CHAPTER 5

Complete Metric Spaces

5.1. First examples of complete metric spaces

Definition 5.1. In a metric space (X, d), a sequence of points $\left(x_{n}\right)$ is a Cauchy sequence if for any $\epsilon>0$ there is $N>0$ such that for all $n, m>N$ one has $d\left(x_{n}, x_{m}\right)<\epsilon$.

Lemma 5.2. Any convergent sequence is a Cauchy sequence.
Proof. If $x_{n} \rightarrow x_{0}$ then for any $\epsilon>0$ there is $N>0$ such that for all $n>N$ one has $d\left(x_{n}, x_{0}\right)<\epsilon / 2$. Then for $n, m>N$ one has $d\left(x_{n}, x_{n}\right) \leq d\left(x_{n}, x_{0}\right)+d\left(x_{m}, x_{0}\right)<\epsilon$.

Definition 5.3. A metric space (X, d) is said to be complete if every Cauchy sequence in X converges.

Example 5.4. $X=\mathbf{R}$ with the usual metric is complete. This is one of the axioms defining the set of real numbers.

The set $Y=\mathbf{R}-\{0\}$ with the induced metric is not complete as the sequence $x_{n}=1 / n$ is Cauchy but has no limit in Y.

Example 5.5. The metric space \mathbf{R}^{m} with d_{∞} metric s complete. Indeed, consider a Cauchy sequence $v_{n}=\left(x_{1}^{n}, x_{2}^{n}, \ldots, x_{m}^{n}\right) \in \mathbf{R}^{m}$. This means that for any $\epsilon>0$ there is $N>0$ such that

$$
\max \left\{\left|x_{i}^{n}-x_{i}^{m}\right| ; i=1,2, \ldots m\right\}<\epsilon
$$

i.e. $\left|x_{i}^{n}-x_{i}^{m}\right|<\epsilon$ for every $i=1,2, \ldots, m$. We see that each coordinate sequence $x_{i}^{1}, x_{i}^{2}, x_{i}^{3}, \ldots, x_{i}^{n}, \ldots$ is a Cauchy sequence of real numbers. Since \mathbf{R} is complete, we obtain that $x_{i}^{n} \rightarrow x_{i}^{0}$ and therefore the sequence v_{n} converges to the vector $v_{0}=\left(x_{1}^{0}, x_{2}^{0}, \ldots, x_{m}^{0}\right)$ in $\left(\mathbf{R}^{m}, d_{\infty}\right)$.

Example 5.6. The metric space \mathbf{R}^{m} with d_{p} metric s complete for any $p \in[1, \infty]$. The case $p=\infty$ has been discussed above and for a general $p \in[1, \infty)$ we can use the inequalities

$$
d_{\infty}(v, w) \leq d_{p}(v, w) \leq m^{\frac{1}{p}} \cdot d_{\infty}(v, w), \quad v, w \in \mathbf{R}^{m}
$$

see (2.6). It follows that a sequence of vectors $v_{n} \in \mathbf{R}^{m}$ is a Cauchy sequence with respect to the metric d_{∞} if and only if it is a Cauchy sequence with respect to d_{p}. Similarly, a sequence $v_{n} \in \mathbf{R}^{m}$ converges to $v_{0} \in \mathbf{R}^{m}$ with respect to d_{∞} if and only if it converges to v_{0} with respect to d_{p}.

Proposition 5.7. Let (X, d) be a complete metric space. A subset $Y \subset X$ viewed with the induced metric is complete if and only if it is closed.

Proof. Any Cauchy sequence in Y is a Cauchy sequence in X and has a limit in X since X is complete. If Y is closed the limit point must belong to Y, see Lemma 4.21.

If the subset $Y \subset X$ is not closed we may find a sequence of points $x_{n} \in Y$ having its limit $x_{0} \in X-Y$ (by Lemma 4.21). This sequence is Cauchy in Y and has no limit in Y. Hence Y is not complete.

5.2. Banach and Hilbert spaces

Definition 5.8. A normed space $(V,\|\cdot\|)$ is called a Banach space if the associated metric $d(v, w)=\|v-w\|$ is complete.

