Course work 6

1 March 2024

- 1. Suppose that (X, d) is a metric space and $A \subseteq X$. Show that if $A \subseteq F \subseteq X$ where F is closed, then $\bar{A} \subseteq F$, where \bar{A} is the closure of A.
- 2. Let $A = \{\frac{1}{n} : n \in \mathbb{N}\}$, where $\mathbb{N} = \{1, 2, 3, \ldots\}$. Determine \bar{A} . Is A closed?
- 3. Let (X, d) be a metric space and $A \subset X$. Then the distance from x to A is defined as

$$dist(x, A) = \inf\{d(x, a) : a \in A\}.$$

Prove that $\overline{A} = \{x \in X; \operatorname{dist}(x, A) = 0\}.$

- 4. The diameter of a metric space (X, d) is defined as $\sup\{d(x, y); x, y \in X\}$. A set A in a metric space (X, d) is called bounded iff $\operatorname{diam}(A) < \infty$. Prove that:
 - (a) A is bounded if and only if there exist $x \in A$ and r > 0 such that $A \subset B(x; r)$,
 - (b) Any finite set A is bounded,
 - (c) A Cauchy sequence in (X, d) is a bounded set.
- 5. Assume that a Cauchy sequence (x_n) in a metric space (X, d) contains a subsequence (x_{n_i}) which converges to a point $x_0 \in X$. Show that the whole sequence (x_n) converges to x_0 as well.