## 4.6. Dense subsets

DEFINITION 4.25. In a metric space (X, d) a subset  $A \subset X$  is dense if  $\overline{A} = X$ .

EXAMPLE 4.26. The set of rationals  $\mathbb{Q}$  is dense in  $X = \mathbf{R}$  as any real number is a limit of a sequence of rational numbers. Similarly,  $\mathbb{Q}^m \subset \mathbf{R}^m$  is dense with respect to any of the metrics  $d_p$  where  $p \in [1, \infty]$ .

Lemma 4.27. A subset  $A \subset X$  is dense if and only if every non-empty open subset of X contains a point of A.

PROOF. Suppose that  $A \subset X$  is dense, i.e.  $\overline{A} = X$ , and  $U \subset X$  is a non-empty open subset with  $A \cap U = \emptyset$ . Then A is contained in the closed set (X - U) and hence  $\overline{X} \subset (X - U)$  - contradiction.

Now, let us assume that a subset  $A \subset X$  is such that every non-empty open subset of X contains a point of A. Then  $\overline{A} = X$  since otherwise the set  $U = X - \overline{A}$  would be non-empty, open and disjoint from A.

## 4.7. Open subsets of R

Here we consider the real line  $\mathbf{R}$  with the standard metric.

Theorem 4.28. Any open subset  $U \subset \mathbf{R}$  is the union of a finite or countable collection of pairwise disjoint open intervals.

PROOF. Let  $U \subset \mathbf{R}$  be open. For  $x, y \in U$  we shall write  $x \sim y$  if there exists an open interval  $(\alpha, \beta)$  such that  $x, y \in (\alpha, \beta) \subset U$ . We note that  $\sim$  is an equivalence relation: if  $x \sim y$  and  $y \sim z$  then  $x, y \in (\alpha, \beta) \subset U$  and  $y, z \in (\gamma, \delta) \subset U$  then  $(\alpha, \beta) \cup (\gamma, \delta) = (\alpha', \delta')$  where  $\alpha' = \min\{\alpha, \gamma\}$  and  $\delta' = \max\{\beta, \delta\}$ . Thus,  $x, z \in (\alpha', \delta') \subset U$ .



Consider the partition of U into the equivalence classes with respect to  $\sim$ 

$$(4.2) U = \bigsqcup_{\tau} I_{\tau}.$$

We claim that each equivalence class  $I_{\tau}$  is an open interval  $(\alpha_{\tau}, \beta_{\tau})$ , where  $\alpha_{\tau} = \inf I_{\tau}$  and  $\beta_{\tau} = \sup I_{\tau}$ . The inclusion  $I_{\tau} \subset (\alpha_{\tau}, \beta_{\tau})$  is obvious since clearly  $\alpha_{\tau}, \beta_{\tau} \notin I_{\tau}$ . If  $x, y \in I_{\tau}$  then the interval connecting x and y is contained in  $I_{\tau}$ , i.e.  $I_{\tau}$  contains any interval with boundary points in  $I_{\tau}$ . Therefore,  $I_{\tau} = (\alpha_{\tau}, \beta_{\tau})$ . The number of distinct intervals in the decomposition (4.2) is at most countable as may may choose a rational point in each of the intervals.

EXAMPLE 4.29. The complement of the closed interval  $[a,b] \subset \mathbf{R}$  is the open subset  $(-\infty,a) \cup (b,\infty)$ , the union of two disjoint open intervals.

COROLLARY 4.30. Every closed subset  $F \subset \mathbf{R}$  is obtained by removing a finite or countably infinite collection of pairwise disjoint open intervals.

