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5.4. Nested sequences of balls

Theorem 5.9. A metric space (X, d) is complete if and only if in X every nested sequence

B1 � B2 � B3 � . . .

of closed balls whose radii tend to zero has a non-empty intersection, \1
n=1Bn 6= ;.

Proof. Suppose that the space X is complete. Given a nested sequence of closed balls Bn,
where the radius rn of Bn tends to zero, consider the sequence of their centres xn 2 Bn. For m > n
one has d(xn, xm)  rn and hence xn is a Cauchy sequence. Let x 2 X denote the limit of the
sequence xn (which exists since we assume that X is complete). Since xm 2 Bn for all m � n we
see that x 2 Bn for all n and hence x 2 \1

n=1Bn.
Conversely, suppose that in X the intersection of any nested sequence of closed balls B1 � B2 �

B3 � . . . with radii tending to 0 is not empty. Let xn 2 X be a Cauchy sequence. We may find
an integer n1 such that d(xn, xn1) < 1/2 for all n � n1. Similarly, we can find n2 > n1 such that
d(xn, xn2) < 1/22 for all n � n2. Continuing by induction, for any integer k we can find nk > nk�1

such that for all n � nk one has d(xn, xnk) < 1/2k. Let Bk denote the closed ball B[xnk ; 1/2
k�1].

Then xnk+1 2 Bk and moreover Bk+1 ⇢ Bk since 1/2k + 1/2k+1 < 1/2k�1. By our assumption the
intersection \1

k=1Bk contains a point x which then satisfies d(x, xnk)  1/2k�1 for all k. Hence, x
is the limit of the subsequence xnk of the original Cauchy sequence. However, if a Cauchy sequence
has a convergent subsequence then it converges as well. This completes the proof. ⇤

5.5. Theorem of Baire

Lemma 5.10. For a subset A ⇢ X of a metric space (X, d) the following two properties are

equivalent:

(a) the complement of the closure X �A is dense in X;

(b) every open ball B ⇢ X contains another open ball B0 ⇢ B having no points of A, i.e. such

that B0 \A = ;.

Proof. Suppose that (a) is satisfied and let B ⇢ X be an open ball. Then B must contain a
point x /2 A and (since A is closed) an open ball B0 ⇢ B with centre x must lie in X �A implying
that B0 \A = ;.

If X � A is not dense then there exists a non-empty open subset U ⇢ X having no points of
X �A, i.e. U ⇢ A and (b) is not satisfied. ⇤

Definition 5.11. A subset A ⇢ X of a metric space is nowhere dense if it satisfies the equivalent
properties of Lemma 5.10

Theorem 5.12 (Baire). A complete metric space cannot be represented as the union of countably

many nowhere dense subsets.

Proof. Suppose that X = [1
n=1Mn where each subset Mn is a nowhere dense subset of a

complete metric space X. Let B0 be an open ball of radius 1. Since M1 is nowhere dense we may
find a closed ball B1 of radius less than 1/2 such that B1 ⇢ B0 and B1\M1 = ;. Similarly, the ball
B1 contains a closed ball B2 of radius less than 1/3 having no points of M2. We obtain a nested
sequence of closed balls Bn with their radii tending to 0 and by Theorem 5.9 the intersection \Bn

is not empty, i.e. contains a point x 2 X. Then x /2 Mn for any n, contradiction. ⇤
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5.6. Completion of a metric space

Let (X, d) be a metric space which is not complete.

Definition 5.13. A complete metric space (X⇤, d⇤) is a completion of (X, d) if X is isometric
to a dense subset of X⇤.

Equivalently, a complete metric space (X⇤, d⇤) is a completion of (X, d) if:

(1) X ⇢ X⇤ and the metric on X is induced by the metric d⇤,
(2) X is dense in X⇤, i.e. X = X⇤.

Example 5.14. R is a completion of Q.

Example 5.15. A completion of X = R� {0} is R.

Theorem 5.16. Any metric space (X, d) admits a completion. The completion (X⇤, d⇤) is

unique up to an isometry identical on X.

Lemma 5.17. Suppose that xn ! x0 and yn ! y0 are two convergent sequences in a metric

space (X, d). Then the numerical sequence d(xn, yn) 2 R converges to d(x0, y0).

Proof. We have the inequalities d(xn, yn)  d(xn, x0) + d(x0, y0) + d(y0, yn) and d(x0, y0) 
d(x0, xn)+d(xn, yn)+d(yn, y0) which give d(xn, yn)�d(x0, y0)  d(xn, x0)+d(y0, yn) and d(x0, y0)�
d(xn, yn)  d(x0, xn) + d(yn, y0), i.e,

|d(xn, yn)� d(x0, y0)|  d(xn, x0) + d(y0, yn).(5.11)

The RHS tends to 0, hence d(xn, yn) ! d(x0, y0). ⇤
Proof of Theorem 5.16. We shall first prove the uniqueness. Suppose that X ⇢ X⇤ and

X ⇢ Y ⇤ are two completions. We want to construct an isometry f : X⇤ ! Y ⇤ which is identical
on X, i.e. f(x) = x for x 2 X. To define f(x⇤) where x⇤ 2 X⇤ we use the fact that X is dense in
X⇤ and find a sequence xn 2 X with xn ! x⇤. The sequence xn 2 X ⇢ Y ⇤ is Cauchy and has a
limit y⇤ = limxn where y⇤ 2 Y ⇤.