A scalar product space $(V,\langle\rangle$,$) is called a Hilbert space of the associated normed space (V,\|\cdot\|)$, where $\|v\|^{2}=\langle v, v\rangle$ is a Banach space.

As our first example consider the space $V=C[a, b]$ of continuous functions on $[a, b]$ with the metric

$$
d(f, g)=\|f-g\|=\max _{t \in[a, b]}|f(t)-g(t)| .
$$

Let us show that this space is complete and hence is a Banach space. Let $f_{n}(t) \in C[a, b]$ be a Cauchy sequence. Then for any $\epsilon>0$ there is $N>0$ such that for all $n, m>N$ one has

$$
\begin{equation*}
\left|f_{n}(t)-f_{m}(t)\right|<\epsilon \quad \text { for any } \quad t \in[a, b] . \tag{5.1}
\end{equation*}
$$

For a fixed $t \in[a, b]$ the sequence $f_{n}(t)$ is a Cauchy sequence of real numbers and hence it has a limit which we shall denote $f(t)$. Thus, for every $t \in[a, b], \lim f_{n}(t)=f(t)$ pointwise. Taking in (5.1) the limit with respect to $m \rightarrow \infty$ we obtain

$$
\begin{equation*}
\left|f_{n}(t)-f(t)\right|<\epsilon, \quad \text { for any } \quad t \in[a, b] . \tag{5.2}
\end{equation*}
$$

Thus we see that the sequence of continuous functions $f_{n}(t)$ converges to $f(t)$ uniformly. We know from the calculus courses that the limit function $f(t)$ must be continuous, $f(t) \in C[a, b]$, and the inequality (5.2) shows that the sequence f_{n} converges to f in $C[a, b]$.

Consider now a different norm on $C[a, b]$ which is called the L^{2}-norm:

$$
\begin{equation*}
\|f\|=\left[\int_{a}^{b} f(t)^{2} d t\right]^{1 / 2}, \quad f \in C[a, b] \tag{5.3}
\end{equation*}
$$

It is an inner product space where the scalar product is given by

$$
\begin{equation*}
\langle f, g\rangle=\int_{a}^{b} f(t) g(t) d t, \quad f, g \in C[a, b] \tag{5.4}
\end{equation*}
$$

and the conditions (N1), (N2) and (N3) are satisfied. Let us show that the metric (5.3) is not complete. For simplicity we shall assume that $[a, b]=[-1,1]$ but clearly the same result hold for any closed interval $[a, b]$.

For $t \in[-1,1]$ define $f_{n}(t)$ by

$$
f_{n}(t)= \begin{cases}1, & \text { if } \quad t \in[1 / n, 1] \\ -1, & \text { if } \quad t \in[-1,-1 / n] \\ n t, & \text { if } \quad t \in[-1 / n, 1 / n]\end{cases}
$$

Clearly, f_{n} is continuous, $f_{n} \in C[-1,1]$. Let us show that the sequence f_{n} is a Cauchy sequence with respect to the metric associated with the norm (5.3). For $n, m>N$ one has

$$
\left|f_{n}(t)-f_{m}(t)\right|=\left\{\begin{array}{lll}
0, & \text { if } & t \notin[-1 / N, 1 / N] \\
\leq 2, & \text { for } & t \in[-1 / N, 1 / N]
\end{array}\right.
$$

Therefore,

$$
\int_{-1}^{1}\left(f_{n}(t)-f_{m}(t)\right)^{2} d t \leq 2^{2} \cdot \frac{2}{N}=\frac{8}{N}
$$

Given an arbitrary $\epsilon>0$ we can take $N=\frac{8}{\epsilon^{2}}$. Then for $n, m>N$ one has

$$
\int_{-1}^{1}\left(f_{n}(t)-f_{m}(t)\right)^{2} d t \leq \epsilon^{2}, \quad \text { i.e. } \quad\left\|f_{n}-f_{m}\right\| \leq \epsilon
$$

which shows that the sequence f_{n} is a Cauchy sequence. The graph of f_{n} and the graph of the point-

Figure 1. The function $f_{n}(t)$ (left) and its pointwise limit $f(t)$ (right)
wise limit $f(t)=\lim f_{n}(t)$ are shown on Figure 1. The function $f(t)$ is discontinuous, $f \notin C[-1,1]$, and we see that the sequence f_{n} has no limit in the space $C[-1,1]$ with respect to the L^{2}-metric.

