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3. Assessing the Simple Linear Regression Model 

 

3.1. Properties of the estimators 

There are a number of properties of estimators that are desirable. One is for an estimator to be 
unbiased. 

If 𝜃෠ is an estimator of 𝜃 then we say that 𝜃෠ is an unbiased estimator of 𝜃 if 𝐸ൣ𝜃෠൧ =  𝜃. 

So what about 𝛽଴
෢ and 𝛽ଵ

෢ in our Normal Simple Linear Regression Model. Are they unbiased? 

We will begin with the estimator of the slope parameter, 𝛽ଵ
෢  

Recall from section 2.2 above that  

𝛽ଵ
෢ =  

∑ (𝑥௜ −  𝑥̅௡
௜ୀଵ  )(𝑦௜ −  𝑦ത)

∑ (𝑥௜ −  𝑥̅) ଶ 
௡
௜ୀଵ

 

which means that 𝛽ଵ
෢ can be expressed as a function of Yi in the form 

𝛽ଵ
෢ =  ෍ 𝑐௜𝑌௜

௡

௜ୀଵ

 

where 𝑐௜ =  
(௫೔ି ௫̅ )

∑ (௫೔ି ௫̅) మ 
೙
೔సభ

 or (௫೔ି ௫̅)

ௌೣೣ
 

Now under our Normal Simple Linear Regression Model, we assume that the Yi are independent and 
normally distributed, 

𝑦௜ =  𝛽଴ +  𝛽ଵ 𝑥௜ +  𝜀௜ where the 𝜀௜  are iid  𝜀௜ ~ 𝑁(0, 𝜎ଶ) 

so 

𝑦௜  ~ 𝑁(𝛽଴ + 𝛽ଵ 𝑥௜, 𝜎ଶ) 

We know from MTH5129 Probability & Statistics II that a linear combination of independent normal 
random variables is itself normally distributed. This means that if Yi follows a Normal distribution, 
then 𝛽ଵ

෢ will follow a Normal distribution as well. 

To determine whether 𝛽ଵ
෢ is an unbiased estimator we need to find E[ 𝛽ଵ

෢ ] 

𝐸ൣ𝛽ଵ
෢൧ = 𝐸 ൥෍ 𝑐௜𝑌௜

௡

௜ୀଵ

൩ = ෍ 𝑐௜𝐸[𝑌௜] =  ෍ 𝑐௜(𝛽଴ +  𝛽ଵ 𝑥௜) =  𝛽଴ ෍ 𝑐௜

௡

௜ୀଵ

+  𝛽ଵ ෍  

௡

௜ୀଵ

𝑐௜𝑥௜

௡

௜ୀଵ

௡

௜ୀଵ

 

 

but  ∑ 𝑐௜
௡
௜ୀଵ = 0 because ∑ (𝑥௜ −  𝑥̅) = 0௡

௜ୀଵ  from the definition of 𝑥̅ 

and ∑  ௡
௜ୀଵ 𝑐௜𝑥௜ = 1 because ∑  ௡

௜ୀଵ (𝑥௜ −  𝑥̅)𝑥௜ =  𝑆௫௫ 

therefore 

𝐸ൣ𝛽ଵ
෢൧ =  𝛽଴ ∑ 𝑐௜

௡
௜ୀଵ +  𝛽ଵ ∑  ௡

௜ୀଵ 𝑐௜𝑥௜ = 𝛽ଵ  so 𝛽ଵ
෢ is an unbiased estimator of 𝛽ଵ  □ 
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Now for the variance of 𝛽ଵ
෢ 

𝑣𝑎𝑟ൣ𝛽ଵ
෢൧ = 𝑣𝑎𝑟[ ∑ 𝑐௜𝑌௜

௡
௜ୀଵ ] =  ∑ 𝑐௜  

ଶ𝑣𝑎𝑟[𝑌௜]
௡
௜ୀଵ =  ∑

(௫೔ି ௫̅) మఙమ

ௌೣೣ
మ =  

ఙమ

ௌೣೣ

௡
௜ୀଵ  

so in summary for 𝛽ଵ
෢, the least squares estimator of the slope parameter in the Normal Simple 

