CHAPTER 5

Complete Metric Spaces

5.1. First examples of complete metric spaces

DEFINITION 5.1. In a metric space (X,d), a sequence of points (x,) is a Cauchy sequence if
for any € > 0 there is N > 0 such that for all n,m > N one has d(x,, z,,) < €.

LEMMA 5.2. Any convergent sequence is a Cauchy sequence.

PRrOOF. If x, — =z then for any € > 0 there is N > 0 such that for all n > N one has
d(xn, ) < €/2. Then for n,m > N one has d(x,,z,) < d(xn, z) + d(Tm, zo) < €. O

DEFINITION 5.3. A metric space (X, d) is said to be complete if every Cauchy sequence in X
converges.

EXAMPLE 5.4. X = R with the usual metric is complete. This is one of the axioms defining
the set of real numbers.

The set Y = R — {0} with the induced metric is not complete as the sequence z,, = 1/n is
Cauchy but has no limit in Y.

EXAMPLE 5.5. The metric space R™ with d, metric s complete. Indeed, consider a Cauchy
sequence v, = (2,25, ..., 2% ) € R™. This means that for any € > 0 there is N > 0 such that

max{|z] —z*|; i=1,2,...m} <e,

ie. [z7—2M| < eforeveryi = 1,2,...,m. We see that each coordinate sequence z}, 2, 23,... 27, ...
is a Cauchy sequence of real numbers. Since R is complete, we obtain that 21 — 29 and therefore
the sequence v,, converges to the vector vo = (29,29,...,2%) in (R™, dy).

EXAMPLE 5.6. The metric space R™ with d,, metric s complete for any p € [1,00]. The case
p = oo has been discussed above and for a general p € [1,00) we can use the inequalities

oo (0,) < dy(v,w) < - doo(v,w), v,w € R,

see (2.6). It follows that a sequence of vectors v, € R™ is a Cauchy sequence with respect to the
metric d if and only if it is a Cauchy sequence with respect to d,,. Similarly, a sequence v,, € R™
converges to vg € R with respect to du if and only if it converges to vy with respect to d,.

PROPOSITION 5.7. Let (X,d) be a complete metric space. A subset Y C X wviewed with the
induced metric is complete if and only if it is closed.

PrOOF. Any Cauchy sequence in Y is a Cauchy sequence in X and has a limit in X since X
is complete. If Y is closed the limit point must belong to Y, see Lemma 4.21.

If the subset Y C X is not closed we may find a sequence of points z,, € Y having its limit
29 € X =Y (by Lemma 4.21). This sequence is Cauchy in Y and has no limit in Y. Hence Y is
not complete. O
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32 5. COMPLETE METRIC SPACES

5.2. Banach and Hilbert spaces

DEFINITION 5.8. A normed space (V, || -]|) is called a Banach space if the associated metric
d(v,w) = ||v — w]|| is complete.
A scalar product space (V, (, )) is called a Hilbert space of the associated normed space (V, ||-||),

where ||v||? = (v,v) is a Banach space.

As our first example consider the space V' = Cla,b] of continuous functions on [a,b] with the
metric

d(f,9) = |If — gll = max [f(t) — g(t)].
t€la,b]
Let us show that this space is complete and hence is a Banach space. Let f,(t) € C|a,b] be a
Cauchy sequence. Then for any € > 0 there is N > 0 such that for all n,m > N one has
(5.1) |fr(t) — fm(t)] < e forany ¢t € [a,b].

For a fixed ¢ € [a,b] the sequence f,(t) is a Cauchy sequence of real numbers and hence it has a
limit which we shall denote f(t). Thus, for every t € [a,b], lim f,,(t) = f(t) pointwise. Taking in
(5.1) the limit with respect to m — oo we obtain

(5.2) |fn(t) — f(t)] <e, forany t€[a,bl.

Thus we see that the sequence of continuous functions f,(t) converges to f(t) uniformly. We know
from the calculus courses that the limit function f(¢) must be continuous, f(¢) € Cla,b], and the
inequality (5.2) shows that the sequence f,, converges to f in Cla,b].

Consider now a different norm on Cfa, b] which is called the L?-norm:

b 1/2
(5.3) Al = V f(t)2dt] , [ €Cla,b].
It is an inner product space where the scalar product is given by

b
(5.4) (f.9) = / f(Hg(t)dt, f.g € Clab)

and the conditions (N1), (N2) and (N3) are satisfied. Let us show that the metric (5.3) is not
complete. For simplicity we shall assume that [a,b] = [—1, 1] but clearly the same result hold for
any closed interval [a, b].

