5.4. Nested sequences of balls

Theorem 5.9. A metric space (X, d) is complete if and only if in X every nested sequence

$$
B_{1} \supset B_{2} \supset B_{3} \supset \ldots
$$

of closed balls whose radii tend to zero has a non-empty intersection, $\cap_{n=1}^{\infty} B_{n} \neq \emptyset$.
Proof. Suppose that the space X is complete. Given a nested sequence of closed balls B_{n}, where the radius r_{n} of B_{n} tends to zero, consider the sequence of their centres $x_{n} \in B_{n}$. For $m>n$ one has $d\left(x_{n}, x_{m}\right) \leq r_{n}$ and hence x_{n} is a Cauchy sequence. Let $x \in X$ denote the limit of the sequence x_{n} (which exists since we assume that X is complete). Since $x_{m} \in B_{n}$ for all $m \geq n$ we see that $x \in B_{n}$ for all n and hence $x \in \cap_{n=1}^{\infty} B_{n}$.

Conversely, suppose that in X the intersection of any nested sequence of closed balls $B_{1} \supset B_{2} \supset$ $B_{3} \supset \ldots$ with radii tending to 0 is not empty. Let $x_{n} \in X$ be a Cauchy sequence. We may find an integer n_{1} such that $d\left(x_{n}, x_{n_{1}}\right)<1 / 2$ for all $n \geq n_{1}$. Similarly, we can find $n_{2}>n_{1}$ such that $d\left(x_{n}, x_{n_{2}}\right)<1 / 2^{2}$ for all $n \geq n_{2}$. Continuing by induction, for any integer k we can find $n_{k}>n_{k-1}$ such that for all $n \geq n_{k}$ one has $d\left(x_{n}, x_{n_{k}}\right)<1 / 2^{k}$. Let B_{k} denote the closed ball $B\left[x_{n_{k}} ; 1 / 2^{k-1}\right]$. Then $x_{n_{k+1}} \in B_{k}$ and moreover $B_{k+1} \subset B_{k}$ since $1 / 2^{k}+1 / 2^{k+1}<1 / 2^{k-1}$. By our assumption the intersection $\cap_{k=1}^{\infty} B_{k}$ contains a point x which then satisfies $d\left(x, x_{n_{k}}\right) \leq 1 / 2^{k-1}$ for all k. Hence, x is the limit of the subsequence $x_{n_{k}}$ of the original Cauchy sequence. However, if a Cauchy sequence has a convergent subsequence then it converges as well. This completes the proof.

5.5. Theorem of Baire

Lemma 5.10. For a subset $A \subset X$ of a metric space (X, d) the following two properties are equivalent:
(a) the complement of the closure $X-\bar{A}$ is dense in X;
(b) every open ball $B \subset X$ contains another open ball $B^{\prime} \subset B$ having no points of A, i.e. such that $B^{\prime} \cap A=\emptyset$.

Proof. Suppose that (a) is satisfied and let $B \subset X$ be an open ball. Then B must contain a point $x \notin \bar{A}$ and (since \bar{A} is closed) an open ball $B^{\prime} \subset B$ with centre x must lie in $X-\bar{A}$ implying that $B^{\prime} \cap A=\emptyset$.

If $X-\bar{A}$ is not dense then there exists a non-empty open subset $U \subset X$ having no points of $X-\bar{A}$, i.e. $U \subset \bar{A}$ and (b) is not satisfied.

Definition 5.11. A subset $A \subset X$ of a metric space is nowhere dense if it satisfies the equivalent properties of Lemma 5.10

Theorem 5.12 (Baire). A complete metric space cannot be represented as the union of countably many nowhere dense subsets.

Proof. Suppose that $X=\cup_{n=1}^{\infty} M_{n}$ where each subset M_{n} is a nowhere dense subset of a complete metric space X. Let B_{0} be an open ball of radius 1 . Since M_{1} is nowhere dense we may find a closed ball B_{1} of radius less than $1 / 2$ such that $B_{1} \subset B_{0}$ and $B_{1} \cap M_{1}=\emptyset$. Similarly, the ball B_{1} contains a closed ball B_{2} of radius less than $1 / 3$ having no points of M_{2}. We obtain a nested sequence of closed balls B_{n} with their radii tending to 0 and by Theorem 5.9 the intersection $\cap B_{n}$ is not empty, i.e. contains a point $x \in X$. Then $x \notin M_{n}$ for any n, contradiction.

