- 1. Decide if the mapping $f : \mathbb{R} \to \mathbb{R}$ where $f(x) = \frac{1}{2} \cos x$ is a contraction.
- 2. Apply the Contraction Mapping Theorem to solve numerically the equation

$$x = \frac{1}{2}\cos x.$$

- 3. Compute the iterations $x_n = f(x_{n-1})$ with two different initial conditions. Compare the results.
- 4. Consider \mathbb{R}^2 with the d_1 -metric, i.e. $d_1(v, v') = |x x'| + |y y'|$ where v = (x, y) and v' = (x', y'). Is this metric space complete? Justify your answer.
- 5. Let $f : \mathbb{R}^2 \to \mathbb{R}^2$ be given by $f(v) = (\frac{1}{3}y, \frac{1}{3}(x+1))$, where v = (x, y). Show that f is a contraction with respect to the d_1 -metric.
- 6. Find the fixed point of f .
- 7. Assume that a Cauchy sequence (x_n) in a metric space (X, d) contains a subsequence (x_{n_i}) which converges to a point $x_0 \in X$. Show that the whole sequence (x_n) converges to x_0 as well.