
CHAPTER 5

Complete Metric Spaces

5.1. First examples of complete metric spaces

Definition 5.1. In a metric space (X, d), a sequence of points (xn) is a Cauchy sequence if
for any ✏ > 0 there is N > 0 such that for all n,m > N one has d(xn, xm) < ✏.

Lemma 5.2. Any convergent sequence is a Cauchy sequence.

Proof. If xn ! x0 then for any ✏ > 0 there is N > 0 such that for all n > N one has
d(xn, x0) < ✏/2. Then for n,m > N one has d(xn, xn)  d(xn, x0) + d(xm, x0) < ✏. ⇤

Definition 5.3. A metric space (X, d) is said to be complete if every Cauchy sequence in X
converges.

Example 5.4. X = R with the usual metric is complete. This is one of the axioms defining
the set of real numbers.

The set Y = R � {0} with the induced metric is not complete as the sequence xn = 1/n is
Cauchy but has no limit in Y .

Example 5.5. The metric space Rm with d1 metric s complete. Indeed, consider a Cauchy
sequence vn = (xn

1 , x
n
2 , . . . , x

n
m) 2 Rm. This means that for any ✏ > 0 there is N > 0 such that

max{|xn
i � xm

i |; i = 1, 2, . . .m} < ✏,

i.e. |xn
i �xm

i | < ✏ for every i = 1, 2, . . . ,m. We see that each coordinate sequence x1
i , x

2
i , x

3
i , . . . , x

n
i , . . .

is a Cauchy sequence of real numbers. Since R is complete, we obtain that xn
i ! x0

i and therefore
the sequence vn converges to the vector v0 = (x0

1, x
0
2, . . . , x

0
m) in (Rm, d1).

Example 5.6. The metric space Rm with dp metric s complete for any p 2 [1,1]. The case
p = 1 has been discussed above and for a general p 2 [1,1) we can use the inequalities

d1(v, w)  dp(v, w)  m
1
p · d1(v, w), v, w 2 Rm,

see (2.6). It follows that a sequence of vectors vn 2 Rm is a Cauchy sequence with respect to the
metric d1 if and only if it is a Cauchy sequence with respect to dp. Similarly, a sequence vn 2 Rm

converges to v0 2 Rm with respect to d1 if and only if it converges to v0 with respect to dp.

Proposition 5.7. Let (X, d) be a complete metric space. A subset Y ⇢ X viewed with the
induced metric is complete if and only if it is closed.

Proof. Any Cauchy sequence in Y is a Cauchy sequence in X and has a limit in X since X
is complete. If Y is closed the limit point must belong to Y , see Lemma 4.21.

If the subset Y ⇢ X is not closed we may find a sequence of points xn 2 Y having its limit
x0 2 X � Y (by Lemma 4.21). This sequence is Cauchy in Y and has no limit in Y . Hence Y is
not complete. ⇤
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32 5. COMPLETE METRIC SPACES

5.2. Banach and Hilbert spaces

Definition 5.8. A normed space (V, || · ||) is called a Banach space if the associated metric
d(v, w) = ||v � w|| is complete.

A scalar product space (V, h , i) is called a Hilbert space of the associated normed space (V, ||·||),
where ||v||2 = hv, vi is a Banach space.

As our first example consider the space V = C[a, b] of continuous functions on [a, b] with the
metric

d(f, g) = ||f � g|| = max
t2[a,b]

|f(t)� g(t)|.

Let us show that this space is complete and hence is a Banach space. Let fn(t) 2 C[a, b] be a
Cauchy sequence. Then for any ✏ > 0 there is N > 0 such that for all n,m > N one has

|fn(t)� fm(t)| < ✏ for any t 2 [a, b].(5.1)

For a fixed t 2 [a, b] the sequence fn(t) is a Cauchy sequence of real numbers and hence it has a
limit which we shall denote f(t). Thus, for every t 2 [a, b], lim fn(t) = f(t) pointwise. Taking in
(5.1) the limit with respect to m ! 1 we obtain

|fn(t)� f(t)| < ✏, for any t 2 [a, b].(5.2)

Thus we see that the sequence of continuous functions fn(t) converges to f(t) uniformly. We know
from the calculus courses that the limit function f(t) must be continuous, f(t) 2 C[a, b], and the
inequality (5.2) shows that the sequence fn converges to f in C[a, b].

