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Example 6.4. Consider the equation

1

2
· cosx+ 5 = x.(6.4)

Denoting f(x) = 1
2 · cosx+ 5 we have f : R ! R and f 0(x) = � 1

2 sinx. Thus,

|f 0(x)|  1

2
,

i.e. f : R ! R is a contraction mapping. Staring with x0 = 8 we obtain
x1 = 4.927,
x2 = 5.10,
x3 = 5.19.
x4 = 5.23.
x5 = 5.24,
x6 = 5.255,
x7 = 5.258,
x8 = 5.259,
x9 = 5.26,
x10 = 5.26.

6.2.2. Suppose we need to find a solution of the equation F (x) = 0 lying in the interval [a, b],
where F (a) < 0 and F (b) > 0.

a
bx0

y = F(x)y

x

Figure 2. Equation F (x) = 0

Denote

f(x) = x� �F (x), � > 0.

Then solutions of the equation F (x) = 0 are solutions of the fixed point equation f(x) = x and
vice versa. Suppose that

0 < K1  F 0(x)  K2 for x 2 [a, b].

Then the derivative

f 0(x) = 1� �F 0(x)

satisfies

1� �K2  f 0(x)  1� �K1.

We want

1� �K1 < 1 and 1� �K2 > �1.
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The left inequality is automatically satisfied. The right inequality is equivalent to

� <
2

K2
.(6.5)

For instance, one can take

� =
1

K2

and solve the equation F (x) = 0 by the iterations

xn = f(xn�1), xn ! x0.

Example 6.5. We need to solve the equation x3 = 5. The solution is x = 51/3 = 1.7099.
To find this solution we may apply the method of iterations.
Let F (x) = x3 � 5, a = 1, b = 2.
We have F 0(x) = 3x2 > 0, K1 = 3  F 0(x)  12 = K2 for x 2 [1, 2].
Take � = 1/10 < 2/12 = 1/6.
The equation

f(x) = x� 1

10
(x3 � 5) = x+ 1/2� 1

10
x3.

We obtain succesive iterations:
x0 = 1.5
x1 = 1.66
x2 = 1.702
x3 = 1.7089
x4 = 1.7098.
We see that the iterations approach the solution 1.7099.

6.3. Theorem of Picard: Existence and uniqueness of solutions of di↵erential
equations

Consider a di↵erential equation:

dy

dx
= f(x, y(x))(6.6)

with the initial condition

y(x0) = y0.(6.7)

We want to find a smooth function y = y(x) satisfying the di↵erential equation (6.6) as well as
the initial condition (6.7). The following result is the classical Picard theorem which uses the
contraction mappings and the Fixed Point Theorem 6.2 in its proof.

Theorem 6.6. Suppose that a real valued function f(x, y) is defined on an open subset G ⇢ R2

containing the point (x0, y0). Moreover, assume that the function f(x, y) is continuous, bounded
|f(x, y)|  K and satisfies the Lipschitz condition with respect to y, i.e.

|f(x, y1)� f(x, y2)|  M |y1 � y2| where (x, y1), (x, y2) 2 G.(6.8)

Let 0 < � < M�1 be such that the rectangle [x0 � �, x0 + �]⇥ [y0 �K�, y0 +K�] is contained in G.
Then there exists a unique solution of the di↵erential equation (6.6) on the interval (x0 � �, x0 + �)
satisfying the initial condition (6.7).
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Proof. The equation (6.6) and the initial condition (6.7) can equivalently be presented in the
form of an integral equation

�(x) = y0 +

Z x

x0

f(t,�(t))dt.(6.9)

In more detail, any function �(x) satisfying (6.9) will automatically satisfy (6.7) and (6.6). The
integral equation (6.9) is a fixed point equation for a certain contraction operator which we clarify
below.

Denote by C⇤ the space of all continuous functions � : [x0 � �, x0 + �] ! [y0 � K�, y0 + K�]
with the metric

d(�1,�2) = sup
t

|�1(t)� �2(t)| = max
t

|�1(t)� �2(t)|.

This space is complete as a closed subspace of the complete metric space C[x0 � �, x0 + �].
Consider the mapping A : C⇤ ! C⇤ given by A� =  where

 (x) = y0 +

Z x

x0

f(t,�(t))dt.