For t € [—1,1] define f,(¢) by

1, if te(l/n1],
falty =4 -1, if te[-1,—1/n],

nt, if te[-1/n,1/n].
Clearly, f, is continuous, f, € C[—1,1]. Let us show that the sequence f, is a Cauchy sequence
with respect to the metric associated with the norm (5.3). For n,m > N one has

Ifn(t) _fm(t)| =
<2, for te[-1/N,1/N].
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Therefore,

! 9 , 2 8
| =g < 22 = 5

Given an arbitrary € > 0 we can take N = E%. Then for n,m > N one has

1
[ﬁhw—hﬁﬁﬁsﬁ,teHh—hMSQ

which shows that the sequence f,, is a Cauchy sequence. The graph of f,, and the graph of the point-

—-n~

v

FIGURE 1. The function f,(¢) (left) and its pointwise limit f(¢) (right)

wise limit f(¢) = lim f,,(¢) are shown on Figure 1. The function f(t) is discontinuous, f ¢ C[-1,1],
and we see that the sequence f,, has no limit in the space C[—1, 1] with respect to the L?-metric.

Indeed, let us assume that the sequence f,, converges to a continuous function ¢ € C[—1,1]
with respect to the metric determined by the norm (5.3). Suppose that for some ¢y € (0,1) one has
¥ (tg) # 1. Using the continuity of 1) we conclude that there exists § > 0 such that |t—t¢| < § implies
[(t) — 1] > 1/2-|3(to) — 1| = a > 0. Hence for sufficiently large n we shall have ||¢p — f|| > ad
contradicting the assumption that f, — . This shows that the value 9 (¢p) must be equal 1 for
all ¢ty € (0,1]. Similarly, one shows that ¢ must be equal to —1 on the interval [—1,0). Clearly, no
continuous function on [—1, 1] with these two properties exists.

5.3. The space (2

The elements of the space /2 are infinite sequences v = (1,22, ...) of real numbers satisfying
the condition

o0
(5.5) Jv]|? = Zw? < oo.
i=1
If w = (y1,y2,...) is another infinite sequence satisfying (5.5) then their sum

v+w=(x1+y1, T2+ Ya,...)

also satisfies (5.5). Indeed, taking a large integer M > 0, denote by v and w™ the M-dimensional
vectors having as coordinates the first M coordinates of v and w correspondingly. By the Minkowski
inequality (1.19),

(5.6) [ + W] < o™+ |[w™]] < ol + [luwl]

which shows that the monotone function M + |[v™ 4 w™|| is bounded and hence has a limit when
M — o0, i.e. ||v+w]|| < co. Thus, 2 is a vector space.
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For v,w € £? their scalar product is defined by
(5.7) (v,w) = inyi,
i=1

where v; = (21, 22,...) and w = (y1,y2,...)-
To show that (5.7) is well-defined, i.e. it is finite, we write the Cauchy inequality (3.4) for the
finite dimensional vectors v and w™:

M M
(5.8) WMoy =3 iy < Y lal - lyil < M1 ™)< ol - [l
=1 =1

This shows that the series (5.7) converges absolutely.
Next we show that the inner product space 2 is complete with respect to its metric, i.e. it is
a Hilbert space. Consider a Cauchy sequence v,, € £2. Then for any ¢ > 0 one has

(5.9) [|vn —vm]|] < €

assuming that n,m > N = N(e). The inequality (5.9) means that
g ) q y

> lwi(n) — zi(m)* < €.

i=1

Therefore, each coordinate sequence z;(1),z;(2), ... is a Cauchy sequence of reals, thus it converges
to a limit which we shall denote by z; € R.

Denote u = (x1, 2, ...). We shall show below that u € £2 and the sequence v,, converges to u
in /2. We may write

[e'S) M 0o
D olz(n) —z(m)]? = wi(n) —z(m)P+ Y |wi(n) —zi(m)? < €
i=1 i=1 i=M+1

and hence Zf\il |z;(n) — 2;(m)|?> < €. Fix m and pass to the limit with respect to n. We obtain

M
> lwi = zi(m)? < e
i=1
and since this is true for any M we obtain that the sum
o0
(5.10) > lwi = @(m)* — 0
i=1
tends to 0 when m — co. We have
o0 (o] o0
Yol <D fwi— wm)?+ > Jwi(m) .
i=1 i=1 i=1

This shows that Y .-, |z;|? is finite, i.e. u € ¢2. Then (5.10) means that ||v, — u|| = 0, i.e. v,
converges to u.
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5.4. Nested sequences of balls
THEOREM 5.9. A metric space (X,d) is complete if and only if in X every nested sequence
Bi1D>ByD>BsD...
of closed balls whose radii tend to zero has a non-empty intersection, NS, B,, # 0.