Indeed, let us assume that the sequence f_{n} converges to a continuous function $\psi \in C[-1,1]$ with respect to the metric determined by the norm (5.3). Suppose that for some $t_{0} \in(0,1)$ one has $\psi\left(t_{0}\right) \neq 1$. Using the continuity of ψ we conclude that there exists $\delta>0$ such that $\left|t-t_{0}\right|<\delta$ implies $|\psi(t)-1|>1 / 2 \cdot\left|\psi\left(t_{0}\right)-1\right|=a>0$. Hence for sufficiently large n we shall have $\left\|\psi-f_{n}\right\| \geq a \delta$ contradicting the assumption that $f_{n} \rightarrow \psi$. This shows that the value $\psi\left(t_{0}\right)$ must be equal 1 for all $t_{0} \in(0,1]$. Similarly, one shows that ψ must be equal to -1 on the interval $[-1,0)$. Clearly, no continuous function on $[-1,1]$ with these two properties exists.

5.3. The space ℓ^{2}

The elements of the space ℓ^{2} are infinite sequences $v=\left(x_{1}, x_{2}, \ldots\right)$ of real numbers satisfying the condition

$$
\begin{equation*}
\|v\|^{2}=\sum_{i=1}^{\infty} x_{i}^{2}<\infty \tag{5.5}
\end{equation*}
$$

If $w=\left(y_{1}, y_{2}, \ldots\right)$ is another infinite sequence satisfying (5.5) then their sum

$$
v+w=\left(x_{1}+y_{1}, x_{2}+y_{2}, \ldots\right)
$$

also satisfies (5.5). Indeed, taking a large integer $M>0$, denote by v^{M} and w^{M} the M-dimensional vectors having as coordinates the first M coordinates of v and w correspondingly. By the Minkowski inequality (1.19),

$$
\begin{equation*}
\left\|v^{M}+w^{M}\right\| \leq\left\|v^{M}\right\|+\left\|w^{M}\right\| \leq\|v\|+\|w\| \tag{5.6}
\end{equation*}
$$

which shows that the monotone function $M \mapsto\left\|v^{M}+w^{M}\right\|$ is bounded and hence has a limit when $M \rightarrow \infty$, i.e. $\|v+w\|<\infty$. Thus, ℓ^{2} is a vector space.

For $v, w \in \ell^{2}$ their scalar product is defined by

$$
\begin{equation*}
\langle v, w\rangle=\sum_{i=1}^{\infty} x_{i} y_{i} \tag{5.7}
\end{equation*}
$$

where $v_{i}=\left(x_{1}, x_{2}, \ldots\right)$ and $w=\left(y_{1}, y_{2}, \ldots\right)$.
To show that (5.7) is well-defined, i.e. it is finite, we write the Cauchy inequality (3.4) for the finite dimensional vectors v^{M} and w^{M} :

$$
\begin{equation*}
\left\langle v^{M}, w^{M}\right\rangle=\sum_{i=1}^{M} x_{i} y_{i} \leq \sum_{i=1}^{M}\left|x_{i}\right| \cdot\left|y_{i}\right| \leq\left\|v^{M}\right\| \cdot\left\|w^{M}\right\| \leq\|v\| \cdot\|w\| \tag{5.8}
\end{equation*}
$$

This shows that the series (5.7) converges absolutely.
Next we show that the inner product space ℓ^{2} is complete with respect to its metric, i.e. it is a Hilbert space. Consider a Cauchy sequence $v_{n} \in \ell^{2}$. Then for any $\epsilon>0$ one has

$$
\begin{equation*}
\left\|v_{n}-v_{m}\right\|<\epsilon \tag{5.9}
\end{equation*}
$$

assuming that $n, m>N=N(\epsilon)$. The inequality (5.9) means that

$$
\sum_{i=1}^{\infty}\left|x_{i}(n)-x_{i}(m)\right|^{2}<\epsilon^{2}
$$

Therefore, each coordinate sequence $x_{i}(1), x_{i}(2), \ldots$ is a Cauchy sequence of reals, thus it converges to a limit which we shall denote by $x_{i} \in \mathbf{R}$.