5.6. Completion of a metric space

Let (X, d) be a metric space which is not complete.
Definition 5.13. A complete metric space $\left(X^{*}, d^{*}\right)$ is a completion of (X, d) if X is isometric to a dense subset of X^{*}.

Equivalently, a complete metric space $\left(X^{*}, d^{*}\right)$ is a completion of (X, d) if:
(1) $X \subset X^{*}$ and the metric on X is induced by the metric d^{*},
(2) X is dense in X^{*}, i.e. $\bar{X}=X^{*}$.

Example 5.14. \mathbf{R} is a completion of \mathbf{Q}.
Example 5.15. A completion of $X=\mathbf{R}-\{0\}$ is \mathbf{R}.
Theorem 5.16. Any metric space (X, d) admits a completion. The completion $\left(X^{*}, d^{*}\right)$ is unique up to an isometry identical on X.

Lemma 5.17. Suppose that $x_{n} \rightarrow x_{0}$ and $y_{n} \rightarrow y_{0}$ are two convergent sequences in a metric space (X, d). Then the numerical sequence $d\left(x_{n}, y_{n}\right) \in \mathbf{R}$ converges to $d\left(x_{0}, y_{0}\right)$.

Proof. We have the inequalities $d\left(x_{n}, y_{n}\right) \leq d\left(x_{n}, x_{0}\right)+d\left(x_{0}, y_{0}\right)+d\left(y_{0}, y_{n}\right)$ and $d\left(x_{0}, y_{0}\right) \leq$ $d\left(x_{0}, x_{n}\right)+d\left(x_{n}, y_{n}\right)+d\left(y_{n}, y_{0}\right)$ which give $d\left(x_{n}, y_{n}\right)-d\left(x_{0}, y_{0}\right) \leq d\left(x_{n}, x_{0}\right)+d\left(y_{0}, y_{n}\right)$ and $d\left(x_{0}, y_{0}\right)-$ $d\left(x_{n}, y_{n}\right) \leq d\left(x_{0}, x_{n}\right)+d\left(y_{n}, y_{0}\right)$, i.e,

$$
\begin{equation*}
\left|d\left(x_{n}, y_{n}\right)-d\left(x_{0}, y_{0}\right)\right| \leq d\left(x_{n}, x_{0}\right)+d\left(y_{0}, y_{n}\right) \tag{5.11}
\end{equation*}
$$

The RHS tends to 0 , hence $d\left(x_{n}, y_{n}\right) \rightarrow d\left(x_{0}, y_{0}\right)$.
Proof of Theorem 5.16. We shall first prove the uniqueness. Suppose that $X \subset X^{*}$ and $X \subset Y^{*}$ are two completions. We want to construct an isometry $f: X^{*} \rightarrow Y^{*}$ which is identical on X, i.e. $f(x)=x$ for $x \in X$. To define $f\left(x^{*}\right)$ where $x^{*} \in X^{*}$ we use the fact that X is dense in X^{*} and find a sequence $x_{n} \in X$ with $x_{n} \rightarrow x^{*}$. The sequence $x_{n} \in X \subset Y^{*}$ is Cauchy and has a limit $y^{*}=\lim x_{n}$ where $y^{*} \in Y^{*}$.

We shall show that (a) y^{*} depends only on x^{*}; (b) the map $f: X^{*} \rightarrow Y^{*}$ given by $f\left(x^{*}\right)=y^{*}$ is an isometry; (c) $f(x)=x$ for every $x \in X$.

To prove (a) consider another sequence $x_{n}^{\prime} \in X$ converging to x^{*} in X^{*}. If $z^{*} \in Y^{*}$ is its limit in Y^{*} then using Lemma 5.17 we have

$$
d_{Y^{*}}\left(y^{*}, z^{*}\right)=\lim d_{Y^{*}}\left(x_{n}, x_{n}^{\prime}\right)=\lim d_{X^{*}}\left(x_{n}, x_{n}^{\prime}\right)=d_{X^{*}}\left(x^{*}, x^{*}\right)=0
$$

i.e. $y^{*}=z^{*}$.

