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5.4. Nested sequences of balls
THEOREM 5.9. A metric space (X,d) is complete if and only if in X every nested sequence
BiD>By;DB3D...
of closed balls whose radii tend to zero has a non-empty intersection, NS, By, # 0.

PROOF. Suppose that the space X is complete. Given a nested sequence of closed balls B,,,
where the radius r,, of B,, tends to zero, consider the sequence of their centres x,, € B,,. For m > n
one has d(zy, ;) < 7, and hence z,, is a Cauchy sequence. Let z € X denote the limit of the
sequence x, (which exists since we assume that X is complete). Since z,,, € B,, for all m > n we
see that = € B,, for all n and hence z € N7, B,,.

Conversely, suppose that in X the intersection of any nested sequence of closed balls By D By D
Bs D ... with radii tending to 0 is not empty. Let x,, € X be a Cauchy sequence. We may find
an integer ny such that d(x,,x,,) < 1/2 for all n > n;. Similarly, we can find ny > n; such that
d(2n,Tn,) < 1/22 for all n > ny. Continuing by induction, for any integer k we can find ng > np_;
such that for all n > ny, one has d(z,,2,,) < 1/2¥. Let By denote the closed ball Blx,,;1/2¥1].
Then zy,,, € Br and moreover By, C By since 1/2k 4 1/2k+1 < 1/2F=1. By our assumption the
intersection N2, By, contains a point x which then satisfies d(z,,,) < 1/2*71 for all k. Hence, x
is the limit of the subsequence x,,, of the original Cauchy sequence. However, if a Cauchy sequence
has a convergent subsequence then it converges as well. This completes the proof. O

5.5. Theorem of Baire

LEMMA 5.10. For a subset A C X of a metric space (X,d) the following two properties are
equivalent:

(a) the complement of the closure X — A is dense in X;

(b) every open ball B C X contains another open ball B' C B having no points of A, i.e. such
that B'N A = 0.

PROOF. Suppose that (a) is satisfied and let B C X be an open ball. Then B must contain a
point z ¢ A and (since A is closed) an open ball B’ C B with centre  must lie in X — A implying
that B'NA=10.

If X — A is not dense then there exists a non-empty open subset U C X having no points of
X — A ie. U C A and (b) is not satisfied. O

DEFINITION 5.11. A subset A C X of a metric space is nowhere dense if it satisfies the equivalent
properties of Lemma 5.10

THEOREM 5.12 (Baire). A complete metric space cannot be represented as the union of countably
many nowhere dense subsets.

PROOF. Suppose that X = U2 M,, where each subset M, is a nowhere dense subset of a
complete metric space X. Let By be an open ball of radius 1. Since M; is nowhere dense we may
find a closed ball B; of radius less than 1/2 such that By C By and By N M; = (. Similarly, the ball
Bj contains a closed ball By of radius less than 1/3 having no points of M. We obtain a nested
sequence of closed balls B,, with their radii tending to 0 and by Theorem 5.9 the intersection NB,,
is not empty, i.e. contains a point € X. Then x ¢ M,, for any n, contradiction. O
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5.6. Completion of a metric space
Let (X, d) be a metric space which is not complete.

DEFINITION 5.13. A complete metric space (X*,d*) is a completion of (X, d) if X is isometric
to a dense subset of X*.

Equivalently, a complete metric space (X*,d*) is a completion of (X, d) if:
(1) X € X* and the metric on X is induced by the metric d*,
(2) X is dense in X*,ie. X = X*.

ExAMPLE 5.14. R is a completion of Q.
EXAMPLE 5.15. A completion of X = R — {0} is R.

THEOREM 5.16. Any metric space (X,d) admits a completion. The completion (X*,d*) is
unique up to an isometry identical on X.

LEMMA 5.17. Suppose that z,, — x¢ and y, — yo are two convergent sequences in a metric
space (X, d). Then the numerical sequence d(xn,yn) € R converges to d(zo, yo).

PROOF. We have the inequalities d(zn,yn) < d(2n, zo) + d(xo,y0) + d(Yo, yn) and d(zo,yo) <
d(ﬁUQ, xn)"'d(mna yn)+d(yn7 yo) which give d(fE”, yn) —d($07 yO) S d(xTM 1’0)+d(y07 yn) and d(.TO, yO) -
d(xnv yn) S d(l’o, xn) + d(yna y0)7 i'ea

The RHS tends to 0, hence d(z,, yn) — d(xo,y0). O

PRrROOF OF THEOREM 5.16. We shall first prove the uniqueness. Suppose that X C X* and
X C Y™ are two completions. We want to construct an isometry f : X* — Y™ which is identical
on X, ie. f(z) =x for x € X. To define f(x*) where z* € X* we use the fact that X is dense in
X* and find a sequence x,, € X with x,, — x*. The sequence z,, € X C Y* is Cauchy and has a
limit y* = lim x,, where y* € Y*.

We shall show that (a) y* depends only on z*; (b) the map f: X* — Y* given by f(z*) = y*
is an isometry; (¢) f(z) = x for every z € X.