Denote $u=\left(x_{1}, x_{2}, \ldots\right)$. We shall show below that $u \in \ell^{2}$ and the sequence v_{n} converges to u in ℓ^{2}. We may write

$$
\sum_{i=1}^{\infty}\left|x_{i}(n)-x_{i}(m)\right|^{2}=\sum_{i=1}^{M}\left|x_{i}(n)-x_{i}(m)\right|^{2}+\sum_{i=M+1}^{\infty}\left|x_{i}(n)-x_{i}(m)\right|^{2}<\epsilon^{2}
$$

and hence $\sum_{i=1}^{M}\left|x_{i}(n)-x_{i}(m)\right|^{2}<\epsilon$. Fix m and pass to the limit with respect to n. We obtain

$$
\sum_{i=1}^{M}\left|x_{i}-x_{i}(m)\right|^{2}<\epsilon
$$

and since this is true for any M we obtain that the sum

$$
\begin{equation*}
\sum_{i=1}^{\infty}\left|x_{i}-x_{i}(m)\right|^{2} \rightarrow 0 \tag{5.10}
\end{equation*}
$$

tends to 0 when $m \rightarrow \infty$. We have

$$
\sum_{i=1}^{\infty}\left|x_{i}\right|^{2} \leq \sum_{i=1}^{\infty}\left|x_{i}-x_{i}(m)\right|^{2}+\sum_{i=1}^{\infty}\left|x_{i}(m)\right|^{2}
$$

This shows that $\sum_{i=1}^{\infty}\left|x_{i}\right|^{2}$ is finite, i.e. $u \in \ell^{2}$. Then (5.10) means that $\left\|v_{m}-u\right\| \rightarrow 0$, i.e. v_{n} converges to u.

5.4. Nested sequences of balls

Theorem 5.9. A metric space (X, d) is complete if and only if in X every nested sequence

$$
B_{1} \supset B_{2} \supset B_{3} \supset \ldots
$$

of closed balls whose radii tend to zero has a non-empty intersection, $\cap_{n=1}^{\infty} B_{n} \neq \emptyset$.
Proof. Suppose that the space X is complete. Given a nested sequence of closed balls B_{n}, where the radius r_{n} of B_{n} tends to zero, consider the sequence of their centres $x_{n} \in B_{n}$. For $m>n$ one has $d\left(x_{n}, x_{m}\right) \leq r_{n}$ and hence x_{n} is a Cauchy sequence. Let $x_{0} \in X$ denote the limit of the sequence x_{n} (which exists since we assume that X is complete). As $x_{m} \in B_{n}$ for all $m \geq n$, we see that $x_{0} \in B_{n}$ for all n and hence $x_{0} \in \cap_{n=1}^{\infty} B_{n}$, i.e. the intersection of the sequence of balls in non-empty.

Conversely, suppose that in the metric space X the intersection of any nested sequence of closed balls $B_{1} \supset B_{2} \supset B_{3} \supset \ldots$ with radii tending to 0 is not empty. Let $x_{n} \in X$ be a Cauchy sequence. We may find an integer n_{1} such that $d\left(x_{n}, x_{n_{1}}\right)<1 / 2$ for all $n \geq n_{1}$. Similarly, we can find $n_{2}>n_{1}$ such that $d\left(x_{n}, x_{n_{2}}\right)<1 / 2^{2}$ for all $n \geq n_{2}$. Continuing by induction, for any integer k we can find $n_{k}>n_{k-1}$ such that for all $n \geq n_{k}$ one has $d\left(x_{n}, x_{n_{k}}\right)<1 / 2^{k}$. Let B_{k} denote the closed ball $B\left[x_{n_{k}} ; 1 / 2^{k-1}\right]$. Then $x_{n_{k+1}} \in B_{k}$ and moreover

$$
B_{k+1} \subset B_{k}
$$

since for $x \in B_{k+1}$ one has

$$
d\left(x, x_{n_{k}}\right) \leq d\left(x, x_{n_{k+1}}\right)+d\left(x_{n_{k+1}}, x_{n_{k}}\right) \leq 1 / 2^{k}+1 / 2^{k}=1 / 2^{k-1} .
$$