Linear Regression Model 

𝛽ଵ
෢ ~ 𝑁(𝛽ଵ ,

𝜎ଶ

𝑆௫௫
) 

 

Turning to the intercept parameter 𝛽଴  

Recall from section 2.2 that 

𝛽଴
෢ =  𝑌ത −  𝛽ଵ

෢ 𝑥̅ 

and substituting in our expression for 𝛽ଵ
෢ in terms of Yi 

𝛽଴
෢ =  𝑌ത −  𝑥̅ ෍ 𝑐௜𝑌௜

௡

௜ୀଵ

=
1

𝑛
෍ 𝑌௜

௡

௜ୀଵ

−  𝑥̅ ෍ 𝑐௜𝑌௜

௡

௜ୀଵ

=  ෍ 𝑌௜  (
1

𝑛
−  𝑐௜𝑥̅

௡

௜ୀଵ

) 

where 𝑐௜ is defined as before. 

This means that 𝛽଴
෢ can also be expressed as a linear combination of Yi and therefore by the same 

reasoning as for 𝛽ଵ
෢ we find that 𝛽଴

෢ follows a Normal distribution. 

then 

𝐸ൣ𝛽଴
෢൧ = 𝐸ൣ𝑌ത −  𝛽ଵ

෢ 𝑥̅൧ = 𝐸[𝑌ത] − 𝑥̅𝐸ൣ𝛽ଵ
෢൧ =  𝛽଴ +  𝛽ଵ𝑥̅ − 𝛽ଵ𝑥̅  =  𝛽଴  

so 𝛽଴
෢ is an unbiased estimator of 𝛽଴ . 

for the variance of 𝛽଴
෢ 

𝑣𝑎𝑟ൣ𝛽଴
෢൧ = 𝑣𝑎𝑟[∑ 𝑌௜  (

ଵ

௡
− 𝑐௜𝑥̅

௡
௜ୀଵ )] =  ∑ 𝜎ଶ ቀ

ଵ

௡
−  𝑐௜𝑥̅ቁ  ଶ௡

௜ୀଵ =  𝜎ଶ ∑ (
ଵ

௡మ − 2
௖೔௫̅

௡
+  𝑐௜

ଶ𝑥̅ଶ)௡
௜ୀଵ   

=  𝜎ଶ( 
𝑛

𝑛ଶ
− 0 + ෍

(𝑥௜ −  𝑥̅) ଶ 𝑥̅ଶ

𝑆௫௫
ଶ

௡

௜ୀଵ

=  𝜎ଶ(
1

𝑛
+

𝑥̅ଶ

𝑆௫௫
 ) 

putting these together we have, for 𝛽଴
෢, the least squares estimator of the intercept parameter in the 

Normal Simple Linear Regression Model 

𝛽଴
෢ ~ 𝑁(𝛽଴, 𝜎ଶ(

1

𝑛
+

𝑥̅ଶ

𝑆௫௫
 ) ) 

 

3.2. Assessing the model 

If our model is 

𝑦௜ =  𝛽଴ + 𝛽ଵ𝑥௜ + 𝜀௜ 
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then with estimates 𝛽଴
෢ and 𝛽ଵ

෢ and a set of observations (xi, yi) i=1, 2, …, n we can fit the model and 
estimate the response variable with 

𝑦ො௜ =  𝛽መ଴ +  𝛽መଵ𝑥௜ 

where the 𝑦ො௜  values 𝑦ොଵ, 𝑦ොଶ, … 𝑦ො௡ are the fitted values or points on the fitted regression line 
corresponding to the n observed 𝑥௜ values. 

Now the observed values 𝑦ଵ, 𝑦ଶ, … 𝑦௡ will be different to the fitted values 𝑦ොଵ, 𝑦ොଶ, … 𝑦ො௡ that is the 
observed values will not all lie on the fitted regression line. We define the residuals (sometimes 
called the crude residuals) to be  

𝑒௜ =  𝑦௜ −  𝑦ො௜  

That is the residuals are the observed values minus the fitted values. 