## 4.8. The Cantor set

The Cantor set  $C \subset [0,1]$  is a closed subset with remarkable properties. We construct the Cantor set inductively as follows. Let

$$F_0 = [0, 1]$$

and let  $F_1 \subset F_0$  be obtained by removing the open interval (1/3, 2/3), i.e.

$$F_1 = [0, 1/3] \cup [2/3, 1].$$

On the next step we remove the middle third from each of the obtained intervals, i.e.

$$F_2 = [0, 1/9] \cup [2/9, 3/9] \cup [6/9, 7/9] \cup [8/9, 9/9].$$

We continue similarly further and remove the middle third of each of the closed intervals obtained on the previous step. Each set  $F_k$  is the union of  $2^k$  closed intervals  $[\alpha_k, \beta_k]$ , each of length  $3^{-k}$ .

Thus, we obtain an infinite nested sequence of closed sets  $F_0 \supset F_1 \supset F_2 \supset \dots$  The Cantor set

$$C = \cap_{n>1} F_n$$

is the intersection of all these closed sets.

Theorem 4.31. (a) The Cantor set C has cardinality of continuum and (b) The Lebesgue measure of C is 0.

PROOF. To prove (a) we shall use the ternary expansions of real numbers

$$x = 0.a_1a_2a_3...$$
, where  $a_1, a_2, \dots \in \{0, 1, 2\}.$ 

Each such symbol (i.e. an infinite sequence of digits 0, 1, 2) represents the real number

$$x = \frac{a_1}{3} + \frac{a_2}{3^2} + \frac{a_3}{3^3} + \dots$$

which is finite and lies in the interval [0, 1]:

$$x \le \frac{2}{3} + \frac{2}{3^2} + \frac{2}{3^3} + \dots = \frac{2}{3} (1 + \frac{1}{3} + \frac{1}{3^2} + \frac{1}{3^3} + \dots) = \frac{2}{3} \cdot \frac{1}{1 - \frac{1}{3}} = 1.$$

Example 4.32. Let's show that  $0.02020202 \cdot \cdot \cdot = 1/4$ . Indeed,

$$0.02020202\cdots = \frac{2}{3^2} + \frac{2}{3^4} + \frac{2}{3^6} + \cdots = \frac{2}{9} \cdot \left[1 + \frac{1}{9} + \frac{1}{9^2} + \dots\right] = \frac{2}{9} \cdot \frac{1}{1 - \frac{1}{6}} = \frac{1}{4}.$$

Some real numbers admit two different ternary representations, for example the expansion

$$x = 0.01222222...$$

represents the number

$$0.02 = \frac{2}{9}.$$

Indeed,

$$x = 1/9 + 2/27 \cdot [1 + (1/3) + (1/3)^2 + \dots] = 2/9.$$

**Exercise:** Show that only rational numbers of the form  $x = \frac{a}{b}$  with a and b integers and b a power of 3 have two different ternary expansions. All other numbers have a unique ternary expansion.

Lemma 4.33. A point  $x \in [0,1]$  belongs to the Cantor set  $C \subset [0,1]$  if and only if it admits a ternary expansion without 1, i.e. with the symbols 0,2 only.

PROOF. This follows from the way the Cantor set C is constructed: on the step k we delete the numbers having the digit 1 on the position k.

Thus, we obtain a map from the set S of all sequences of symbols  $\{0,2\}$  onto the Cantor set C. This map becomes bijective once we remove from S a countable subset consisting of sequences having infinite tails of the digit 2. This proves that C has cardinality of continuum, i.e. the statement (a) Theorem 4.31.

To prove the statement (b) of Theorem 4.31 we count the total measure of the intervals removed from [0,1]. On the first step we removed an interval of length 1/3, on the second step we removed 2 intervals of length  $1/3^2$ , and in general on step n we remove  $2^{n-1}$  intervals of length  $3^{-n}$ . Summing up

$$1/3 + 2/9 + \frac{4}{27} + \dots + \frac{2^{n-1}}{3^n} + \dots$$

$$= \frac{1}{2} \cdot \left[ \frac{2}{3} + \frac{4}{9} + \dots + \frac{2^n}{3^n} + \dots \right]$$

$$= \frac{1}{2} \cdot \frac{2/3}{1 - 2/3} = 1,$$

we find that the total measure removed from the interval [0, 1] equals 1.