Course work 12

12 April, 2024

- 1. Show that a finite union of compact subsets of X is compact.
- 2. Show that a discrete metric space is compact if and only if it is finite.
- 3. Apply the definition of compactness to show that the half-open interval (0,1] is not compact.
- 4. Consider the map $f:[0,1)\to S^1$ given by

$$f(t) = (\cos 2\pi t, \sin 2\pi t).$$

Here $S^1 \subset \mathbb{C}$ is the circle $S^1 = \{z \in \mathbb{C}; |z| = 1\}.$

Show that f is continuous, bijective but is not a homeomorphism.

- 5. Show that the spaces [0,1) and S^1 are not homeomorphic.
- 6. Let $p: X \to Y$ be a continuous map with the property that there exists a continuous map $f: Y \to X$ such that $p \circ f$ equals the identity map of Y. Show that p is a quotient map.
- 7. Define an equivalence relation on the plane $X = \mathbb{R}^2$ as follows:

$$(x_1, y_1) \sim (x_2, y_2)$$
, if $x_1 + y_1^2 = x_2 + y_2^2$.

Show that the quotient space $X^* = \mathbb{R}^2 / \sim$ is homeomorphic to \mathbb{R} .

8. Define an equivalence relation on the plane $X = \mathbb{R}^2$ as follows:

$$(x_1, y_1) \sim (x_2, y_2)$$
, if $x_1^2 + y_1^2 = x_2^2 + y_2^2$.

Show that the quotient space $X^* = \mathbb{R}^2/\sim$ is homeomorphic to $[0,\infty)$.