
CHAPTER 6

Contraction Mappings and the Fixed Point Theorem

6.1. Fixed Point Theorem

Let (X, d) be a metric space.

Definition 6.1. A map f : X ! X is a contraction if there exists ↵ < 1 such that for all
x, y 2 X one has

d(f(x), f(y))  ↵ · d(x, y).(6.1)

Theorem 6.2 (Fixed Point Theorem). Any contraction mapping f : X ! X of a complete

metric space X has a unique fixed point, i.e. a point x 2 X with f(x) = x.

Proof. Let x0 2 X be an arbitrary point. Define the sequence xn 2 X by x1 = f(x0),
x2 = f(x1), and in general xn = f(xn�1) where n = 1, 2, . . . . We claim that (xn) is a Cauchy
sequence. Indeed, for n  m we have

d(xn, xm) = d(fn(x0), f
n(xm�n))

 ↵nd(x0, xm�n)

 ↵n[d(x0, x1) + d(x1, x2) + · · ·+ d(xm�n�1, xm�n)

 ↵n[d(x0, x1) + ↵d(x0, x1) + ↵2d(x0, x1) + . . .↵m�n�1d(x0, x1)]

 d(x0, x1) ·
↵n

1� ↵

As ↵ < 1 we see that d(x, xm) ! 0 as n,m ! 1, i.e. the sequence (xn) is a Cauchy sequence.
Since the space X is complete the sequence xn must have a limit which we denote x0 = limxn.
Then f(x0) = f(limxn) = lim f(xn) = limxn+1 = x0, i.e. x0 is a fixed point of the map f .

The fixed point x0 is unique: if y0 is another fixed point, i.e. f(y0) = y0, then

d(x0, y0) = d(f(x0), f(y0))  ↵ · d(x0, y0)

which can happen only if d(x0, y0) = 0, i.e. x0 = y0. ⇤

Example 6.3. Let X = [1,1) with the usual metric; it is a complete metric space. Consider
the following map f : X ! X,

f(x) = x+
1

x
, x 2 [1,1).

For x, y 2 X we have

f(x)� f(y) = x� y +
y � x

xy

= (x� y)(1� 1

xy
).
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Thus,

|f(x)� f(y)| = |x� y| · |1� 1

xy
| < |x� y|.

However f has no fixed points as the equation

f(x) = x+
1

x
= x

has no solutions. Figure 1 shows the graphs of the functions f(x) = x + 1
x and y = x illustrating

x

y y = f(x)

y = x

Figure 1. The graphs of the functions y = x+ 1
x and y = x

the fact that these two curves have no intersection. This example shows that the inequality (6.1)
cannot be replaced by a weaker inequality d(f(x), f(y)) < d(x, y).

6.2. Applications of the Fixed Point Theorem

6.2.1. Let f : [a, b] ! [a, b] be a C1-smooth function satisfying |f 0(x)|  K < 1 for all x 2 [a, b].
Then f satisfies the Lipschitz condition

|f(x)� f(y)|  K · |x� y|, x, y 2 [a, b].(6.2)

Indeed, by the Mean Value Theorem

f(y)� f(x) = f 0(⇠) · (y � x), for some ⇠ 2 [x, y].

Inequality (6.2) is the contraction inequality (6.1) for the Euclidean metric on R. Since the closed
interval [a, b] is complete, the Contraction Mapping Theorem is applicable and we obtain that the
solution to the equation

f(x) = x

exists and is unique. Moreover, it can be found with arbitrarily small error by performing the
iterations

xn = f(xn�1), n = 1, 2, . . .(6.3)

where the initial approximation x0 2 [a, b] is chosen arbitrarily.
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Example 6.4. Consider the equation

1

2
· cosx+ 5 = x.(6.4)

Denoting f(x) = 1
2 · cosx+ 5 we have f : R ! R and f 0(x) = � 1

2 sinx. Thus,

|f 0(x)|  1

2
,

i.e. f : R ! R is a contraction mapping. Staring with x0 = 8 we obtain
x1 = 4.927,
x2 = 5.10,
x3 = 5.19.
x4 = 5.23.
x5 = 5.24,
x6 = 5.255,
x7 = 5.258,
x8 = 5.259,
x9 = 5.26,
x10 = 5.26.

6.2.2. Suppose that we need to find a solution of the equation F (x) = 0 lying in the interval
[a, b], where F (a) < 0 and F (b) > 0.

a
bx0

y = F(x)y

x

Figure 2. Equation F (x) = 0

Denote

f(x) = x� �F (x), � > 0.

Then solutions of the equation F (x) = 0 are solutions of the fixed point equation f(x) = x and
vice versa. Suppose that

0 < K1  F 0(x)  K2 for x 2 [a, b].

Then the derivative

f 0(x) = 1� �F 0(x)

satisfies

1� �K2  f 0(x)  1� �K1.

We want

1� �K1 < 1 and 1� �K2 > �1.