PROOF. Suppose that the space X is complete. Given a nested sequence of closed balls B,,,
where the radius r, of B, tends to zero, consider the sequence of their centres z,, € B,,. For m > n
one has d(x,, z;,) < r, and hence z, is a Cauchy sequence. Let zyp € X denote the limit of the
sequence x,, (which exists since we assume that X is complete). As x,, € B, for all m > n, we
see that o € B, for all n and hence xg € N2, By, i.e. the intersection of the sequence of balls in
non-empty.

Conversely, suppose that in the metric space X the intersection of any nested sequence of closed
balls By D By D B3 D ... with radii tending to 0 is not empty. Let z,, € X be a Cauchy sequence.
We may find an integer ny such that d(z,,x,,) < 1/2 for all n > n;. Similarly, we can find no > ny
such that d(z,,r,,) < 1/22 for all n > n,. Continuing by induction, for any integer k we can
find ny > ng_y such that for all n > ny one has d(z,,z,,) < 1/2%. Let By denote the closed ball
Blzy,;1/271]. Then z,,,, € By and moreover

Bj4+1 C By,
since for z € By41 one has
d(CC,Ink,) S d(xvxnkdrl) + d(znkJrl?‘rnk) S 1/2k + I/Qk = I/Qkil'

By our assumption the intersection NP2, By contains a point x which then satisfies d(x,z,,) <
1/25=1 for all k. Hence, z is the limit of the subsequence x,, of the original Cauchy sequence.
However, if a Cauchy sequence has a convergent subsequence then it converges as well. This
completes the proof. O

5.5. Theorem of Baire

LEMMA 5.10. For a subset A C X of a metric space (X,d) the following two properties are
equivalent:

(a) the complement of the closure X — A is dense in X ;

(b) every open ball B C X contains another open ball B' C B having no points of A, i.e. such
that B'NA=0.

PROOF. Suppose that (a) is satisfied and let B C X be an open ball. Then B must contain a
point z ¢ A and (since A is closed) an open ball B’ C B with centre z must lie in X — A implying
that B'N A =10.

If X — A is not dense then there exists a non-empty open subset U C X having no points of
X — A, ie. U C A and (b) is not satisfied. O

DEFINITION 5.11. A subset A C X of a metric space is nowhere dense if it satisfies the equivalent
properties of Lemma 5.10

THEOREM 5.12 (Baire). A complete metric space cannot be represented as the union of countably
many nowhere dense subsets.
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PROOF. Suppose that X = U2 M,, where each subset M, is a nowhere dense subset of a
complete metric space X. Let By be an open ball of radius 1. Since M; is nowhere dense we may
find a closed ball By of radius less than 1/2 such that By C By and B; N M; = (). Similarly, the ball
B; contains a closed ball By of radius less than 1/3 having no points of M>. We obtain a nested
sequence of closed balls B,, with their radii tending to 0 and by Theorem 5.9 the intersection NB,,
is not empty, i.e. contains a point z € X. Then x ¢ M, for any n, contradiction. (]

5.6. Completion of a metric space
Let (X, d) be a metric space which is not complete.

DEFINITION 5.13. A complete metric space (X*,d*) is a completion of (X, d) if X is isometric
to a dense subset of X*.

Equivalently, a complete metric space (X*,d*) is a completion of (X, d) if:
(1) X C X* and the metric on X is induced by the metric d*,
(2) X is dense in X*, ie. X = X*.

ExaMmpPLE 5.14. R is a completion of Q.
EXAMPLE 5.15. A completion of X = R — {0} is R.

THEOREM 5.16. Any metric space (X,d) admits a completion. The completion (X*,d*) is
unique up to an isometry identical on X.

LEMMA 5.17. Suppose that x,, — x¢ and y, — yo are two convergent sequences in a metric
space (X, d). Then the numerical sequence d(Zn,yn) € R converges to d(zg, yo).

