MTH6127

- 1. Consider the Hamming metric on Σ^n in the alphabet $\Sigma = \{0, 1, 2\}$. What is the cardinality of the closed ball B[w; 1]?
- 2. Show that two open intervals $(a, b) \subset \mathbb{R}$ and $(a', b') \subset \mathbb{R}$ are isometric if and only if they have the same length, i.e. b a = b' a'.
- 3. Let X = R with the standard metric. Which of the following sets are dense in X?
 (a) The set A of rational numbers shifted by π, i.e. the set of numbers of the form x = r + π, where r ∈ Q.

(b) The set B of rational multiples of $\sqrt{2}$, i.e. the set of numbers of the form $x = r \cdot \sqrt{2}$ where $r \in \mathbb{Q}$.

(c) The set C of rational numbers whose decimal representation does not contain the digit "7".

- 4. Let (X, d) be a metric space. Let $Y \subset X$ be a finite subset. Prove that Y is closed.
- 5. Let $(V, || \cdot ||)$ be a normed space. Prove that the set $F = \{x \in V; ||x|| = 1\}$ is closed but not open.
- 6. Which of the following sets viewed with the metric induced from \mathbb{R} are complete:
 - (a) (0,1),
 - (b) $(0,\infty),$
 - (c) $[0,\infty),$
 - (d) $\mathbb{R} \mathbb{Z}$,
 - (e) \mathbb{Z} ,
 - (f) The Cantor set C,
 - (g) Q.