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3. Assessing the Simple Linear Regression Model 

 

3.1. Properties of the estimators 

There are a number of properties of estimators that are desirable. One is for an estimator to be 
unbiased. 

If 𝜃 is an estimator of 𝜃 then we say that 𝜃 is an unbiased estimator of 𝜃 if 𝐸 𝜃 =  𝜃. 

So what about 𝛽  and 𝛽  in our Normal Simple Linear Regression Model. Are they unbiased? 

We will begin with the estimator of the slope parameter, 𝛽   

Recall from section 2.2 above that  

𝛽 =  
∑ (𝑥 −  �̅� )(𝑦 −  𝑦)

∑ (𝑥 −  �̅�)  
 

which means that 𝛽  can be expressed as a function of Yi in the form 

𝛽 =  𝑐 𝑌  

where 𝑐 =  
(  ̅  )

∑ (  ̅)  
 or (  ̅) 

Now under our Normal Simple Linear Regression Model, we assume that the Yi are independent and 
normally distributed, 

𝑦 =  𝛽 +  𝛽  𝑥 +  𝜀  where the 𝜀  are iid  𝜀  ~ 𝑁(0, 𝜎 ) 

so 

𝑦  ~ 𝑁(𝛽 + 𝛽  𝑥 , 𝜎 ) 

We know from MTH5129 Probability & Statistics II that a linear combination of independent normal 
random variables is itself normally distributed. This means that if Yi follows a Normal distribution, 
then 𝛽  will follow a Normal distribution as well. 

To determine whether 𝛽  is an unbiased estimator we need to find E[ 𝛽 ] 

𝐸 𝛽 = 𝐸 𝑐 𝑌 = 𝑐 𝐸[𝑌 ] =  𝑐 (𝛽 +  𝛽  𝑥 ) =  𝛽 𝑐 +  𝛽   𝑐 𝑥  

 

but  ∑ 𝑐 = 0 because ∑ (𝑥 −  �̅�) = 0 from the definition of �̅� 

and ∑  𝑐 𝑥 = 1 because ∑  (𝑥 −  �̅�)𝑥 =  𝑆  

therefore 

𝐸 𝛽 =  𝛽 ∑ 𝑐 +  𝛽  ∑  𝑐 𝑥  = 𝛽   so 𝛽  is an unbiased estimator of 𝛽   □ 
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Now for the variance of 𝛽  

𝑣𝑎𝑟 𝛽 = 𝑣𝑎𝑟[ ∑ 𝑐 𝑌 ] =  ∑ 𝑐
 

𝑣𝑎𝑟[𝑌 ] =  ∑
(  ̅) 

=   

so in summary for 𝛽 , the least squares estimator of the slope parameter in the Normal Simple 
Linear Regression Model 

𝛽  ~ 𝑁(𝛽  ,
𝜎

𝑆
) 

 

Turning to the intercept parameter 𝛽   

Recall from section 2.2 that 

𝛽 =  𝑌 −  𝛽  �̅� 

and substituting in our expression for 𝛽  in terms of Yi 

𝛽 =  𝑌 −  �̅� 𝑐 𝑌 =
1

𝑛
𝑌 −  �̅� 𝑐 𝑌 =  𝑌  (

1

𝑛
−  𝑐 �̅�) 

where 𝑐  is defined as before. 

This means that 𝛽  can also be expressed as a linear combination of Yi and therefore by the same 
reasoning as for 𝛽  we find that 𝛽  follows a Normal distribution. 

then 

𝐸 𝛽 = 𝐸 𝑌 −  𝛽  �̅� = 𝐸[𝑌] − �̅�𝐸 𝛽 =  𝛽  +  𝛽 �̅� − 𝛽 �̅�  =  𝛽   

so 𝛽  is an unbiased estimator of 𝛽  . 

for the variance of 𝛽  

𝑣𝑎𝑟 𝛽 = 𝑣𝑎𝑟[∑ 𝑌  ( − 𝑐 �̅�)] =  ∑ 𝜎 −  𝑐 �̅�  =  𝜎 ∑ ( − 2
̅
+  𝑐 �̅� )  

=  𝜎 ( 
𝑛

𝑛
− 0 + 

(𝑥 −  �̅�)  �̅�

𝑆
=  𝜎 (

1

𝑛
+

�̅�

𝑆
 ) 

putting these together we have, for 𝛽 , the least squares estimator of the intercept parameter in the 
Normal Simple Linear Regression Model 

𝛽  ~ 𝑁(𝛽 , 𝜎 (
1

𝑛
+

�̅�

𝑆
 ) ) 

 

3.2. Assessing the model 

If our model is 

𝑦 =  𝛽 + 𝛽 𝑥 + 𝜀  
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then with estimates 𝛽  and 𝛽  and a set of observations (xi, yi) i=1, 2, …, n we can fit the model and 
estimate the response variable with 

𝑦 =  𝛽 +  𝛽 𝑥  

where the 𝑦  values 𝑦 , 𝑦 , … 𝑦  are the fitted values or points on the fitted regression line 
corresponding to the n observed 𝑥  values. 