Consider now a di↵erent norm on C[a, b] which is called the L2-norm:

||f || =
"Z b

a
f(t)2dt

#1/2

, f 2 C[a, b].(5.3)

It is an inner product space where the scalar product is given by

hf, gi =
Z b

a
f(t)g(t)dt, f, g 2 C[a, b].(5.4)

and the conditions (N1), (N2) and (N3) are satisfied. Let us show that the metric (5.3) is not
complete. For simplicity we shall assume that [a, b] = [�1, 1] but clearly the same result hold for
any closed interval [a, b].

For t 2 [�1, 1] define fn(t) by

fn(t) =

8
>>>><

>>>>:

1, if t 2 [1/n, 1],

�1, if t 2 [�1,�1/n],

nt, if t 2 [�1/n, 1/n].

Clearly, fn is continuous, fn 2 C[�1, 1]. Let us show that the sequence fn is a Cauchy sequence
with respect to the metric associated with the norm (5.3). For n,m > N one has

|fn(t)� fm(t)| =

8
<

:

0, if t /2 [�1/N, 1/N ],

 2, for t 2 [�1/N, 1/N ].
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Therefore, Z 1

�1
(fn(t)� fm(t))2 dt  22 · 2

N
=

8

N
.

Given an arbitrary ✏ > 0 we can take N = 8
✏2 . Then for n,m > N one has

Z 1

�1
(fn(t)� fm(t))2 dt  ✏2, i.e. ||fn � fm||  ✏,

which shows that the sequence fn is a Cauchy sequence. The graph of fn and the graph of the point-

n�1
�n�1

Figure 1. The function fn(t) (left) and its pointwise limit f(t) (right)

wise limit f(t) = lim fn(t) are shown on Figure 1. The function f(t) is discontinuous, f /2 C[�1, 1],
and we see that the sequence fn has no limit in the space C[�1, 1] with respect to the L2-metric.

Indeed, let us assume that the sequence fn converges to a continuous function  2 C[�1, 1]
with respect to the metric determined by the norm (5.3). Suppose that for some t0 2 (0, 1) one has
 (t0) 6= 1. Using the continuity of  we conclude that there exists � > 0 such that |t�t0| < � implies
| (t) � 1| > 1/2 · | (t0) � 1| = a > 0. Hence for su�ciently large n we shall have || � fn|| � a�
contradicting the assumption that fn !  . This shows that the value  (t0) must be equal 1 for
all t0 2 (0, 1]. Similarly, one shows that  must be equal to �1 on the interval [�1, 0). Clearly, no
continuous function on [�1, 1] with these two properties exists.

5.3. The space `2

The elements of the space `2 are infinite sequences v = (x1, x2, . . . ) of real numbers satisfying
the condition

||v||2 =
1X

i=1

x2
i < 1.(5.5)

If w = (y1, y2, . . . ) is another infinite sequence satisfying (5.5) then their sum

v + w = (x1 + y1, x2 + y2, . . . )

also satisfies (5.5). Indeed, taking a large integer M > 0, denote by vM and wM the M -dimensional
vectors having as coordinates the first M coordinates of v and w correspondingly. By the Minkowski
inequality (1.19),

||vM + wM ||  ||vM ||+ ||wM ||  ||v||+ ||w||(5.6)

which shows that the monotone function M 7! ||vM +wM || is bounded and hence has a limit when
M ! 1, i.e. ||v + w|| < 1. Thus, `2 is a vector space.
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For v, w 2 `2 their scalar product is defined by

hv, wi =
1X

i=1

xiyi,(5.7)

where vi = (x1, x2, . . . ) and w = (y1, y2, . . . ).
To show that (5.7) is well-defined, i.e. it is finite, we write the Cauchy inequality (3.4) for the

finite dimensional vectors vM and wM :

hvM , wM i =
MX

i=1

xiyi 
MX

i=1

|xi| · |yi|  ||vM || · ||wM ||  ||v|| · ||w||.(5.8)