We shall show that (a) y⇤ depends only on x⇤; (b) the map f : X⇤ ! Y ⇤ given by f(x⇤) = y⇤

is an isometry; (c) f(x) = x for every x 2 X.
To prove (a) consider another sequence x0

n 2 X converging to x⇤ in X⇤. If z⇤ 2 Y ⇤ is its limit
in Y ⇤ then using Lemma 5.17 we have

dY ⇤(y⇤, z⇤) = lim dY ⇤(xn, x
0
n) = lim dX⇤(xn, x

0
n) = dX⇤(x⇤, x⇤) = 0

i.e. y⇤ = z⇤.
Next we prove that f : X⇤ ! Y ⇤ is an isometry. For x⇤

1, x
⇤
2 2 X⇤ find two sequences xn ! x⇤

1

and x0
n ! x⇤

2 in X⇤. Then

dX⇤(x⇤
1, x

⇤
2) = lim dX⇤(xn, x

0
n) = lim dY ⇤(xn, x

0
n) = dY ⇤(f(x⇤

1), f(x
⇤
2)).

Finally, to prove (c) we note that for x 2 X we may take xn = x (the stationary sequence) and
hence the above procedure applied to this sequence gives f(x) = x.

Now we shall prove the existence of a completion X⇤. Consider the set of all Cauchy sequences
(xn) in a given metric space (X, d) and introduce in this set the following equivalence relation:
(xn) ⇠ (yn) i↵ d(xn, yn) ! 0. Define X⇤ as the set of equivalence classes.

The inclusion X ⇢ X⇤ is given by associating with x 2 X the class of the stationary sequence
xn = x.
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To define a metric on X⇤ we note that for two Cauchy sequences (xn) and (yn) in X the limit
lim d(xn, yn) exists. Indeed,

|d(xn, yn)� d(xm, ym)|  d(xn, yn) + d(xm, ym)(5.12)

and the sequence of real numbers d(xn, yn) is a Cauchy sequence. To show (5.12) we note

d(xn, yn)  d(xn, xm) + d(xm, ym) + d(ym, yn)

and similarly
d(xm, ym)  d(xm, xn) + d(xn, yn) + d(yn, ym).

These two inequalities give (5.12). Thus we may define a metric on X⇤ by the formula

dX⇤((xn), (yn)) = lim d(xn, yn).(5.13)

To show (M1) we note that dX⇤((xn), (yn)) � 0 and if dX⇤((xn), (yn)) then lim d(xn, yn) = 0, i.e.
the Cauchy sequences (xn) and (yn) are equivalent. (M2) and (M3) are obvious, they follow from
the corresponding properties of the metric d.

Note that X is dense in X⇤. Indeed, given a point x⇤ 2 X⇤ represented by a Cauchy sequence
(xn) in X, we see that

lim
n!1

dX⇤(xn, x
⇤) = lim

n!1
[ lim
m!1

d(xn, xm)] = lim
n,m!1

d(xn, xm) = 0

which means that xn ! x⇤ in X⇤.
Finally we show that the metric space X⇤

is complete. Consider a Cauchy sequence (x⇤
n) in

X⇤. Since X is dense in X⇤ we may find xn 2 X with dX⇤(xn, x⇤
n) < 1/n. We see that

d(xn, xm)  dX⇤(xn, x
⇤
n) + dX⇤(x⇤

n, x
⇤
m) + dX⇤(x⇤

m, xm) < dX⇤(x⇤
n, x

⇤
m) + 1/n+ 1/m

implying that (xn) is a Cauchy sequence. Let x⇤
0 2 X⇤ be the equivalence class of this sequence.

Then
dX⇤(x⇤

n, x
⇤
0)  dX⇤(xn, x

⇤
0) + 1/n = lim

m!1
d(xn, xm) + 1/n

and we see that dX⇤(x⇤
n, x

⇤
0) tends to zero which means that the sequence (x⇤

n) converges to x⇤
0 in

X⇤.
This completes the proof. ⇤





CHAPTER 6

Contraction mappings and the fixed point theorem

6.1. Contraction mappings

Let (X, d) be a metric space.

Definition 6.1. A map f : X ! X is a contraction if there exists ↵ < 1 such that for all
x, y 2 X one has

d(f(x), f(y))  ↵ · d(x, y).(6.1)

Theorem 6.2 (Fixed Point Theorem). Any contraction mapping f : X ! X of a complete

metric space X has a unique fixed point, i.e. a point x 2 X with f(x) = x.

Proof. Let x0 2 X be an arbitrary point. Define the sequence xn 2 X by x1 = f(x0),
x2 = f(x1), and in general xn = f(xn�1) where n = 1, 2, . . . . We claim that (xn) is a Cauchy
sequence. Indeed, for n  m we have

d(xn, xm) = d(fn(x0), f
n(xm�n))

 ↵nd(x0, xm�n)

 ↵n[d(x0, x1) + d(x1, x2) + · · ·+ d(xm�n�1, xm�n)

 ↵n[d(x0, x1) + ↵d(x0, x1) + ↵2d(x0, x1) + . . .↵m�n�1d(x0, x1)]

 d(x0, x1) ·
↵n

1� ↵

As ↵ < 1 we see that d(x, xm) ! 0 as n,m ! 1, i.e. the sequence (xn) is a Cauchy sequence.
Since the space X is complete the sequence xn must have a limit which we denote x0 = limxn.
Then f(x0) = f(limxn) = lim f(xn) = limxn+1 = x0, i.e. x0 is a fixed point of the map f .

The fixed point x0 is unique: if y0 is another fixed point, i.e. f(y0) = y0, then

d(x0, y0) = d(f(x0), f(y0))  ↵ · d(x0, y0)

which can happen only if d(x0, y0) = 0, i.e. x0 = y0. ⇤

Example 6.3. Let X = [1,1) with the usual metric; it is a complete metric space. Consider
the following map f : X ! X

f(x) = x+
1

x
, x 2 [1,1).

For x, y 2 X we have

f(x)� f(y) = x� y +
y � x

xy

= (x� y)(1� 1

xy
).
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