Now the observed values 𝑦 , 𝑦 , … 𝑦  will be different to the fitted values 𝑦 , 𝑦 , … 𝑦  that is the 
observed values will not all lie on the fitted regression line. We define the residuals (sometimes 
called the crude residuals) to be  

𝑒 =  𝑦 −  𝑦  

That is the residuals are the observed values minus the fitted values. 

The residuals 𝑒  are estimates of the random errors 𝜀  in the original model specification. 

From the least squares definition of 𝛽  and 𝛽  we will see that ∑ 𝑒 = 0 

 

𝑒 =  𝑦 −  𝑦 =  𝑒 =  𝑦 − 𝛽 +  𝛽 𝑥 = 𝑦 − 𝑦 −  𝛽 (𝑥 − �̅�)  

so 

∑ 𝑒 =  ∑ (𝑦 − 𝑦) − 𝛽 ∑ (𝑥 − �̅�) = 0 − 0 = 0  from the definitions of 𝑦 and �̅�. 

 

When we found the least squares estimators 𝛽  and 𝛽  we used a quantity S which is actually a 
function of 𝛽  and 𝛽  so S(𝛽 , 𝛽 ) where from section 2.2 

𝑆(𝛽 , 𝛽 ) =  𝜀  

The value of this function for a given data set (xi, yi) evaluated at the least squares estimates 𝛽  and 
𝛽  is called the Residual Sum of Squares and is denoted 𝑆𝑆  where 

𝑆𝑆 =  𝑒 =  (𝑦 −  𝑦 )  

 

For a particular data set, 𝑆𝑆  is the minimum value of S(𝛽 , 𝛽 ) and is a measure of how well the 
model fits the data. The 𝑆𝑆  is one of the sources of variance of the 𝑦  around their mean 𝑦. 

The total variance of the 𝑦  around their mean 𝑦 can be expressed as the Total Sum of Squares 
denoted 𝑆𝑆  where 

𝑆𝑆 =  (𝑦 −  𝑦)  

In the Simple Linear Regression Model we will see that: 
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Total Sum of Squares = Regression Sum of Squares + Residual Sum of Squares 

𝑆𝑆 =  𝑆𝑆 +  𝑆𝑆  

where 𝑆𝑆  and 𝑆𝑆  have already been defined.  

This equation is sometimes called the Analysis of Variance Identity 

The Regression Sum of Squares is 𝑆𝑆 =  ∑ (𝑦 −  𝑦)  which is sometimes referred to as the 
Model Fit Sum of Squares 

𝑆𝑆 =  (𝑦 − 𝑦) = [(𝑦 −  𝑦 ) + (𝑦 −  𝑦)]   

=  [(𝑦 −  𝑦 ) + (𝑦 −  𝑦) − 2(𝑦 −  𝑦 )(𝑦 − 𝑦)]   

=  𝑆𝑆 +  𝑆𝑆 +  2  (𝑦 −  𝑦 )(𝑦 −  𝑦) 

 

now the third term in this equation becomes, after multiplying out the second bracket, 

(𝑦 −  𝑦 )𝑦 −  𝑦 (𝑦 − 𝑦 ) =  𝑒 𝑦 −  𝑦 𝑒 = 𝑒 𝑦 − 0 

 

𝑒 𝑦 =  𝑒 (𝛽 +  𝛽 𝑥 ) =   𝛽 𝑒 +  𝛽  𝑒 𝑥 =   0 + 0 = 0 

 

therefore 𝑆𝑆 =  𝑆𝑆 +  𝑆𝑆     □ 

That is Total Sum of Squares is made up of: 

 the Regression Sum of Squares – the variability in the 𝑦  around their mean 𝑦 which is 
accounted for by the fitted model, and 

 the Residual Sum of Squares - the variability in the 𝑦  accounted for by the difference 
between observed and fitted values. 

This view of the variability in the 𝑦  is often represented in an Analysis of Variance Table often called 
an ANOVA Table for short. 

