CHAPTER 6

Contraction Mappings and the Fixed Point Theorem

6.1. Fixed Point Theorem

Let (X, d) be a metric space.

DEFINITION 6.1. A map $f: X \to X$ is a contraction if there exists $\alpha < 1$ such that for all $x,y \in X$ one has

$$(6.1) d(f(x), f(y)) < \alpha \cdot d(x, y).$$

THEOREM 6.2 (Fixed Point Theorem). Any contraction mapping $f: X \to X$ of a complete metric space X has a unique fixed point, i.e. a point $x \in X$ with f(x) = x.

PROOF. Let $x_0 \in X$ be an arbitrary point. Define the sequence $x_n \in X$ by $x_1 = f(x_0)$, $x_2 = f(x_1)$, and in general $x_n = f(x_{n-1})$ where $n = 1, 2, \ldots$ We claim that (x_n) is a Cauchy sequence. Indeed, for $n \le m$ we have

$$d(x_{n}, x_{m}) = d(f^{n}(x_{0}), f^{n}(x_{m-n}))$$

$$\leq \alpha^{n} d(x_{0}, x_{m-n})$$

$$\leq \alpha^{n} [d(x_{0}, x_{1}) + d(x_{1}, x_{2}) + \dots + d(x_{m-n-1}, x_{m-n})]$$

$$\leq \alpha^{n} [d(x_{0}, x_{1}) + \alpha d(x_{0}, x_{1}) + \alpha^{2} d(x_{0}, x_{1}) + \dots + \alpha^{m-n-1} d(x_{0}, x_{1})]$$

$$\leq d(x_{0}, x_{1}) \cdot \frac{\alpha^{n}}{1 - \alpha}$$

As $\alpha < 1$ we see that $d(x, x_m) \to 0$ as $n, m \to \infty$, i.e. the sequence (x_n) is a Cauchy sequence. Since the space X is complete the sequence x_n must have a limit which we denote $x_0 = \lim x_n$. Then $f(x_0) = f(\lim x_n) = \lim f(x_n) = \lim x_{n+1} = x_0$, i.e. x_0 is a fixed point of the map f.

The fixed point x_0 is unique: if y_0 is another fixed point, i.e. $f(y_0) = y_0$, then

$$d(x_0, y_0) = d(f(x_0), f(y_0)) \le \alpha \cdot d(x_0, y_0)$$

which can happen only if $d(x_0, y_0) = 0$, i.e. $x_0 = y_0$.

EXAMPLE 6.3. Let $X = [1, \infty)$ with the usual metric; it is a complete metric space. Consider the following map $f: X \to X$,

$$f(x) = x + \frac{1}{x}, \quad x \in [1, \infty).$$

For $x, y \in X$ we have

$$f(x) - f(y) = x - y + \frac{y - x}{xy}$$
$$= (x - y)(1 - \frac{1}{xy}).$$

Thus,

$$|f(x) - f(y)| = |x - y| \cdot |1 - \frac{1}{xy}| < |x - y|.$$

However f has no fixed points as the equation

$$f(x) = x + \frac{1}{x} = x$$

has no solutions. Figure 1 shows the graphs of the functions $f(x) = x + \frac{1}{x}$ and y = x illustrating

FIGURE 1. The graphs of the functions $y = x + \frac{1}{x}$ and y = x

the fact that these two curves have no intersection. This example shows that the inequality (6.1) cannot be replaced by a weaker inequality d(f(x), f(y)) < d(x, y).

6.2. Applications of the Fixed Point Theorem

6.2.1. Let $f:[a,b] \to [a,b]$ be a C^1 -smooth function satisfying $|f'(x)| \le K < 1$ for all $x \in [a,b]$. Then f satisfies the Lipschitz condition

(6.2)
$$|f(x) - f(y)| \le K \cdot |x - y|, \quad x, y \in [a, b].$$

Indeed, by the Mean Value Theorem

$$f(y) - f(x) = f'(\xi) \cdot (y - x)$$
, for some $\xi \in [x, y]$.

Inequality (6.2) is the contraction inequality (6.1) for the Euclidean metric on \mathbf{R} . Since the closed interval [a,b] is complete, the Contraction Mapping Theorem is applicable and we obtain that the solution to the equation

$$f(x) = x$$

exists and is unique. Moreover, it can be found with arbitrarily small error by performing the iterations

(6.3)
$$x_n = f(x_{n-1}), \quad n = 1, 2, \dots$$

where the initial approximation $x_0 \in [a, b]$ is chosen arbitrarily.

EXAMPLE 6.4. Consider the equation

$$(6.4) \qquad \qquad \frac{1}{2} \cdot \cos x + 5 = x.$$

Denoting $f(x) = \frac{1}{2} \cdot \cos x + 5$ we have $f: \mathbf{R} \to \mathbf{R}$ and $f'(x) = -\frac{1}{2} \sin x$. Thus,

$$|f'(x)| \le \frac{1}{2},$$

i.e. $f: \mathbf{R} \to \mathbf{R}$ is a contraction mapping. Staring with $x_0 = 8$ we obtain

$$x_1 = 4.927,$$

$$x_2 = 5.10,$$

$$x_3 = 5.19.$$

$$x_4 = 5.23.$$

$$x_5 = 5.24,$$

$$x_6 = 5.255,$$

$$x_7 = 5.258,$$

$$x_8 = 5.259,$$

$$x_9 = 5.26,$$

$$x_{10} = 5.26.$$

6.2.2. Suppose that we need to find a solution of the equation F(x) = 0 lying in the interval [a, b], where F(a) < 0 and F(b) > 0.

FIGURE 2. Equation F(x) = 0

Denote

$$f(x) = x - \lambda F(x), \quad \lambda > 0.$$

Then solutions of the equation F(x) = 0 are solutions of the fixed point equation f(x) = x and vice versa. Suppose that

$$0 < K_1 \le F'(x) \le K_2$$
 for $x \in [a, b]$.

Then the derivative

$$f'(x) = 1 - \lambda F'(x)$$

satisfies

$$1 - \lambda K_2 \le f'(x) \le 1 - \lambda K_1.$$

We want

$$1 - \lambda K_1 < 1$$
 and $1 - \lambda K_2 > -1$.