We have  2 C⇤ since for |x� x0|  � one has

| (x)� y0| =
����
Z x

x0

f(t,�(t))dt

����  K�.

The integral equation (6.9) can be written as � = A�, i.e. it is the fixed point equation for the
operator A. The mapping A is a contraction. Indeed,

| 1(x)�  2(x)| 
Z x

x0

|f(t,�1(t))� f(t,�2(t))| dt  (M�) · d(�1,�2),

implying that
d(A�1, A�2)  (M�) · d(�1,�2), and M� < 1.

The Fixed Point Theorem 6.2 applies and gives the existence and uniqueness of a solution � 2 C⇤

to the equation (6.9). This completes the proof. ⇤





CHAPTER 7

Topological Spaces and Continuous Functions

7.1. Topologies and Topological Spaces

Definition 7.1. A topology on a set X is a collection T of subsets of X having the following
properties:

(T1) The empty set ; and the whole set X are in T .
(T2) The union of the elements of any subcollection of T is in T .
(T3) The intersection of the elements of any finite subcollection of T is in T .

A set X with a specified topology T on X is called a topological space. Sometimes we represent
a topological space in the form of a pair (X, T ) to emphasise its topology. However in most cases
we shall indicate the topological space by a single symbol X with understanding of which collection
of subsets T forms its topology.

The subsets U 2 T are said to be open or open with respect to the topology T . We shall see
that the same set X may carry many di↵erent topologies and thus it is important to specify which
topology we have in mind.

We can rephrase Definition 7.1 as follows:

(T1) The empty set ; and X are open.
(T2) The union of any family of open sets is open.
(T3) The intersection of the elements of any finite collection of open sets is open.

Definition 7.2. Let A ⇢ X be a subset of a topological space (X, T ). A neighbourhood of A
is an open subset U ⇢ X containing A.

We shall consider a few examples.

Example 7.3. Let (X, d) be a metric space. We defined the family of open subsets of X as the
sets which can be represented as unions of open balls. This family of open sets has the properties
(T1), (T2), (T3) and hence defines a topology on X. We shall refer to it as to the metric topology.

Metric topological spaces are of most importance in mathematics. Nevertheless, in many ques-
tions concerning the metric spaces it is more convenient to speak about their topology and forget
about their metric. Moreover, sometimes it is more convenient to define topology rather than to
define a metric. We shall see many such example in this course.

Example 7.4. The standard metric on R defines a topology which we shall refer to as the
standard topology. The m-dimensional space Rm has also the standard topology which is generated
by the Euclidean metric. It is easy to see that any metric dp on Rm, where p 2 [1,1], generates
the standard topology; for this purpose one can use the inequalities (2.6).

Example 7.5. Suppose that ; and X are the only open sets. This is a topology on X which is
called indiscrete topology. Such topology cannot be generated by a metric assuming that X contains
at least two points.
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Example 7.6. Another extreme case is the discrete topology which declares any subsets of X
to be open. The discrete topology is metrisable: it is generated by the metric d(x, y) = 1 for all
x 6= y, x, y 2 X.

Example 7.7. Another interesting example is provided by the finite complement topology. In
this topology nonempty open subsets U ⇢ X are such that their complements X � U are finite.
Any union of sets with finite complements also has a finite complement; besides, any intersection of
finitely many such subsets is either empty or has a finite complement. Thus, the properties (T1),
(T2), (T3) are satisfies.

The finite complement topology is not metrisable if the set X is infinite,

Example 7.8. The following example describes a variety of situations when di↵erent metrics
define identical topologies. Suppose that

d, d0 : X ⇥X ! R

are two metrics on a set X and there exist constants ↵, � > 0 such that for all x, y 2 X one has

↵ · d0(x, y)  d(x, y)  � · d0(x, y).(7.1)

Inequalities (2.6) is an example of inequalities (7.1). To show that topologies on X generated by
d and d0 coincide we need to show that (a) any open ball Bd(x; r) is open with respect to the
d0-topology and (b) any open ball Bd0

(x; r) is open with respect to the d-topology.
To show (a), consider a point y 2 Bd(x; r). Then r0 = d(x, y) < r and Bd(y; r� r0) ⇢ Bd(x; r).

Using (7.1) we note that d0(y, z) < ��1(r � r0) implies d(y, z) < r � r0 and hence d(x, z) < r, i.e.

