CHAPTER 6

Contraction Mappings and the Fixed Point Theorem

6.1. Fixed Point Theorem
Let (X,d) be a metric space.

DEFINITION 6.1. A map f : X — X is a contraction if there exists a < 1 such that for all
z,y € X one has

(6.1) d(f(x), f(y)) < a-d(z,y).
THEOREM 6.2 (Fixed Point Theorem). Any contraction mapping f : X — X of a complete

metric space X has a unique fized point, i.e. a point x € X with f(z) = x.

PROOF. Let £y € X be an arbitrary point. Define the sequence z,, € X by z1 = f(xo),
x9 = f(x1), and in general x,, = f(r,—1) where n = 1,2,.... We claim that (x,) is a Cauchy
sequence. Indeed, for n < m we have

d(.’En,l’m) = d(fn(mO)vfn(xmfn))
< and(anzm—n)
< a"d(xo,z1) +d(zr,22) + -+ d(@m—n—1, Tm—n)
< a™[d(wg, 1) + ad(xo, z1) + aPd(zo, 1) + ... @™ " rd(zg, 1))
an
S d(x07x1)' 1_ o

As a < 1 we see that d(x,z,,) — 0 as n,m — o0, i.e. the sequence (x,) is a Cauchy sequence.
Since the space X is complete the sequence z,, must have a limit which we denote zg = lim z,,.
Then f(z¢) = f(limz,) = lim f(x,) = limz, 1 = xo, i.e. x¢ is a fixed point of the map f.

The fixed point ¢ is unique: if yq is another fixed point, i.e. f(yo) = yo, then

d(x(),yo) = d(f(l'()), f(yo)) Sa- d(fﬂmyo)
which can happen only if d(xg,y0) =0, i.e. 2o = yo. (]

EXAMPLE 6.3. Let X = [1,00) with the usual metric; it is a complete metric space. Consider
the following map f: X — X,

flz)=x+ %, z € [1,00).

For z,y € X we have

N k.
flx)—fly) = y+ ”
1

= (ﬂﬁfy)(lfxfy)
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Thus,
1
— =lz—yl-|1-——|<|z—1y.
lf(@) = fy)l =z -yl xyl |z —yl
However f has no fixed points as the equation
1
flx)=az+ _= T

has no solutions. Figure 1 shows the graphs of the functions f(z) = x + % and y = x illustrating

V4 y =fx)

FIGURE 1. The graphs of the functions y = x + % and y =z

the fact that these two curves have no intersection. This example shows that the inequality (6.1)
cannot be replaced by a weaker inequality d(f(x), f(y)) < d(x,y).

6.2. Applications of the Fixed Point Theorem
6.2.1. Let f : [a,b] — [a,b] be a Cl-smooth function satisfying |f/(z)| < K < 1 for all z € [a, b].
Then f satisfies the Lipschitz condition
(6.2) [f(@) = fWI < K-|lz—yl, zy€lab]
Indeed, by the Mean Value Theorem

fly) = flx)=f' (&) (y—=x), forsome &€ [z,y]

Inequality (6.2) is the contraction inequality (6.1) for the Euclidean metric on R. Since the closed
interval [a, b] is complete, the Contraction Mapping Theorem is applicable and we obtain that the
solution to the equation

flz) =
exists and is unique. Moreover, it can be found with arbitrarily small error by performing the
iterations

(6.3) Tn = f(Tp_1), n=1,2...

where the initial approximation zg € [a, b] is chosen arbitrarily.
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EXAMPLE 6.4. Consider the equation

(6.4) % -cosx + 5 =ux.
Denoting f(z) = § - cosz + 5 we have f : R — R and f'(z) = — sina. Thus,
1
!/
@<,
i,e. f:R — R is a contraction mapping. Staring with x¢o = 8 we obtain
T = 4927,
Ty = 5].07
Ir3 = 5.19.
Ty — 5.23.
r5 = 5.24,
xg = 5.255,
x7 = 5.258,
rg = 5.259,
Tg = 5.267
T10 = 5.26.

6.2.2. Suppose that we need to find a solution of the equation F(z) = 0 lying in the interval
[a,b], where F(a) < 0 and F(b) > 0.

y

FIGURE 2. Equation F(z) =0

Denote
flz) =2 —AF(x), A>0.

Then solutions of the equation F'(z) = 0 are solutions of the fixed point equation f(z) = = and
vice versa. Suppose that

0< Ky <F'(z) <Ky for z€]la,b].
Then the derivative
fl(@)=1-AF'()
satisfies
1— MKy < f'(z) <1—)\K;.
We want
1-AK; <1 and 1-— MKy > —1.