This shows that the series (5.7) converges absolutely.
Next we show that the inner product space `2 is complete with respect to its metric, i.e. it is

a Hilbert space. Consider a Cauchy sequence vn 2 `2. Then for any ✏ > 0 one has

||vn � vm|| < ✏(5.9)

assuming that n,m > N = N(✏). The inequality (5.9) means that

1X

i=1

|xi(n)� xi(m)|2 < ✏2.

Therefore, each coordinate sequence xi(1), xi(2), . . . is a Cauchy sequence of reals, thus it converges
to a limit which we shall denote by xi 2 R.

Denote u = (x1, x2, . . . ). We shall show below that u 2 `2 and the sequence vn converges to u
in `2. We may write

1X

i=1

|xi(n)� xi(m)|2 =
MX

i=1

|xi(n)� xi(m)|2 +
1X

i=M+1

|xi(n)� xi(m)|2 < ✏2.

and hence
PM

i=1 |xi(n)� xi(m)|2 < ✏. Fix m and pass to the limit with respect to n. We obtain

MX

i=1

|xi � xi(m)|2 < ✏

and since this is true for any M we obtain that the sum

1X

i=1

|xi � xi(m)|2 ! 0(5.10)

tends to 0 when m ! 1. We have

1X

i=1

|xi|2 
1X

i=1

|xi � xi(m)|2 +
1X

i=1

|xi(m)|2.

This shows that
P1

i=1 |xi|2 is finite, i.e. u 2 `2. Then (5.10) means that ||vm � u|| ! 0, i.e. vn
converges to u.



5.5. THEOREM OF BAIRE 35

5.4. Nested sequences of balls

Theorem 5.9. A metric space (X, d) is complete if and only if in X every nested sequence

B1 � B2 � B3 � . . .

of closed balls whose radii tend to zero has a non-empty intersection, \1
n=1Bn 6= ;.

Proof. Suppose that the space X is complete. Given a nested sequence of closed balls Bn,
where the radius rn of Bn tends to zero, consider the sequence of their centres xn 2 Bn. For m > n
one has d(xn, xm)  rn and hence xn is a Cauchy sequence. Let x0 2 X denote the limit of the
sequence xn (which exists since we assume that X is complete). As xm 2 Bn for all m � n, we
see that x0 2 Bn for all n and hence x0 2 \1

n=1Bn, i.e. the intersection of the sequence of balls in
non-empty.

Conversely, suppose that in the metric space X the intersection of any nested sequence of closed
balls B1 � B2 � B3 � . . . with radii tending to 0 is not empty. Let xn 2 X be a Cauchy sequence.
We may find an integer n1 such that d(xn, xn1) < 1/2 for all n � n1. Similarly, we can find n2 > n1

such that d(xn, xn2) < 1/22 for all n � n2. Continuing by induction, for any integer k we can
find nk > nk�1 such that for all n � nk one has d(xn, xnk) < 1/2k. Let Bk denote the closed ball
B[xnk ; 1/2

k�1]. Then xnk+1 2 Bk and moreover

Bk+1 ⇢ Bk

since for x 2 Bk+1 one has

d(x, xnk)  d(x, xnk+1) + d(xnk+1 , xnk)  1/2k + 1/2k = 1/2k�1.