The residuals 𝑒௜ are estimates of the random errors 𝜀௜  in the original model specification. 

From the least squares definition of 𝛽መ଴ and 𝛽መଵ we will see that ∑ 𝑒௜ = 0௡
௜ୀ଴  

 

𝑒௜ =  𝑦௜ −  𝑦ො௜ =  𝑒௜ =  𝑦௜ − ൫𝛽መ଴ +  𝛽መଵ𝑥௜൯ = 𝑦௜ − 𝑦ത −  𝛽መଵ(𝑥௜ − 𝑥̅)  

so 

∑ 𝑒௜ =  ∑ (𝑦௜ − 𝑦ത)௡
௜ୀ଴ − ௡

௜ୀ଴ 𝛽መଵ ∑ (𝑥௜ − 𝑥̅)௡
௜ୀଵ = 0 − 0 = 0  from the definitions of 𝑦ത and 𝑥̅. 

 

When we found the least squares estimators 𝛽଴
෢ and 𝛽ଵ

෢ we used a quantity S which is actually a 
function of 𝛽଴ and 𝛽ଵ so S(𝛽଴, 𝛽ଵ) where from section 2.2 

𝑆(𝛽଴, 𝛽ଵ) =  ෍ 𝜀௜
ଶ

௡

௜ୀଵ

 

The value of this function for a given data set (xi, yi) evaluated at the least squares estimates 𝛽መ଴ and 
𝛽መଵ is called the Residual Sum of Squares and is denoted 𝑆𝑆ா where 

𝑆𝑆ா =  ෍ 𝑒௜
ଶ

௡

௜ୀଵ

=  ෍(𝑦௜ −  𝑦ො௜) ଶ
௡

௜ୀଵ

 

 

For a particular data set, 𝑆𝑆ா is the minimum value of S(𝛽଴, 𝛽ଵ) and is a measure of how well the 
model fits the data. The 𝑆𝑆ா is one of the sources of variance of the 𝑦௜  around their mean 𝑦ത. 

The total variance of the 𝑦௜  around their mean 𝑦ത can be expressed as the Total Sum of Squares 
denoted 𝑆𝑆் where 

𝑆𝑆் =  ෍(𝑦௜ −  𝑦ത) ଶ
௡

௜ୀଵ

 

In the Simple Linear Regression Model we will see that: 
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Total Sum of Squares = Regression Sum of Squares + Residual Sum of Squares 

𝑆𝑆் =  𝑆𝑆ோ +  𝑆𝑆ா 

where 𝑆𝑆் and 𝑆𝑆ா have already been defined.  

This equation is sometimes called the Analysis of Variance Identity 

The Regression Sum of Squares is 𝑆𝑆ோ =  ∑ (𝑦ො௜ −  𝑦ത) ଶ௡
௜ୀଵ  which is sometimes referred to as the 

Model Fit Sum of Squares 

𝑆𝑆் =  ෍(𝑦௜ − 𝑦ത) ଶ
௡

௜ୀଵ

= ෍[(𝑦௜ −  𝑦ො௜) + (𝑦ො௜ −  𝑦ത)] ଶ
௡

௜ୀଵ

  

=  ෍[(𝑦௜ −  𝑦ො௜) ଶ + (𝑦ො௜ −  𝑦ത) ଶ
௡

௜ୀଵ

− 2(𝑦௜ −  𝑦ො௜)(𝑦ො௜ − 𝑦ത)]   

=  𝑆𝑆ா +  𝑆𝑆ோ +  2 ෍  

௡

௜ୀଵ

(𝑦௜ −  𝑦ො௜)(𝑦ො௜ −  𝑦ത) 

 

now the third term in this equation becomes, after multiplying out the second bracket, 

