MTH6127

Course work 9

- 1. Let X and Y be topological spaces and let $f : X \to Y$ be a map. Show that the following properties of f are equivalent:
 - (a) f is continuous;
 - (b) For every subset $A \subset X$ one has $f(\overline{A}) \subset \overline{f(A)}$.
 - (c) For every closed set $F \subset Y$ the preimage $f^{-1}(F) \subset X$ is closed in X.
- 2. In the finite complement topology on \mathbb{R} , to what point (or points) does the sequence $x_n = 1/n$ converge?
- 3. Let $y_n = 1$ for *n* even and $y_n = -1$ for *n* odd. In the finite complement topology on \mathbb{R} , to what point (or points) does the sequence y_n converge?
- 4. Show that a subspace of a Hausdorff space is Hausdorff.
- 5. Let $F : \mathbb{R}^2 \to \mathbb{R}$ be defined by the equation

$$F(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & \text{if } (x,y) \neq (0,0), \\ 0, & \text{if } (x,y) = (0,0). \end{cases}$$

- (a) Show that for any $x_0 \in \mathbb{R}$ the function $y \mapsto F(x_0, y)$ is continuous.
- (b) Show that for any $y_0 \in \mathbb{R}$ the function $x \mapsto F(x, y_0)$ is continuous.
- (c) Show that the function $x \mapsto F(x, x)$ is discontinuous.
- (d) Show that $F : \mathbb{R}^2 \to \mathbb{R}$ is discontinuous.
- 6. Give an example of a function $f : \mathbb{R} \to \mathbb{R}$ which is not continuous at every point $x \in \mathbb{R}$.
- 7. Give an example of a function $f : \mathbb{R} \to \mathbb{R}$ which is continuous at a single point $x \in \mathbb{R}$.