Next we prove that $f: X^{*} \rightarrow Y^{*}$ is an isometry. For $x_{1}^{*}, x_{2}^{*} \in X^{*}$ find two sequences $x_{n} \rightarrow x_{1}^{*}$ and $x_{n}^{\prime} \rightarrow x_{2}^{*}$ in X^{*}. Then

$$
d_{X^{*}}\left(x_{1}^{*}, x_{2}^{*}\right)=\lim d_{X^{*}}\left(x_{n}, x_{n}^{\prime}\right)=\lim d_{Y^{*}}\left(x_{n}, x_{n}^{\prime}\right)=d_{Y^{*}}\left(f\left(x_{1}^{*}\right), f\left(x_{2}^{*}\right)\right) .
$$

Finally, to prove (c) we note that for $x \in X$ we may take $x_{n}=x$ (the stationary sequence) and hence the above procedure applied to this sequence gives $f(x)=x$.

Now we shall prove the existence of a completion X^{*}. Consider the set of all Cauchy sequences $\left(x_{n}\right)$ in a given metric space (X, d) and introduce in this set the following equivalence relation: $\left(x_{n}\right) \sim\left(y_{n}\right)$ iff $d\left(x_{n}, y_{n}\right) \rightarrow 0$. Define X^{*} as the set of equivalence classes.

The inclusion $X \subset X^{*}$ is given by associating with $x \in X$ the class of the stationary sequence $x_{n}=x$.

To define a metric on X^{*} we note that for two Cauchy sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$ in X the limit $\lim d\left(x_{n}, y_{n}\right)$ exists. Indeed,

$$
\begin{equation*}
\left|d\left(x_{n}, y_{n}\right)-d\left(x_{m}, y_{m}\right)\right| \leq d\left(x_{n}, y_{n}\right)+d\left(x_{m}, y_{m}\right) \tag{5.12}
\end{equation*}
$$

and the sequence of real numbers $d\left(x_{n}, y_{n}\right)$ is a Cauchy sequence. To show (5.12) we note

$$
d\left(x_{n}, y_{n}\right) \leq d\left(x_{n}, x_{m}\right)+d\left(x_{m}, y_{m}\right)+d\left(y_{m}, y_{n}\right)
$$

and similarly

$$
d\left(x_{m}, y_{m}\right) \leq d\left(x_{m}, x_{n}\right)+d\left(x_{n}, y_{n}\right)+d\left(y_{n}, y_{m}\right) .
$$

These two inequalities give (5.12). Thus we may define a metric on X^{*} by the formula

$$
\begin{equation*}
d_{X^{*}}\left(\left(x_{n}\right),\left(y_{n}\right)\right)=\lim d\left(x_{n}, y_{n}\right) . \tag{5.13}
\end{equation*}
$$

To show (M1) we note that $d_{X^{*}}\left(\left(x_{n}\right),\left(y_{n}\right)\right) \geq 0$ and if $d_{X^{*}}\left(\left(x_{n}\right),\left(y_{n}\right)\right)$ then $\lim d\left(x_{n}, y_{n}\right)=0$, i.e. the Cauchy sequences $\left(x_{n}\right)$ and (y_{n}) are equivalent. (M2) and (M3) are obvious, they follow from the corresponding properties of the metric d.

Note that X is dense in X^{*}. Indeed, given a point $x^{*} \in X^{*}$ represented by a Cauchy sequence $\left(x_{n}\right)$ in X, we see that

$$
\lim _{n \rightarrow \infty} d_{X^{*}}\left(x_{n}, x^{*}\right)=\lim _{n \rightarrow \infty}\left[\lim _{m \rightarrow \infty} d\left(x_{n}, x_{m}\right)\right]=\lim _{n, m \rightarrow \infty} d\left(x_{n}, x_{m}\right)=0
$$

which means that $x_{n} \rightarrow x^{*}$ in X^{*}.
Finally we show that the metric space X^{*} is complete. Consider a Cauchy sequence (x_{n}^{*}) in X^{*}. Since X is dense in X^{*} we may find $x_{n} \in X$ with $d_{X^{*}}\left(x_{n}, x_{n}^{*}\right)<1 / n$. We see that

$$
d\left(x_{n}, x_{m}\right) \leq d_{X^{*}}\left(x_{n}, x_{n}^{*}\right)+d_{X^{*}}\left(x_{n}^{*}, x_{m}^{*}\right)+d_{X^{*}}\left(x_{m}^{*}, x_{m}\right)<d_{X^{*}}\left(x_{n}^{*}, x_{m}^{*}\right)+1 / n+1 / m
$$