 

3.3 The ANOVA Table 

The Analysis of Variance (ANOVA) table is shown below: 
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Source of variation d.f. SS MS VR 

Regression 𝑣  = 1 𝑆𝑆  𝑀𝑆 =  
𝑆𝑆

𝑣
 𝐹 =  

𝑀𝑆

𝑀𝑆
 

Residual 𝑣  = n – 2 𝑆𝑆  𝑀𝑆 =  
𝑆𝑆

𝑣
  

Total 𝑣  = n – 1 𝑆𝑆    

 

In the ANOVA table, the variability in the 𝑦  is accounted for in four different quantities, each 
represented by a column in the table: 

 degrees of freedom (d.f.) 
 Sum of Squares (SS) 
 Mean Squares (MS) 
 Variance Ratio (VR) 

We have already covered Sum of Squares above but will now look at the other quantities in the 
table. 

Degrees of Freedom 

If we have n observations y1, y2, …, yn and then fix either the sum of them or their mean, we can let 
the values of y1 vary and still get that sum or mean, we can let the values of y1 and y2 vary and still 
get that sum or mean, … indeed we can let the values of y1, y2, …, yn-1 vary, but then we will need a 
certain value for yn to get the required sum or mean. So here if we have n observations, n-1 are free 
to vary but one will need to depend on the others. One way of thinking about this is with n 
observations and a fixed sum or mean, n-1 are independent and free to vary and 1 is taken up by the 
fixed sum or mean. An estimate of a parameter will be based on observations or pieces of 
information. The number of independent observations that are used in the estimation of a 
parameter are the degrees of freedom (often abbreviated d.f.). 

With the Total Sum of Squares 𝑆𝑆 =  ∑ (𝑦 −  𝑦)  we have n observations, and one degree of 
freedom is taken up by the calculation of 𝑦, so 𝑆𝑆  has n – 1 degrees of freedom in the ANOVA 
table. 

With the Residual Sum of Squares 𝑆𝑆 =  ∑ 𝑒 =  ∑ (𝑦 −  𝑦 ) =  ∑ 𝑦 − 𝛽 −  𝛽 𝑥   
one degree of freedom is taken up with the estimation of 𝛽  and one d.f. is taken up with the 
estimation of 𝛽 , so 𝑆𝑆  has n – 2 degrees of freedom in the ANOVA table. 

As 𝑆𝑆 =  𝑆𝑆 −  𝑆𝑆  we can find the degrees of freedom for the Regression Sum of Squares 𝑆𝑆  by 
the difference in the d.f. for the Total and Residual Sums of Squares = (n – 1) – (n – 2) = 1. 

Mean Squares 

The 𝑀𝑆  and 𝑀𝑆  in the ANOVA table are a measure of the average variation by Regression and 
Residuals found by dividing the appropriate Sum of Squares by its degrees of freedom. 

Variance Ratio 



15 
 

This ratio measures the variation explained by the model fit relative to that explained by the 
residuals and is denoted F. 

𝐹 =  
𝑀𝑆

𝑀𝑆
 

We know from MTH5129 Probability & Statistics II that if random variable X follows a Chi-squared 
distribution on v1 degrees of freedom and variable Y follows a Chi-squared distribution on v2 degrees 

of freedom, then   follows a Fisher’s F Distribution often simply called an F-Distribution with 

𝑣 and 𝑣  degrees of freedom. 

This is written as ℱ ,  or ℱ  or as ℱ(𝑣 , 𝑣 ). The F-Distribution is skewed and depends on two 
parameters (𝑣 , 𝑣 ). 

This distribution and the Variance Ratio are particularly useful in the Linear Regression model for 
testing whether 𝛽 is statistically different from zero. If 𝛽 = 0 then we could replace the full linear 
regression model 𝑦 =  𝛽 +  𝛽  𝑥 + 𝜀  with a simpler constant model, 𝑦 =  𝛽 +  𝜀 . 

We will see later in this course that if 𝛽 = 0 then the Variance Ratio,  

𝐹 =  
𝑀𝑆

𝑀𝑆
 ~ ℱ  

So to test the null hypothesis 𝐻 : 𝛽 = 0 versus the alternative 𝐻 : 𝛽 ≠ 0 we use the Variance 
Ratio, F as a test statistic. We reject 𝐻  at significance level 𝛼 if  

𝐹 > ℱ (𝛼) 

where ℱ (𝛼) is the value such that 𝑃 𝐹 >  ℱ (𝛼) =  𝛼  

The ANOVA table can also be used to estimate the variance of the residuals 𝜎  (which in the Normal 
Simple Regression Model is also the variance of the yi). 