By our assumption the intersection $\cap_{k=1}^{\infty} B_{k}$ contains a point x which then satisfies $d\left(x, x_{n_{k}}\right) \leq$ $1 / 2^{k-1}$ for all k. Hence, x is the limit of the subsequence $x_{n_{k}}$ of the original Cauchy sequence. However, if a Cauchy sequence has a convergent subsequence then it converges as well. This completes the proof.

5.5. Theorem of Baire

Lemma 5.10. For a subset $A \subset X$ of a metric space (X, d) the following two properties are equivalent:
(a) the complement of the closure $X-\bar{A}$ is dense in X;
(b) every open ball $B \subset X$ contains another open ball $B^{\prime} \subset B$ having no points of A, i.e. such that $B^{\prime} \cap A=\emptyset$.

Proof. Suppose that (a) is satisfied and let $B \subset X$ be an open ball. Then B must contain a point $x \notin \bar{A}$ and (since \bar{A} is closed) an open ball $B^{\prime} \subset B$ with centre x must lie in $X-\bar{A}$ implying that $B^{\prime} \cap A=\emptyset$.

If $X-\bar{A}$ is not dense then there exists a non-empty open subset $U \subset X$ having no points of $X-\bar{A}$, i.e. $U \subset \bar{A}$ and (b) is not satisfied.

Definition 5.11. A subset $A \subset X$ of a metric space is nowhere dense if it satisfies the equivalent properties of Lemma 5.10

THEOREM 5.12 (Baire). A complete metric space cannot be represented as the union of countably many nowhere dense subsets.

Proof. Suppose that $X=\cup_{n=1}^{\infty} M_{n}$ where each subset M_{n} is a nowhere dense subset of a complete metric space X. Let B_{0} be an open ball of radius 1 . Since M_{1} is nowhere dense we may find a closed ball B_{1} of radius less than $1 / 2$ such that $B_{1} \subset B_{0}$ and $B_{1} \cap M_{1}=\emptyset$. Similarly, the ball B_{1} contains a closed ball B_{2} of radius less than $1 / 3$ having no points of M_{2}. We obtain a nested sequence of closed balls B_{n} with their radii tending to 0 and by Theorem 5.9 the intersection $\cap B_{n}$ is not empty, i.e. contains a point $x \in X$. Then $x \notin M_{n}$ for any n, contradiction.

5.6. Completion of a metric space

Let (X, d) be a metric space which is not complete.
Definition 5.13. A complete metric space $\left(X^{*}, d^{*}\right)$ is a completion of (X, d) if X is isometric to a dense subset of X^{*}.

Equivalently, a complete metric space $\left(X^{*}, d^{*}\right)$ is a completion of (X, d) if:
(1) $X \subset X^{*}$ and the metric on X is induced by the metric d^{*},
(2) X is dense in X^{*}, i.e. $\bar{X}=X^{*}$.

Example 5.14. \mathbf{R} is a completion of \mathbf{Q}.
Example 5.15. A completion of $X=\mathbf{R}-\{0\}$ is \mathbf{R}.
Theorem 5.16. Any metric space (X, d) admits a completion. The completion $\left(X^{*}, d^{*}\right)$ is unique up to an isometry identical on X.

Lemma 5.17. Suppose that $x_{n} \rightarrow x_{0}$ and $y_{n} \rightarrow y_{0}$ are two convergent sequences in a metric space (X, d). Then the numerical sequence $d\left(x_{n}, y_{n}\right) \in \mathbf{R}$ converges to $d\left(x_{0}, y_{0}\right)$.