෍(𝑦௜ −  𝑦ො௜)𝑦ො௜ −  𝑦ത  ෍(𝑦௜ − 𝑦ො௜)

௡

௜ୀଵ

௡

௜ୀଵ

=  ෍ 𝑒௜𝑦ො௜

௡

௜ୀଵ

−  𝑦ത ෍ 𝑒௜ = 

௡

௜ୀଵ

෍ 𝑒௜𝑦ො௜

௡

௜ୀଵ

− 0 

 

෍ 𝑒௜𝑦ො௜

௡

௜ୀଵ

=  ෍ 𝑒௜(𝛽መ଴ +  𝛽መଵ𝑥௜)

௡

௜ୀଵ

=   𝛽መ଴ ෍ 𝑒௜ +  𝛽መଵ 

௡

௜ୀଵ

෍ 𝑒௜𝑥௜ =   0 + 0 = 0

௡

௜ୀଵ

 

 

therefore 𝑆𝑆் =  𝑆𝑆ோ +  𝑆𝑆ா    □ 

That is Total Sum of Squares is made up of: 

 the Regression Sum of Squares – the variability in the 𝑦௜  around their mean 𝑦ത which is 
accounted for by the fitted model, and 

 the Residual Sum of Squares - the variability in the 𝑦௜  accounted for by the difference 
between observed and fitted values. 

This view of the variability in the 𝑦௜  is often represented in an Analysis of Variance Table often called 
an ANOVA Table for short. 

 

3.3 The ANOVA Table 

The Analysis of Variance (ANOVA) table is shown below: 
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Source of variation d.f. SS MS VR 

Regression 𝑣ோ  = 1 𝑆𝑆ோ 𝑀𝑆ோ =  
𝑆𝑆ோ

𝑣ோ
 𝐹 =  

𝑀𝑆ோ

𝑀𝑆ா
 

Residual 𝑣ா  = n – 2 𝑆𝑆ா 𝑀𝑆ா =  
𝑆𝑆ா

𝑣ா
  

Total 𝑣் = n – 1 𝑆𝑆்   

 

In the ANOVA table, the variability in the 𝑦௜  is accounted for in four different quantities, each 
represented by a column in the table: 

 degrees of freedom (d.f.) 
 Sum of Squares (SS) 
 Mean Squares (MS) 
 Variance Ratio (VR) 

We have already covered Sum of Squares above but will now look at the other quantities in the 
table. 

Degrees of Freedom 

If we have n observations y1, y2, …, yn and then fix either the sum of them or their mean, we can let 
the values of y1 vary and still get that sum or mean, we can let the values of y1 and y2 vary and still 
get that sum or mean, … indeed we can let the values of y1, y2, …, yn-1 vary, but then we will need a 
certain value for yn to get the required sum or mean. So here if we have n observations, n-1 are free 
to vary but one will need to depend on the others. One way of thinking about this is with n 
observations and a fixed sum or mean, n-1 are independent and free to vary and 1 is taken up by the 
fixed sum or mean. An estimate of a parameter will be based on observations or pieces of 
information. The number of independent observations that are used in the estimation of a 
parameter are the degrees of freedom (often abbreviated d.f.). 

With the Total Sum of Squares 𝑆𝑆் =  ∑ (𝑦௜ −  𝑦ത) ଶ௡
௜ୀଵ  we have n observations, and one degree of 

freedom is taken up by the calculation of 𝑦ത, so 𝑆𝑆் has n – 1 degrees of freedom in the ANOVA 
table. 

With the Residual Sum of Squares 𝑆𝑆ா =  ∑ 𝑒௜
ଶ௡

௜ୀଵ =  ∑ (𝑦௜ −  𝑦ො௜) ଶ =  ∑ ൫𝑦௜ − 𝛽መ଴ −  𝛽መଵ𝑥௜൯ ଶ௡
௜ୀଵ

௡
௜ୀଵ  

one degree of freedom is taken up with the estimation of 𝛽መ଴ and one d.f. is taken up with the 
estimation of 𝛽መଵ, so 𝑆𝑆ா has n – 2 degrees of freedom in the ANOVA table. 