implying that $\left(x_{n}\right)$ is a Cauchy sequence. Let $x_{0}^{*} \in X^{*}$ be the equivalence class of this sequence. Then

$$
d_{X^{*}}\left(x_{n}^{*}, x_{0}^{*}\right) \leq d_{X^{*}}\left(x_{n}, x_{0}^{*}\right)+1 / n=\lim _{m \rightarrow \infty} d\left(x_{n}, x_{m}\right)+1 / n
$$

and we see that $d_{X^{*}}\left(x_{n}^{*}, x_{0}^{*}\right)$ tends to zero which means that the sequence $\left(x_{n}^{*}\right)$ converges to x_{0}^{*} in X^{*}

This completes the proof.

CHAPTER 6

Contraction mappings and the fixed point theorem

6.1. Contraction mappings

Let (X, d) be a metric space.
Definition 6.1. A map $f: X \rightarrow X$ is a contraction if there exists $\alpha<1$ such that for all $x, y \in X$ one has

$$
\begin{equation*}
d(f(x), f(y)) \leq \alpha \cdot d(x, y) \tag{6.1}
\end{equation*}
$$

Theorem 6.2 (Fixed Point Theorem). Any contraction mapping $f: X \rightarrow X$ of a complete metric space X has a unique fixed point, i.e. a point $x \in X$ with $f(x)=x$.

Proof. Let $x_{0} \in X$ be an arbitrary point. Define the sequence $x_{n} \in X$ by $x_{1}=f\left(x_{0}\right)$, $x_{2}=f\left(x_{1}\right)$, and in general $x_{n}=f\left(x_{n-1}\right)$ where $n=1,2, \ldots$. We claim that $\left(x_{n}\right)$ is a Cauchy sequence. Indeed, for $n \leq m$ we have

$$
\begin{aligned}
d\left(x_{n}, x_{m}\right) & =d\left(f^{n}\left(x_{0}\right), f^{n}\left(x_{m-n}\right)\right) \\
& \leq \alpha^{n} d\left(x_{0}, x_{m-n}\right) \\
& \leq \alpha^{n}\left[d\left(x_{0}, x_{1}\right)+d\left(x_{1}, x_{2}\right)+\cdots+d\left(x_{m-n-1}, x_{m-n}\right)\right. \\
& \leq \alpha^{n}\left[d\left(x_{0}, x_{1}\right)+\alpha d\left(x_{0}, x_{1}\right)+\alpha^{2} d\left(x_{0}, x_{1}\right)+\ldots \alpha^{m-n-1} d\left(x_{0}, x_{1}\right)\right] \\
& \leq d\left(x_{0}, x_{1}\right) \cdot \frac{\alpha^{n}}{1-\alpha}
\end{aligned}
$$

As $\alpha<1$ we see that $d\left(x, x_{m}\right) \rightarrow 0$ as $n, m \rightarrow \infty$, i.e. the sequence $\left(x_{n}\right)$ is a Cauchy sequence. Since the space X is complete the sequence x_{n} must have a limit which we denote $x_{0}=\lim x_{n}$. Then $f\left(x_{0}\right)=f\left(\lim x_{n}\right)=\lim f\left(x_{n}\right)=\lim x_{n+1}=x_{0}$, i.e. x_{0} is a fixed point of the map f.

The fixed point x_{0} is unique: if y_{0} is another fixed point, i.e. $f\left(y_{0}\right)=y_{0}$, then

$$
d\left(x_{0}, y_{0}\right)=d\left(f\left(x_{0}\right), f\left(y_{0}\right)\right) \leq \alpha \cdot d\left(x_{0}, y_{0}\right)
$$

which can happen only if $d\left(x_{0}, y_{0}\right)=0$, i.e. $x_{0}=y_{0}$.
Example 6.3. Let $X=[1, \infty)$ with the usual metric; it is a complete metric space. Consider the following map $f: X \rightarrow X$

$$
f(x)=x+\frac{1}{x}, \quad x \in[1, \infty) .
$$

For $x, y \in X$ we have

$$
\begin{aligned}
f(x)-f(y) & =x-y+\frac{y-x}{x y} \\
& =(x-y)\left(1-\frac{1}{x y}\right) .
\end{aligned}
$$