The Sums of Squares are all functions of the yi which means that because the yi are random 
variables, the different Sums of Squares are random variables as well. It can be helpful to explore the 
stochastic properties of the Sums of Squares: their expectation, variance and distribution. We will do 
this in full later on in the course. For now, we will note without proof that in the simple linear 
regression model, the expected value of the Residual Sum of Squares is given by 

𝐸(𝑆𝑆 ) = (𝑛 − 2)𝜎  

Now  

𝑀𝑆 =  
𝑆𝑆

𝑣
=  

𝑆𝑆

𝑛 − 2
 

which means that  
𝐸(𝑀𝑆 ) = 𝜎  

so 𝑀𝑆  is an unbiased estimator for 𝜎  and is often denoted 𝑆 . This is interesting because 𝑀𝑆  
itself is not the sample variance in the full linear regression model. 

The final quantity to mention here is the Coefficient of Determination denoted 𝑅  which is usually 
expressed as a percentage and is the percentage of total variation in the yi explained by the model 
fitted. That is 
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𝑅 =  
𝑆𝑆

𝑆𝑆
100% = 1 −  

𝑆𝑆

𝑆𝑆
100% 

where, 𝑅 = 0 means that none of the variability in the data is explained by the regression model, 
and 𝑅 = 100 means that all the observations fit precisely on the fitted regression line. 

Note that 𝑅  is not an indicator of whether there is a relationship between Y and X but rather the 
extent to which that relationship is linear. 

 

3.4 Fitted values and residuals 
 

From section 3.2 above, the residuals or crude residuals are 𝑒  where 

𝑒 =  𝑦 −  𝑦  

which we can also write as 

𝑒 =  𝑦 − 𝛽 +  𝛽 𝑥  

or as 

𝑒 =  𝑦 − 𝑦 − 𝛽 (𝑥 − �̅�) 

and that ∑ 𝑒 = 0. 

Now 𝐸(𝑒 ) = 𝐸 𝑦 − 𝛽 +  𝛽 𝑥 = 𝐸(𝑦 ) − 𝐸 𝛽 +  𝛽 𝑥 = (𝛽 +  𝛽 𝑥 ) − (𝛽 + 𝛽 𝑥 ) = 0 

So the mean of the ith residual is zero. 

The variance of 𝑒  is given by 

𝑣𝑎𝑟(𝑒 ) =  𝜎 (1 −
1

𝑛
− 

(𝑥 − �̅�)

𝑆
) 

We will not derive this (or the covariance term below) from first principles in this module. 

Note though that 𝑣𝑎𝑟(𝑒 ) is not the same as 𝑣𝑎𝑟(𝜀 ) which is a constant, 𝜎  whereas the expression 
for 𝑣𝑎𝑟(𝑒 ) includes 𝑥  so it is different for each i. 

The covariance of two residuals 𝑒  and 𝑒  is given by 

𝑐𝑜𝑣 𝑒 , 𝑒 =  −𝜎 (
1

𝑛
+  

(𝑥 − �̅�)(𝑥 − �̅�) 

𝑆
) 

which again is different from 𝑐𝑜𝑣 𝜀 , 𝜀 = 0. 

Therefore from the variance and covariance terms we see that the residuals of the fitted model (𝑒 ) 
do not behave in exactly the same way as the error term in the original model specification (𝜀 ). 

Therefore rather than crude residuals (𝑒 ) it is sometimes useful to consider standardised residuals 
sometimes denoted 𝑑 . The standardised residuals are designed to have a variance that is closer to 
the constant 𝜎  and covariances that are closer to zero. 
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𝑑 =  
𝑒

[𝑠 (1 − 𝑣 )]

 

where,  

𝑣 =
1

𝑛
+ 

(𝑥 − �̅�)

𝑆
 

Residual Plots can be a useful way of checking a linear regression model: 

 plot the 𝑑  against the 𝑥  to check whether a linear model is appropriate and to see whether 
the Normal assumptions are appropriate 

 plot the 𝑑  against the fitted 𝑦  to check for a constant variance (which is called 
homoscedasticity) 

To check the assumption of normality (that the errors follow a Normal distribution) we can also use 
a QQ Plot. If the residual data is from a Normal distribution, then the QQ Plot will be close to a 
straight line. Points on the QQ Plot away from a straight line suggest that the residuals follow some 
other, non-Normal, distribution. The QQ Plot is a good first indication but later in the module we will 
look at a more formal statistical test of the hypothesis that the errors are normally distributed. 

 

  