As 𝑆𝑆ோ =  𝑆𝑆் −  𝑆𝑆ா we can find the degrees of freedom for the Regression Sum of Squares 𝑆𝑆ோ by 
the difference in the d.f. for the Total and Residual Sums of Squares = (n – 1) – (n – 2) = 1. 

Mean Squares 

The 𝑀𝑆ோ and 𝑀𝑆ா in the ANOVA table are a measure of the average variation by Regression and 
Residuals found by dividing the appropriate Sum of Squares by its degrees of freedom. 

Variance Ratio 
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This ratio measures the variation explained by the model fit relative to that explained by the 
residuals and is denoted F. 

𝐹 =  
𝑀𝑆ோ

𝑀𝑆ா
 

We know from MTH5129 Probability & Statistics II that if random variable X follows a Chi-squared 
distribution on v1 degrees of freedom and variable Y follows a Chi-squared distribution on v2 degrees 

of freedom, then  
௑

௩భൗ

௒
௩మൗ

 follows a Fisher’s F Distribution often simply called an F-Distribution with 

𝑣ଵand 𝑣ଶ degrees of freedom. 

This is written as ℱ௩భ,௩మ
 or ℱ௩మ

௩భ  or as ℱ(𝑣ଵ, 𝑣ଶ). The F-Distribution is skewed and depends on two 
parameters (𝑣ଵ, 𝑣ଶ). 

This distribution and the Variance Ratio are particularly useful in the Linear Regression model for 
testing whether 𝛽ଵis statistically different from zero. If 𝛽ଵ = 0 then we could replace the full linear 
regression model 𝑦௜ =  𝛽଴ +  𝛽ଵ 𝑥௜ + 𝜀௜ with a simpler constant model, 𝑦௜ =  𝛽଴ +  𝜀௜ . 

We will see later in this course that if 𝛽ଵ = 0 then the Variance Ratio,  

𝐹 =  
𝑀𝑆ோ

𝑀𝑆ா
 ~ ℱ௡ିଶ

ଵ  

So to test the null hypothesis 𝐻଴: 𝛽ଵ = 0 versus the alternative 𝐻ଵ: 𝛽ଵ ≠ 0 we use the Variance 
Ratio, F as a test statistic. We reject 𝐻଴ at significance level 𝛼 if  

𝐹 > ℱ௡ିଶ
ଵ (𝛼) 

where ℱ௡ିଶ
ଵ (𝛼) is the value such that 𝑃 ቀ𝐹 >  ℱ௡ିଶ

ଵ (𝛼)ቁ =  𝛼  

The ANOVA table can also be used to estimate the variance of the residuals 𝜎ଶ (which in the Normal 
Simple Regression Model is also the variance of the yi). 

The Sums of Squares are all functions of the yi which means that because the yi are random 
variables, the different Sums of Squares are random variables as well. It can be helpful to explore the 
stochastic properties of the Sums of Squares: their expectation, variance and distribution. We will do 
this in full later on in the course. For now, we will note without proof that in the simple linear 
regression model, the expected value of the Residual Sum of Squares is given by 

𝐸(𝑆𝑆ா) = (𝑛 − 2)𝜎ଶ 

Now  

𝑀𝑆ா =  
𝑆𝑆ா

𝑣ா
=  

𝑆𝑆ா

𝑛 − 2
 

which means that  
𝐸(𝑀𝑆ா) = 𝜎ଶ 

so 𝑀𝑆ா is an unbiased estimator for 𝜎ଶ and is often denoted 𝑆ଶ. This is interesting because 𝑀𝑆ா 
itself is not the sample variance in the full linear regression model. 

The final quantity to mention here is the Coefficient of Determination denoted 𝑅ଶ which is usually 
expressed as a percentage and is the percentage of total variation in the yi explained by the model 
fitted. That is 
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𝑅ଶ =  
𝑆𝑆ோ

𝑆𝑆்
100% = ൬1 −  

𝑆𝑆ா

𝑆𝑆்
൰ 100% 

where, 𝑅ଶ = 0 means that none of the variability in the data is explained by the regression model, 
and 𝑅ଶ = 100 means that all the observations fit precisely on the fitted regression line. 

