
42 7. TOPOLOGICAL SPACES

Definition 7.16. A sequence of points xn of a topological space (X, T ) converges to a point
x0 2 X if for any open neighbourhood x 2 U ⇢ X there exists N such that for all n > N one has
xn 2 U .

This definition coincides with the definition of convergence in metric spaces. However in general
topological spaces convergence of sequences has sometimes di↵erent unexpected properties.

Example 7.17. Consider the real line R with the finite complement topology of Example 7.7.
Let xn = n where n = 1, 2, 3, . . . . Then xn ! x0 where x0 2 R is arbitrary. Indeed, any open
subset U containing x0 contains all real numbers besides finitely many, hence it must contain all
su�ciently large integers n > N . We see that in topological spaces (unlike the case of metric spaces)
a sequence may have many limits.

7.3. Hausdor↵ and T1-spaces

A topological space (X, T ) is said to be Hausdor↵ if any two distinct points x, y 2 X, x 6= y,
admit disjoint open neighbourhoods, i.e. open subsets U, V 2 T , x 2 U , y 2 V and U \ V = ;.

Any metric space (X, d) is Hausdor↵. Indeed, we can take U = B(x; r) and V = B(y; r) where
0 < 2r < d(x, y).

We say that a topological space (X, T ) is a T1-space if every single point set {x} is closed. This
means that for any pair of distinct points x, y 2 X, x 6= y, there exists open subsets U, V ⇢ X such
that x 2 U , y 2 V and x /2 V , y /2 U , see Figure 1.
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Figure 1. Disjoint neighbourhoods of points in a Hausdor↵ space

Any Hausdor↵ space satisfies the T1-axiom.

Proposition 7.18. In a Hausdor↵ topological space (X, T ) a sequence of point may have at
most one limit.

Proof. Suppose the contrary, i.e. a sequence of points xn 2 X has two distinct limits, i.e.
xn ! x0 and xn ! x0

0 where x0 6= x0
0. Consider disjoint open neighbourhoods x 2 U , y 2 V ,

U \ V = ;. Then there exists N such that for all n > N one has xn 2 U and xn 2 V which is
impossible. ⇤

7.4. Continuous maps between topological spaces

The definition of continuous map between topological spaces is analogous to the corresponding
definition for metric spaces although we use the language of open sets and avoid using metrics.

Definition 7.19. Let (X, TX) and (Y, TY ) be two topological spaces. A map f : X ! Y
is continuous at a point x0 2 X if for every neighbourhood U ⇢ Y of y0 = f(x0) there exists a
neighbourhood V ⇢ X of x0 such that f(V ) ⇢ U . We say that a map f : X ! Y is continuous if
it is continuous at every point x0 2 X.
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Note that for maps between metric spaces this notion of continuity coincides with the one we
studied previously.

Lemma 7.20. Given topological spaces (X, TX) and (Y, TY ). The following properties of a map
f : X ! Y are equivalent:

(i) f is continuous;
(ii) for every open subset U ⇢ Y the preimage f�1(U) ⇢ X is open.
(iii) for every closed subset F ⇢ Y the preimage f�1(F ) ⇢ X is closed.

Proof. Let us assume that f is continuous. Let U ⇢ Y be an open subset. For any x 2 f�1(U)
the image y = f(x) lies in U and by Definition 7.19 there is a neighbourhood Vx ⇢ X of x such
that Vx ⇢ f�1(U). We see that the set

f�1(U) =
[

x2f�1(U)

Vx

is the union of open sets and hence it is open. We have shown that (i) =) (ii).
(ii) =) (iii) is obvious since
for a closed F ⇢ Y the set Y � F is open and hence by (ii) the preimage f�1(Y � F ) is open

in X implying that its complement

f�1(F ) = X � f�1(Y � F )

is closed in X.
Finally we show that (iii) =) (i). Suppose that f : X ! Y satisfies (iii). Let x0 2 X and let

U ⇢ Y be a neighbourhood of y0 = f(x0). The complement F = Y � U is closed and by (iii) the
preimage F 0 = f�1(F ) ⇢ X is closed. Since x0 /2 F 0 there is a neighbourhood V ⇢ X of x0 which
is disjoint from F 0. This means that V ⇢ f�1(U) = X � F 0. ⇤

Example 7.21. Consider the continuous function f : R ! R given by f(x) = x2. The image
of the open interval (�1, 1) equals [0, 1) which is not open.














