CHAPTER 6

Contraction Mappings and the Fixed Point Theorem

6.1. Fixed Point Theorem

Let (X, d) be a metric space.
Definition 6.1. A map $f: X \rightarrow X$ is a contraction if there exists $\alpha<1$ such that for all $x, y \in X$ one has

$$
\begin{equation*}
d(f(x), f(y)) \leq \alpha \cdot d(x, y) \tag{6.1}
\end{equation*}
$$

Theorem 6.2 (Fixed Point Theorem). Any contraction mapping $f: X \rightarrow X$ of a complete metric space X has a unique fixed point, i.e. a point $x \in X$ with $f(x)=x$.

Proof. Let $x_{0} \in X$ be an arbitrary point. Define the sequence $x_{n} \in X$ by $x_{1}=f\left(x_{0}\right)$, $x_{2}=f\left(x_{1}\right)$, and in general $x_{n}=f\left(x_{n-1}\right)$ where $n=1,2, \ldots$. We claim that $\left(x_{n}\right)$ is a Cauchy sequence. Indeed, for $n \leq m$ we have

$$
\begin{aligned}
d\left(x_{n}, x_{m}\right) & =d\left(f^{n}\left(x_{0}\right), f^{n}\left(x_{m-n}\right)\right) \\
& \leq \alpha^{n} d\left(x_{0}, x_{m-n}\right) \\
& \leq \alpha^{n}\left[d\left(x_{0}, x_{1}\right)+d\left(x_{1}, x_{2}\right)+\cdots+d\left(x_{m-n-1}, x_{m-n}\right)\right. \\
& \leq \alpha^{n}\left[d\left(x_{0}, x_{1}\right)+\alpha d\left(x_{0}, x_{1}\right)+\alpha^{2} d\left(x_{0}, x_{1}\right)+\ldots \alpha^{m-n-1} d\left(x_{0}, x_{1}\right)\right] \\
& \leq d\left(x_{0}, x_{1}\right) \cdot \frac{\alpha^{n}}{1-\alpha}
\end{aligned}
$$

As $\alpha<1$ we see that $d\left(x, x_{m}\right) \rightarrow 0$ as $n, m \rightarrow \infty$, i.e. the sequence $\left(x_{n}\right)$ is a Cauchy sequence. Since the space X is complete the sequence x_{n} must have a limit which we denote $x_{0}=\lim x_{n}$. Then $f\left(x_{0}\right)=f\left(\lim x_{n}\right)=\lim f\left(x_{n}\right)=\lim x_{n+1}=x_{0}$, i.e. x_{0} is a fixed point of the map f.

The fixed point x_{0} is unique: if y_{0} is another fixed point, i.e. $f\left(y_{0}\right)=y_{0}$, then

$$
d\left(x_{0}, y_{0}\right)=d\left(f\left(x_{0}\right), f\left(y_{0}\right)\right) \leq \alpha \cdot d\left(x_{0}, y_{0}\right)
$$

which can happen only if $d\left(x_{0}, y_{0}\right)=0$, i.e. $x_{0}=y_{0}$.
Example 6.3. Let $X=[1, \infty)$ with the usual metric; it is a complete metric space. Consider the following map $f: X \rightarrow X$,

$$
f(x)=x+\frac{1}{x}, \quad x \in[1, \infty)
$$

For $x, y \in X$ we have

$$
\begin{aligned}
f(x)-f(y) & =x-y+\frac{y-x}{x y} \\
& =(x-y)\left(1-\frac{1}{x y}\right) .
\end{aligned}
$$

Thus,

$$
|f(x)-f(y)|=|x-y| \cdot\left|1-\frac{1}{x y}\right|<|x-y| .
$$

However f has no fixed points as the equation

$$
f(x)=x+\frac{1}{x}=x
$$

has no solutions. Figure 1 shows the graphs of the functions $f(x)=x+\frac{1}{x}$ and $y=x$ illustrating

Figure 1. The graphs of the functions $y=x+\frac{1}{x}$ and $y=x$
the fact that these two curves have no intersection. This example shows that the inequality (6.1) cannot be replaced by a weaker inequality $d(f(x), f(y))<d(x, y)$.

6.2. Applications of the Fixed Point Theorem

6.2.1. Let $f:[a, b] \rightarrow[a, b]$ be a C^{1}-smooth function satisfying $\left|f^{\prime}(x)\right| \leq K<1$ for all $x \in[a, b]$. Then f satisfies the Lipschitz condition

$$
\begin{equation*}
|f(x)-f(y)| \leq K \cdot|x-y|, \quad x, y \in[a, b] \tag{6.2}
\end{equation*}
$$

Indeed, by the Mean Value Theorem

$$
f(y)-f(x)=f^{\prime}(\xi) \cdot(y-x), \quad \text { for some } \quad \xi \in[x, y] .
$$

Inequality (6.2) is the contraction inequality (6.1) for the Euclidean metric on R. Since the closed interval $[a, b]$ is complete, the Contraction Mapping Theorem is applicable and we obtain that the solution to the equation

$$
f(x)=x
$$

exists and is unique. Moreover, it can be found with arbitrarily small error by performing the iterations

$$
\begin{equation*}
x_{n}=f\left(x_{n-1}\right), \quad n=1,2, \ldots \tag{6.3}
\end{equation*}
$$

where the initial approximation $x_{0} \in[a, b]$ is chosen arbitrarily.

Example 6.4. Consider the equation

$$
\begin{equation*}
\frac{1}{2} \cdot \cos x+5=x \tag{6.4}
\end{equation*}
$$

Denoting $f(x)=\frac{1}{2} \cdot \cos x+5$ we have $f: \mathbf{R} \rightarrow \mathbf{R}$ and $f^{\prime}(x)=-\frac{1}{2} \sin x$. Thus,

$$
\left|f^{\prime}(x)\right| \leq \frac{1}{2}
$$

i.e. $f: \mathbf{R} \rightarrow \mathbf{R}$ is a contraction mapping. Staring with $x_{0}=8$ we obtain
$x_{1}=4.927$,
$x_{2}=5.10$,
$x_{3}=5.19$.
$x_{4}=5.23$.
$x_{5}=5.24$,
$x_{6}=5.255$,
$x_{7}=5.258$,
$x_{8}=5.259$,
$x_{9}=5.26$,
$x_{10}=5.26$.
6.2.2. Suppose that we need to find a solution of the equation $F(x)=0$ lying in the interval $[a, b]$, where $F(a)<0$ and $F(b)>0$.

Figure 2. Equation $F(x)=0$

Denote

$$
f(x)=x-\lambda F(x), \quad \lambda>0 .
$$

Then solutions of the equation $F(x)=0$ are solutions of the fixed point equation $f(x)=x$ and vice versa. Suppose that

$$
0<K_{1} \leq F^{\prime}(x) \leq K_{2} \quad \text { for } \quad x \in[a, b] .
$$

Then the derivative

$$
f^{\prime}(x)=1-\lambda F^{\prime}(x)
$$

satisfies

$$
1-\lambda K_{2} \leq f^{\prime}(x) \leq 1-\lambda K_{1} .
$$

We want

$$
1-\lambda K_{1}<1 \quad \text { and } \quad 1-\lambda K_{2}>-1
$$