Proof. We have the inequalities $d\left(x_{n}, y_{n}\right) \leq d\left(x_{n}, x_{0}\right)+d\left(x_{0}, y_{0}\right)+d\left(y_{0}, y_{n}\right)$ and $d\left(x_{0}, y_{0}\right) \leq$ $d\left(x_{0}, x_{n}\right)+d\left(x_{n}, y_{n}\right)+d\left(y_{n}, y_{0}\right)$ which give $d\left(x_{n}, y_{n}\right)-d\left(x_{0}, y_{0}\right) \leq d\left(x_{n}, x_{0}\right)+d\left(y_{0}, y_{n}\right)$ and $d\left(x_{0}, y_{0}\right)-$ $d\left(x_{n}, y_{n}\right) \leq d\left(x_{0}, x_{n}\right)+d\left(y_{n}, y_{0}\right)$, i.e,

$$
\begin{equation*}
\left|d\left(x_{n}, y_{n}\right)-d\left(x_{0}, y_{0}\right)\right| \leq d\left(x_{n}, x_{0}\right)+d\left(y_{0}, y_{n}\right) \tag{5.11}
\end{equation*}
$$

The RHS tends to 0 , hence $d\left(x_{n}, y_{n}\right) \rightarrow d\left(x_{0}, y_{0}\right)$.
Proof of Theorem 5.16. We shall first prove the uniqueness. Suppose that $X \subset X^{*}$ and $X \subset Y^{*}$ are two completions. We want to construct an isometry $f: X^{*} \rightarrow Y^{*}$ which is identical on X, i.e. $f(x)=x$ for $x \in X$. To define $f\left(x^{*}\right)$ where $x^{*} \in X^{*}$ we use the fact that X is dense in X^{*} and find a sequence $x_{n} \in X$ with $x_{n} \rightarrow x^{*}$. The sequence $x_{n} \in X \subset Y^{*}$ is Cauchy and has a limit $y^{*}=\lim x_{n}$ where $y^{*} \in Y^{*}$.

We shall show that (a) y^{*} depends only on x^{*}; (b) the map $f: X^{*} \rightarrow Y^{*}$ given by $f\left(x^{*}\right)=y^{*}$ is an isometry; (c) $f(x)=x$ for every $x \in X$.

To prove (a) consider another sequence $x_{n}^{\prime} \in X$ converging to x^{*} in X^{*}. If $z^{*} \in Y^{*}$ is its limit in Y^{*} then using Lemma 5.17 we have

$$
d_{Y^{*}}\left(y^{*}, z^{*}\right)=\lim d_{Y^{*}}\left(x_{n}, x_{n}^{\prime}\right)=\lim d_{X^{*}}\left(x_{n}, x_{n}^{\prime}\right)=d_{X^{*}}\left(x^{*}, x^{*}\right)=0
$$

i.e. $y^{*}=z^{*}$.

Next we prove that $f: X^{*} \rightarrow Y^{*}$ is an isometry. For $x_{1}^{*}, x_{2}^{*} \in X^{*}$ find two sequences $x_{n} \rightarrow x_{1}^{*}$ and $x_{n}^{\prime} \rightarrow x_{2}^{*}$ in X^{*}. Then

$$
d_{X^{*}}\left(x_{1}^{*}, x_{2}^{*}\right)=\lim d_{X^{*}}\left(x_{n}, x_{n}^{\prime}\right)=\lim d_{Y^{*}}\left(x_{n}, x_{n}^{\prime}\right)=d_{Y^{*}}\left(f\left(x_{1}^{*}\right), f\left(x_{2}^{*}\right)\right) .
$$

Finally, to prove (c) we note that for $x \in X$ we may take $x_{n}=x$ (the stationary sequence) and hence the above procedure applied to this sequence gives $f(x)=x$.

Now we shall prove the existence of a completion X^{*}. Consider the set of all Cauchy sequences $\left(x_{n}\right)$ in a given metric space (X, d) and introduce in this set the following equivalence relation: $\left(x_{n}\right) \sim\left(y_{n}\right)$ iff $d\left(x_{n}, y_{n}\right) \rightarrow 0$. Define X^{*} as the set of equivalence classes.