Note that 𝑅ଶ is not an indicator of whether there is a relationship between Y and X but rather the 
extent to which that relationship is linear. 

 

3.4 Fitted values and residuals 
 

From section 3.2 above, the residuals or crude residuals are 𝑒௜ where 

𝑒௜ =  𝑦௜ −  𝑦ො௜  

which we can also write as 

𝑒௜ =  𝑦௜ − ൫𝛽መ଴ +  𝛽መଵ𝑥௜൯ 

or as 

𝑒௜ =  𝑦௜ − 𝑦ത − 𝛽መଵ(𝑥௜ − 𝑥̅) 

and that ∑ 𝑒௜ = 0௡
௜ୀଵ . 

Now 𝐸(𝑒௜) = 𝐸 ቀ𝑦௜ − ൫𝛽መ଴ +  𝛽መଵ𝑥௜൯ቁ = 𝐸(𝑦௜) − 𝐸 ቀ൫𝛽መ଴ +  𝛽መଵ𝑥௜൯ቁ = (𝛽଴ +  𝛽ଵ𝑥௜) − (𝛽଴ + 𝛽ଵ𝑥௜) = 0 

So the mean of the ith residual is zero. 

The variance of 𝑒௜ is given by 

𝑣𝑎𝑟(𝑒௜) =  𝜎ଶ(1 −
1

𝑛
− 

(𝑥௜ − 𝑥̅)ଶ

𝑆௫௫
) 

We will not derive this (or the covariance term below) from first principles in this module. 

Note though that 𝑣𝑎𝑟(𝑒௜) is not the same as 𝑣𝑎𝑟(𝜀௜) which is a constant, 𝜎ଶ whereas the expression 
for 𝑣𝑎𝑟(𝑒௜) includes 𝑥௜ so it is different for each i. 

The covariance of two residuals 𝑒௜ and 𝑒௝ is given by 

𝑐𝑜𝑣൫𝑒௜, 𝑒௝൯ =  −𝜎ଶ(
1

𝑛
+  

(𝑥௜ − 𝑥̅)(𝑥௝ − 𝑥̅) 

𝑆௫௫
) 

which again is different from 𝑐𝑜𝑣൫𝜀௜, 𝜀௝൯ = 0. 

Therefore from the variance and covariance terms we see that the residuals of the fitted model (𝑒௜) 
do not behave in exactly the same way as the error term in the original model specification (𝜀௜). 

Therefore rather than crude residuals (𝑒௜) it is sometimes useful to consider standardised residuals 
sometimes denoted 𝑑௜. The standardised residuals are designed to have a variance that is closer to 
the constant 𝜎ଶ and covariances that are closer to zero. 



17 
 

𝑑௜ =  
𝑒௜

[𝑠ଶ(1 − 𝑣௜)]
ଵ
ଶ

 

where,  

𝑣௜ =
1

𝑛
+ 

(𝑥௜ − 𝑥̅)ଶ

𝑆௫௫
 

Residual Plots can be a useful way of checking a linear regression model: 

 plot the 𝑑௜  against the 𝑥௜ to check whether a linear model is appropriate and to see whether 
the Normal assumptions are appropriate 

 plot the 𝑑௜  against the fitted 𝑦ො௜  to check for a constant variance (which is called 
homoscedasticity) 

To check the assumption of normality (that the errors follow a Normal distribution) we can also use 
a QQ Plot. If the residual data is from a Normal distribution, then the QQ Plot will be close to a 
straight line. Points on the QQ Plot away from a straight line suggest that the residuals follow some 
other, non-Normal, distribution. The QQ Plot is a good first indication but later in the module we will 
look at a more formal statistical test of the hypothesis that the errors are normally distributed. 

 

  