PROOF. We have the inequalities d(zy,yn) < d(@n, zo) + d(x0,y0) + d(Yo, yn) and d(zo,yo) <
d(an fn)‘i’d(xna yn)+d(y7u yO) which give d(xn, yn) *d(fﬂo, yO) < d(xn, $(J)‘i’d(ym yn) and d(CEOa yO) -
d(irnv yn) S d(ﬁrOv xn) + d(yn7 yo), i~ea

(511) |d(znayn) - d(x()ayo)‘ S d(‘rnaxO) + d(y07yn)'
The RHS tends to 0, hence d(zy,, yn) — d(xo, yo)- |

PROOF OF THEOREM 5.16. We shall first prove the uniqueness. Suppose that X C X* and
X C Y™ are two completions. We want to construct an isometry f : X* — Y* which is identical
on X, ie. f(z) =x for x € X. To define f(z*) where z* € X* we use the fact that X is dense in
X* and find a sequence x,, € X with x,, — x*. The sequence x, € X C Y* is Cauchy and has a
limit y* = lim x,, where y* € Y'*.

We shall show that (a) y* depends only on z*; (b) the map f: X* — Y* given by f(z*) = y*
is an isometry; (c) f(z) = « for every z € X.

To prove (a) consider another sequence z/, € X converging to z* in X*. If z* € Y* is its limit
in Y* then using Lemma 5.17 we have

dy«(y*,2*) =limdy«(x,,2),) = limdx«(x,,2),) = dx-(z*,2*) =0

ie. y* =z*.
Next we prove that f: X* — Y™ is an isometry. For z7, 5 € X* find two sequences z,, — ]
and 2/, — a3 in X*. Then

dx- (27, 25) = limdx- (zn, 2,) = limdy-(zn, 2;,) = dy- (f(27), f(23)).
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Finally, to prove (c) we note that for € X we may take x, = x (the stationary sequence) and
hence the above procedure applied to this sequence gives f(z) = .

Now we shall prove the existence of a completion X*. Consider the set of all Cauchy sequences
(zy) in a given metric space (X,d) and introduce in this set the following equivalence relation:
(xn) ~ (yn) iff d(xp,yn) — 0. Define X* as the set of equivalence classes.

The inclusion X C X* is given by associating with « € X the class of the stationary sequence
Ty = T.

To define a metric on X* we note that for two Cauchy sequences (z,) and (y,) in X the limit
limd(xy,, yn) exists. Indeed,

(5'12) |d(xn’yn) - d(xma ym)' < d(xnvyn) + d(xmaym)

and the sequence of real numbers d(z,, y,) is a Cauchy sequence. To show (5.12) we note

d(Tns Yn) < d(@n, Tm) + d(Tm, Ym) + d(Ym, Yn)
and similarly
A(Zms Ym) < d(@m, Tn) + AT, Yn) + A(Yn,s Ym)-
These two inequalities give (5.12). Thus we may define a metric on X* by the formula

(5.13) dx+((zn), (yn)) = limd(zy, yn)-
To show (M1) we note that dx«((zn), (yn)) > 0 and if dx~((zn), (yn)) then limd(z,,y,) = 0, i.e.
the Cauchy sequences (z,) and (y,) are equivalent. (M2) and (M3) are obvious, they follow from
the corresponding properties of the metric d.

Note that X is dense in X*. Indeed, given a point z* € X* represented by a Cauchy sequence
(zp,) in X, we see that

lim dx«(zp,2") = lim [ lim d(z,,zn)] = lim d(zp,2m,) =0
n—o0 n—0o00 mMm—00 n,m—00

which means that x,, — z* in X*.
Finally we show that the metric space X* is complete. Consider a Cauchy sequence (z
X*. Since X is dense in X* we may find z,, € X with dx«(z,, ) < 1/n. We see that
d(@p, Tm) < dx«(Tp,x)) +dxs (@), xh) + dx«(zh,, 2m) < dx=(z), 25 )+ 1/n+1/m
implying that (x,) is a Cauchy sequence. Let z§ € X* be the equivalence class of this sequence.
Then

*

*)in

dx~ (), z5) < dxs(zp,xd) +1/n = li_r)n d(Tp, xm) +1/n

*

and we see that dx-(x},z{) tends to zero which means that the sequence (z}) converges to zf in
X*.

This completes the proof. O



