MTH6127

16 February 2024

- 1. In this question the set of real numbers \mathbb{R} is equipped with the Euclidean metric. Which of the following sets are open or closed? Explain your answer.
 - (a) (0,1),
 - (b) $(0,\infty),$
 - (c) $[0,\infty),$
 - (d) $\mathbb{R} \mathbb{Z}$,
 - (e) \mathbb{Q} .
- 2. Let $f_0: [0,1] \to \mathbb{R}$ be any continuous function on [0,1]. Denote the identity function by I, so that I(x) = x for all x. Define the sequence (f_n) of functions in C[0,1] by

$$f_n(x) = \frac{1}{2}(f_{n-1}(x) + I(x)),$$

for all $n \ge 1$. Prove that

$$d(f_n, I) = \frac{1}{2}d(f_{n-1}, I)$$

where d is the sup-metric on C[0,1]. Deduce that the sequence (f_n) converges in (C[0,1],d) to I.

3. Consider the following metric d^* on \mathbb{R}^2 :

$$d^*(p,q) = d^*((p_1, p_2), (q_1, q_2)) = \begin{cases} |p_1 - q_1|, & \text{if } p_2 = q_2; \\ |p_1 - q_1| + 1, & \text{otherwise.} \end{cases}$$

Which of the sets below are open in the metric space (\mathbb{R}^2, d^*) ? Justify your answers.

(a) $[-1, 1] \times [-1, 1],$ (b) $(-1, 1) \times [-1, 1],$ (c) $\{p : \|p\| = p_1^2 + p_2^2 < 1\},$ (d) $\{p : \|p\| = p_1^2 + p_2^2 \le 1\}.$

Hint. How does an open ball with radius 0 < r < 1 look like in (\mathbb{R}^2, d^*) ?