- 1. Show that in the finite complement topology on \mathbb{R} every subspace of \mathbb{R} is compact.
- 2. Which of the following subsets of the real line \mathbb{R} are compact; briefly explain your answer:
 - (a) (0,1];
 - (b) [0,1);
 - (c) The Cantor set $F \subset [0,1]$;
 - (d) $[0, \infty)$;
 - (e) $\mathbb{R} \{0\}$.
- 3. Let $f: X \to Y$ be a continuous map between metric spaces. Show that if X is compact then for any closed subset $F \subset X$ the image $f(F) \subset Y$ is closed.
- 4. For $p \in [1, \infty)$ consider the space ℓ_p of all infinite sequences (x_1, x_2, \dots) of real numbers satisfying $\sum_{n\geq 1} |x_n|^p < \infty$.
 - (a) Show that the unit ball $B[0;1] \subset \ell_p$ is not compact.
 - (b) Show that $B[0;1] \subset \ell_p$ is closed and bounded.
- 5. Let (X, d) be a metric space; let A be a non-empty subset of X. For each $x \in X$ define the distance from x to A by the equation

$$d(x, A) = \inf\{d(x, a); a \in A\}.$$

- (a) Show that $x \mapsto d(x, A)$ is a continuous function of x.
- (b) Show that if $A \subset X$ is compact then there exists $a \in A$ with d(x, A) = d(x, a).
- (c) Show that if $A \subset X$ is closed and $x \notin A$ then d(x, A) > 0.
- (d) Define the ϵ -neighbourhood of A in X to be the set

$$U(A, \epsilon) = \{x; d(x, A) < \epsilon\}.$$

Show that $U(A, \epsilon)$ equals the union of open balls $B(a, \epsilon)$ for $a \in A$.

- (e) Assume that $A \subset X$ is compact and $U \subset X$ is an open set containing A. Show that U contains some ϵ -neighbourhood of A.
- (f) Is the previous statement true if $A \subset X$ is closed but non-compact?