By our assumption the intersection \1
k=1Bk contains a point x which then satisfies d(x, xnk) 

1/2k�1 for all k. Hence, x is the limit of the subsequence xnk of the original Cauchy sequence.
However, if a Cauchy sequence has a convergent subsequence then it converges as well. This
completes the proof. ⇤

5.5. Theorem of Baire

Lemma 5.10. For a subset A ⇢ X of a metric space (X, d) the following two properties are
equivalent:

(a) the complement of the closure X �A is dense in X;
(b) every open ball B ⇢ X contains another open ball B0 ⇢ B having no points of A, i.e. such

that B0 \A = ;.

Proof. Suppose that (a) is satisfied and let B ⇢ X be an open ball. Then B must contain a
point x /2 A and (since A is closed) an open ball B0 ⇢ B with centre x must lie in X �A implying
that B0 \A = ;.

If X � A is not dense then there exists a non-empty open subset U ⇢ X having no points of
X �A, i.e. U ⇢ A and (b) is not satisfied. ⇤

Definition 5.11. A subset A ⇢ X of a metric space is nowhere dense if it satisfies the equivalent
properties of Lemma 5.10

Theorem 5.12 (Baire). A complete metric space cannot be represented as the union of countably
many nowhere dense subsets.
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Proof. Suppose that X = [1
n=1Mn where each subset Mn is a nowhere dense subset of a

complete metric space X. Let B0 be an open ball of radius 1. Since M1 is nowhere dense we may
find a closed ball B1 of radius less than 1/2 such that B1 ⇢ B0 and B1\M1 = ;. Similarly, the ball
B1 contains a closed ball B2 of radius less than 1/3 having no points of M2. We obtain a nested
sequence of closed balls Bn with their radii tending to 0 and by Theorem 5.9 the intersection \Bn

is not empty, i.e. contains a point x 2 X. Then x /2 Mn for any n, contradiction. ⇤

5.6. Completion of a metric space

Let (X, d) be a metric space which is not complete.

Definition 5.13. A complete metric space (X⇤, d⇤) is a completion of (X, d) if X is isometric
to a dense subset of X⇤.

Equivalently, a complete metric space (X⇤, d⇤) is a completion of (X, d) if:

(1) X ⇢ X⇤ and the metric on X is induced by the metric d⇤,
(2) X is dense in X⇤, i.e. X = X⇤.

Example 5.14. R is a completion of Q.

Example 5.15. A completion of X = R� {0} is R.

Theorem 5.16. Any metric space (X, d) admits a completion. The completion (X⇤, d⇤) is
unique up to an isometry identical on X.

Lemma 5.17. Suppose that xn ! x0 and yn ! y0 are two convergent sequences in a metric
space (X, d). Then the numerical sequence d(xn, yn) 2 R converges to d(x0, y0).

Proof. We have the inequalities d(xn, yn)  d(xn, x0) + d(x0, y0) + d(y0, yn) and d(x0, y0) 
d(x0, xn)+d(xn, yn)+d(yn, y0) which give d(xn, yn)�d(x0, y0)  d(xn, x0)+d(y0, yn) and d(x0, y0)�
d(xn, yn)  d(x0, xn) + d(yn, y0), i.e,

|d(xn, yn)� d(x0, y0)|  d(xn, x0) + d(y0, yn).(5.11)

The RHS tends to 0, hence d(xn, yn) ! d(x0, y0). ⇤

Proof of Theorem 5.16. We shall first prove the uniqueness. Suppose that X ⇢ X⇤ and
X ⇢ Y ⇤ are two completions. We want to construct an isometry f : X⇤ ! Y ⇤ which is identical
on X, i.e. f(x) = x for x 2 X. To define f(x⇤) where x⇤ 2 X⇤ we use the fact that X is dense in
X⇤ and find a sequence xn 2 X with xn ! x⇤. The sequence xn 2 X ⇢ Y ⇤ is Cauchy and has a
limit y⇤ = limxn where y⇤ 2 Y ⇤.