To prove (a) consider another sequence z/, € X converging to 2* in X*. If z* € Y is its limit
in Y* then using Lemma 5.17 we have

dy«(y*, ") = limdy« (2, z),) = limdx+ (2, 2}) = dx- (2", 2") =0
ie. y* = z*.
Next we prove that f: X* — Y™ is an isometry. For z7, 25 € X* find two sequences x,, — x]
and z], — x5 in X*. Then

dx- (21, 25) = limdx-(2n, 2,,) = limdy- (zn, 2;,) = dy- (f(27), f(23)).

Finally, to prove (c¢) we note that for x € X we may take x,, = x (the stationary sequence) and
hence the above procedure applied to this sequence gives f(x) = .

Now we shall prove the ezistence of a completion X*. Consider the set of all Cauchy sequences
(z,,) in a given metric space (X,d) and introduce in this set the following equivalence relation:
() ~ (yn) iff d(xn,yn) — 0. Define X* as the set of equivalence classes.

The inclusion X C X* is given by associating with x € X the class of the stationary sequence
Ty = .
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To define a metric on X* we note that for two Cauchy sequences (z,) and (y,) in X the limit
lim d(z,, yn) exists. Indeed,

(5.12) |d(@n, yn) = (@ Ym)| < d(@n, yn) + d(Zm; Yom)

and the sequence of real numbers d(zy, y,) is a Cauchy sequence. To show (5.12) we note

A(TnsYn) < d(@n, Tm) + AT,y Ym) + d(Ym, Yn)
and similarly
(T, Ym) < d(@m, Tn) + AT,y Yn) + A(Yn, Ym)-
These two inequalities give (5.12). Thus we may define a metric on X* by the formula

To show (M1) we note that dx«((z,), (yn)) > 0 and if dx+((xy), (yn)) then limd(z,,y,) = 0, i.e.
the Cauchy sequences (z,,) and (y,) are equivalent. (M2) and (M3) are obvious, they follow from
the corresponding properties of the metric d.

Note that X is dense in X*. Indeed, given a point * € X* represented by a Cauchy sequence
(zn) in X, we see that

35, dxe (o, 07) = Tip [ i A )] = | 2y U ) =0

which means that x,, — =* in X™*.
Finally we show that the metric space X* is complete. Consider a Cauchy sequence (z
X*. Since X is dense in X* we may find z,, € X with dx«(z,,2)) < 1/n. We see that
d(xp, Tm) < dxs(zp,x)) +dxs (), zh) + dx«(x), 2m) < dx-(z), 27 )+ 1/n+1/m

implying that (z,) is a Cauchy sequence. Let zf € X* be the equivalence class of this sequence.
Then

*

*)in

dx~(z},25) < dx«(zn,z3) + 1/n= lim d(zp,zm)+1/n
m—r o0

*

and we see that dx«(x},xf) tends to zero which means that the sequence (z,

X,
This completes the proof. ([

) converges to z§ in






CHAPTER 6

Contraction mappings and the fixed point theorem

6.1. Contraction mappings
Let (X,d) be a metric space.

DEFINITION 6.1. A map f : X — X is a contraction if there exists @ < 1 such that for all
z,y € X one has

(6.1) d(f(z), f(y)) < a-d(z,y).
THEOREM 6.2 (Fixed Point Theorem). Any contraction mapping f : X — X of a complete

metric space X has a unique fized point, i.e. a point x € X with f(z) = x.

PROOF. Let £y € X be an arbitrary point. Define the sequence z,, € X by z1 = f(xo),
x9 = f(x1), and in general z,, = f(r,—1) where n = 1,2,.... We claim that (x,) is a Cauchy
sequence. Indeed, for n < m we have

d((ﬂn,l’m) = d(fn(x0)7fn(xmfn))
< Oénd(an:Em—n)
< an[d($0,$1)+d($1,x2)+"'+d(l‘m_n_1,l‘m_n)
< a™[d(xg, 1) + ad(xo, z1) + aPd(zg, 1) + ... ™" d(zg, 1))
an
S d(anxl)‘ 1—a

As a < 1 we see that d(x,z,,) — 0 as n,m — o0, i.e. the sequence (x,) is a Cauchy sequence.
Since the space X is complete the sequence z,, must have a limit which we denote zg = lim z,,.
Then f(z¢) = f(limz,) = lim f(x,) = limz, 1 = xo, i.e. x¢ is a fixed point of the map f.

The fixed point zg is unique: if yq is another fixed point, i.e. f(yo) = yo, then

d(xo,y0) = d(f(xo), f(yo)) < a - d(xo,y0)
which can happen only if d(xg,y0) =0, i.e. 2o = yo. (I

EXAMPLE 6.3. Let X = [1,00) with the usual metric; it is a complete metric space. Consider
the following map f: X — X

flz)=xz+ %, x € [1,00).

For z,y € X we have

fl@)—fly) = x—y+y;yz
1
= (»’C—y)(l—xfy)