The inclusion $X \subset X^{*}$ is given by associating with $x \in X$ the class of the stationary sequence $x_{n}=x$.

To define a metric on X^{*} we note that for two Cauchy sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$ in X the limit $\lim d\left(x_{n}, y_{n}\right)$ exists. Indeed,

$$
\begin{equation*}
\left|d\left(x_{n}, y_{n}\right)-d\left(x_{m}, y_{m}\right)\right| \leq d\left(x_{n}, y_{n}\right)+d\left(x_{m}, y_{m}\right) \tag{5.12}
\end{equation*}
$$

and the sequence of real numbers $d\left(x_{n}, y_{n}\right)$ is a Cauchy sequence. To show (5.12) we note

$$
d\left(x_{n}, y_{n}\right) \leq d\left(x_{n}, x_{m}\right)+d\left(x_{m}, y_{m}\right)+d\left(y_{m}, y_{n}\right)
$$

and similarly

$$
d\left(x_{m}, y_{m}\right) \leq d\left(x_{m}, x_{n}\right)+d\left(x_{n}, y_{n}\right)+d\left(y_{n}, y_{m}\right)
$$

These two inequalities give (5.12). Thus we may define a metric on X^{*} by the formula

$$
\begin{equation*}
d_{X^{*}}\left(\left(x_{n}\right),\left(y_{n}\right)\right)=\lim d\left(x_{n}, y_{n}\right) \tag{5.13}
\end{equation*}
$$

To show (M1) we note that $d_{X^{*}}\left(\left(x_{n}\right),\left(y_{n}\right)\right) \geq 0$ and if $d_{X^{*}}\left(\left(x_{n}\right),\left(y_{n}\right)\right)$ then $\lim d\left(x_{n}, y_{n}\right)=0$, i.e. the Cauchy sequences $\left(x_{n}\right)$ and (y_{n}) are equivalent. (M2) and (M3) are obvious, they follow from the corresponding properties of the metric d.

Note that X is dense in X^{*}. Indeed, given a point $x^{*} \in X^{*}$ represented by a Cauchy sequence $\left(x_{n}\right)$ in X, we see that

$$
\lim _{n \rightarrow \infty} d_{X^{*}}\left(x_{n}, x^{*}\right)=\lim _{n \rightarrow \infty}\left[\lim _{m \rightarrow \infty} d\left(x_{n}, x_{m}\right)\right]=\lim _{n, m \rightarrow \infty} d\left(x_{n}, x_{m}\right)=0
$$

which means that $x_{n} \rightarrow x^{*}$ in X^{*}.
Finally we show that the metric space X^{*} is complete. Consider a Cauchy sequence $\left(x_{n}^{*}\right)$ in X^{*}. Since X is dense in X^{*} we may find $x_{n} \in X$ with $d_{X^{*}}\left(x_{n}, x_{n}^{*}\right)<1 / n$. We see that

$$
d\left(x_{n}, x_{m}\right) \leq d_{X^{*}}\left(x_{n}, x_{n}^{*}\right)+d_{X^{*}}\left(x_{n}^{*}, x_{m}^{*}\right)+d_{X^{*}}\left(x_{m}^{*}, x_{m}\right)<d_{X^{*}}\left(x_{n}^{*}, x_{m}^{*}\right)+1 / n+1 / m
$$

implying that $\left(x_{n}\right)$ is a Cauchy sequence. Let $x_{0}^{*} \in X^{*}$ be the equivalence class of this sequence. Then

$$
d_{X^{*}}\left(x_{n}^{*}, x_{0}^{*}\right) \leq d_{X^{*}}\left(x_{n}, x_{0}^{*}\right)+1 / n=\lim _{m \rightarrow \infty} d\left(x_{n}, x_{m}\right)+1 / n
$$

and we see that $d_{X^{*}}\left(x_{n}^{*}, x_{0}^{*}\right)$ tends to zero which means that the sequence $\left(x_{n}^{*}\right)$ converges to x_{0}^{*} in X^{*}.

This completes the proof.