We shall show that (a) y⇤ depends only on x⇤; (b) the map f : X⇤ ! Y ⇤ given by f(x⇤) = y⇤

is an isometry; (c) f(x) = x for every x 2 X.
To prove (a) consider another sequence x0

n 2 X converging to x⇤ in X⇤. If z⇤ 2 Y ⇤ is its limit
in Y ⇤ then using Lemma 5.17 we have

dY ⇤(y⇤, z⇤) = lim dY ⇤(xn, x
0
n) = lim dX⇤(xn, x

0
n) = dX⇤(x⇤, x⇤) = 0

i.e. y⇤ = z⇤.
Next we prove that f : X⇤ ! Y ⇤ is an isometry. For x⇤

1, x
⇤
2 2 X⇤ find two sequences xn ! x⇤

1

and x0
n ! x⇤

2 in X⇤. Then

dX⇤(x⇤
1, x

⇤
2) = lim dX⇤(xn, x

0
n) = lim dY ⇤(xn, x

0
n) = dY ⇤(f(x⇤

1), f(x
⇤
2)).
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Finally, to prove (c) we note that for x 2 X we may take xn = x (the stationary sequence) and
hence the above procedure applied to this sequence gives f(x) = x.

Now we shall prove the existence of a completion X⇤. Consider the set of all Cauchy sequences
(xn) in a given metric space (X, d) and introduce in this set the following equivalence relation:
(xn) ⇠ (yn) i↵ d(xn, yn) ! 0. Define X⇤ as the set of equivalence classes.

The inclusion X ⇢ X⇤ is given by associating with x 2 X the class of the stationary sequence
xn = x.

To define a metric on X⇤ we note that for two Cauchy sequences (xn) and (yn) in X the limit
lim d(xn, yn) exists. Indeed,

|d(xn, yn)� d(xm, ym)|  d(xn, yn) + d(xm, ym)(5.12)

and the sequence of real numbers d(xn, yn) is a Cauchy sequence. To show (5.12) we note

d(xn, yn)  d(xn, xm) + d(xm, ym) + d(ym, yn)

and similarly
d(xm, ym)  d(xm, xn) + d(xn, yn) + d(yn, ym).

These two inequalities give (5.12). Thus we may define a metric on X⇤ by the formula

dX⇤((xn), (yn)) = lim d(xn, yn).(5.13)

To show (M1) we note that dX⇤((xn), (yn)) � 0 and if dX⇤((xn), (yn)) then lim d(xn, yn) = 0, i.e.
the Cauchy sequences (xn) and (yn) are equivalent. (M2) and (M3) are obvious, they follow from
the corresponding properties of the metric d.

Note that X is dense in X⇤. Indeed, given a point x⇤ 2 X⇤ represented by a Cauchy sequence
(xn) in X, we see that

lim
n!1

dX⇤(xn, x
⇤) = lim

n!1
[ lim
m!1

d(xn, xm)] = lim
n,m!1

d(xn, xm) = 0

which means that xn ! x⇤ in X⇤.
Finally we show that the metric space X⇤ is complete. Consider a Cauchy sequence (x⇤

n) in
X⇤. Since X is dense in X⇤ we may find xn 2 X with dX⇤(xn, x⇤

n) < 1/n. We see that

d(xn, xm)  dX⇤(xn, x
⇤
n) + dX⇤(x⇤

n, x
⇤
m) + dX⇤(x⇤

m, xm) < dX⇤(x⇤
n, x

⇤
m) + 1/n+ 1/m

implying that (xn) is a Cauchy sequence. Let x⇤
0 2 X⇤ be the equivalence class of this sequence.

Then
dX⇤(x⇤

n, x
⇤
0)  dX⇤(xn, x

⇤
0) + 1/n = lim

m!1
d(xn, xm) + 1/n

and we see that dX⇤(x⇤
n, x

⇤
0) tends to zero which means that the sequence (x⇤

n) converges to x⇤
0 in

X⇤.
This completes the proof. ⇤