Bd0
(y;��1 · (r � r0)) ⇢ Bd(y; r � r0) ⇢ Bd(x; r).

Our claim (b) follows similarly. Indeed, if y 2 Bd0
(x; r) then r0 = d0(x, y) < r and we have

Bd(y;↵ · (r � r0)) ⇢ Bd0
(y; r � r0) ⇢ Bd0

(x; r).

These inclusions show that any d-open ball is a union d0-open balls and vice versa, any d0-open ball
is a union of d-open balls.

Finally in this section we shall discuss the construction of the subspace topology. Let (X, TX)
be a topological space and let Y ⇢ X be a subset. We can define a topology TY on Y as follows

TY = {U \ Y ;U 2 TX}.
In other words, an open subset of the subspace topology (Y, TY ) is an intersection of an open subset
of X with Y . We shall also say that the topology TY is induced by the topology TX on Y .

As an example, consider the standard embedding Rm ⇢ Rn where m < n. The topology on
Rm induced by the standard topology of Rn coincides with the standard topology of Rm. This
means that any open subset of Rm can be represented as the intersection of an open subset of Rn

with Rm.

7.2. Closed Sets and the Closure

Let (X, T ) be a topological space. A subset F ⇢ X is defined to be closed if its complement
X � F is open, i.e. X � F 2 T . Below we list the properties of closed sets:

(C1) The empty set ; and the whole space X are closed.
(C2) The intersection of any family of closed sets is closed.
(C3) The union of any finite collection of closed sets is a closed set.
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The properties (C1), (C2), (C3) follow from (T1), (T2), (T3) by using de Morgan’s law. For
instance, we may prove (C2) as follows. Let F↵ be a collection of closed subsets of X where
↵ 2 A. The complement X � F↵ is open and hence the union [↵(X � F↵) is an open subset.
Hence the complement X �[↵(X � F↵) is closed. However, by de Morgan’s law, this complement
X � [↵(X � F↵) equals the intersection \↵F↵, and therefore (C2) follows.

Definition 7.9. The closure A of a subset A ⇢ X of a topological space (X, T ) is defined as
the intersection of all closed subsets of X containing A, i.e.

A =
\

F�A is closed

F.

Clearly, A ⇢ A and the closure A is a closed subset as follows from (C2). In fact the closure A
is the smallest closed subset containing A.

Theorem 7.10. A point x 2 X belongs to the closure, x 2 A, if and only if every open subset
U ⇢ X containing x intersects A.

Proof. The complement X�A is open since A is closed. Thus, x /2 A if and only if x 2 X�A,
i.e. when there exists an open subset containing x and disjoint from A. ⇤

The operation of closure has the following properties:

(1) A ⇢ A;

(2) A = A;
(3) A1 ⇢ A2 implies A1 ⇢ A2;
(4) A1 [A2 = A1 [A2.

Let us prove the last property. Since A1 [ A2 is closed and contains A1 [ A2 we obtain
A1 [A2 ⇢ A1 [ A2. On the other hand, Ai ⇢ A1 [ A2, where i = 1, 2, imply Ai ⇢ A1 [A2 and
hence A1 [A2 ⇢ A1 [A2. ⇤

As in the case of metric spaces, we may speak about limit points.

Definition 7.11. Let A ⇢ X be a subset of a topological space (X, T ). A point x 2 X is a
limit point (or accumulation or cluster point) of A if every open set containing x intersects A in
some point other than x. In other words, x is a limit point of A if x 2 A� {x}.

We shall denote by A0 the set of limit points of A.

Example 7.12. If X = R with the standard topology and A = (0, 1] then the set of limit
points is A0 = [0, 1]. For B = { 1

n ;n = 1, 2, . . . } ⇢ R we have B0 = {0}.

Theorem 7.13. One has A = A [A0.

Proof. Clearly, A0 ⇢ A and A ⇢ A implying A [ A0 ⇢ A. On the other hand, if x 2 A and
x /2 A then every open subset containing x intersects A and this intersection cannot not involve x,
i.e. x 2 A0. Therefore, A ⇢ A [A0. ⇤

Corollary 7.14. A subset A ⇢ X is closed if and only if A0 ⇢ A.

Example 7.15. Consider the finite complement topology of Example 7.7 on an infinite set X.
Then any infinite subset A ⇢ X is dense, i.e. its closure A equals X.


