = \sum_{k=0}^{n-1} \ddot{\mathbf{a}}_{\overline{k+1}|} \times {}_{k|}q_{\mathbf{x}} + {}_{n}p_{\mathbf{x}} \times \ddot{\mathbf{a}}_{\overline{n}|}$$

- Consider a whole life immediate annuity underwritten to (x) at time 0. It pays 1 annually in arrear, as long as (x) is alive.
- Benefit cash flow:

$$\sum_{t=1}^{K_{\mathrm{x}}}\left(1,t
ight)=\sum_{t=1}^{\infty}\left(1_{\left\{T_{\mathrm{x}}>t
ight\}},t
ight)$$

• Present value:

$$Y^* = \sum_{t=1}^{\infty} v^t \ 1_{\{T_x > t\}}$$

$$a_X \stackrel{\text{not.}}{=} \mathbb{E}\left[Y^*\right] = \ddot{a}_X - 1 \tag{5.9}$$

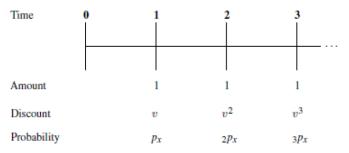


Figure 5.3 Time-line diagram for whole life immediate annuity.

28 of 32

- Consider a **n-year term immediate annuity** underwritten to (x) at time 0. It pays 1 at times 1, 2, ..., n, provided (x) is alive.
- Benefit cash flow:

$$\sum_{t=1}^{\min(\mathcal{K}_{\mathsf{x}},n)} \left(1,t
ight) = \sum_{t=1}^{n} \left(1_{\left\{\mathcal{T}_{\mathsf{x}}>t
ight\}},t
ight)$$

• Present value:

$$Y^* = \sum_{t=1}^n v^t \ \mathbf{1}_{\{T_x > t\}}$$

Actuarial value:

$$a_{x:\overline{n}|} \stackrel{\text{not.}}{=} \mathbb{E}\left[Y^*\right] = \sum_{t=1}^n v^t {}_t \rho_x$$
 (5.11)

• Relation:

$$\overline{a_{x:\overline{n}|} = \ddot{a}_{x:\overline{n}|} - 1 + v^n {}_n p_x}$$
 (5.12)

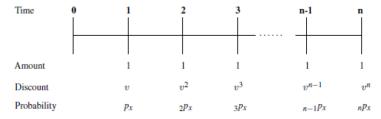


Figure 5.4 Time-line diagram for term life immediate annuity.

Deferred annuities

- Consider an annuity underwritten to (x) at time 0, with lifelong anual payments of 1 in advance, commencing at age x + u (u is a non-negative integer).
- Benefit cash flow:

$$\sum_{k=u}^{K_x} (1, k)$$

Actuarial value:

$$_{u|\ddot{a}_{X}}=\ddot{a}_{X}-\ddot{a}_{X:\overline{u}|} \qquad \qquad (5.25)$$

• Relation via actuarial discounting:

$$_{u|}\ddot{\mathbf{a}}_{x} = _{u}\mathbf{E}_{x} \ \ddot{\mathbf{a}}_{x+u}$$
 (5.26)

Deferred annuities

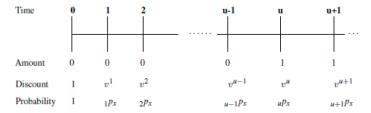


Figure 5.8 Time-line diagram for deferred annual annuity-due.

32 of 32

4 D > 4 A > 4 B > 4 B > B 9 9 9