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4.6. Dense subsets

Definition 4.25. In a metric space (X, d) a subset A ⇢ X is dense if A = X.

Example 4.26. The set of rationals Q is dense in X = R as any real number is a limit of a
sequence of rational numbers. Similarly, Qm ⇢ Rm is dense with respect to any of the metrics dp
where p 2 [1,1].

Lemma 4.27. A subset A ⇢ X is dense if and only if every non-empty open subset of X contains
a point of A.

Proof. Suppose that A ⇢ X is dense, i.e. A = X, and U ⇢ X is a non-empty open subset with
A\U = ;. Then A is contained in the closed set (X �U) and hence X ⇢ (X �U) - contradiction.

Now, let us assume that a subset A ⇢ X is such that every non-empty open subset of X
contains a point of A. Then A = X since otherwise the set U = X �A would be non-empty, open
and disjoint from A. ⇤

4.7. Open subsets of R

Here we consider the real line R with the standard metric.

Theorem 4.28. Any open subset U ⇢ R is the union of a finite or countable collection of
pairwise disjoint open intervals.

Proof. Let U ⇢ R be open. For x, y 2 U we shall write x ⇠ y if there exists an open interval
(↵,�) such that x, y 2 (↵,�) ⇢ U . We note that ⇠ is an equivalence relation: if x ⇠ y and y ⇠ z
then x, y 2 (↵,�) ⇢ U and y, z 2 (�, �) ⇢ U then (↵,�) [ (�, �) = (↵0, �0) where ↵0 = min{↵, �}
and �0 = max{�, �}. Thus, x, z 2 (↵0, �0) ⇢ U .

� �
� �y

y

�

Consider the partition of U into the equivalence classes with respect to ⇠

U =
G

⌧

I⌧ .(4.2)

We claim that each equivalence class I⌧ is an open interval (↵⌧ ,�⌧ ), where ↵⌧ = inf I⌧ and �⌧ =
sup I⌧ . The inclusion I⌧ ⇢ (↵⌧ ,�⌧ ) is obvious since clearly ↵⌧ ,�⌧ /2 I⌧ . If x, y 2 I⌧ then the interval
connecting x and y is contained in I⌧ , i.e. I⌧ contains any interval with boundary points in I⌧ .
Therefore, I⌧ = (↵⌧ ,�⌧ ). The number of distinct intervals in the decomposition (4.2) is at most
countable as may may choose a rational point in each of the intervals. ⇤

Example 4.29. The complement of the closed interval [a, b] ⇢ R is the open subset (�1, a)[
(b,1), the union of two disjoint open intervals.

Corollary 4.30. Every closed subset F ⇢ R is obtained by removing a finite or countably
infinite collection of pairwise disjoint open intervals.
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4.8. The Cantor set

The Cantor set C ⇢ [0, 1] is a closed subset with remarkable properties.
We construct the Cantor set inductively as follows. Let

F0 = [0, 1]

and let F1 ⇢ F0 be obtained by removing the open interval (1/3, 2/3), i.e.

F1 = [0, 1/3] [ [2/3, 1].

On the next step we remove the middle third from each of the obtained intervals, i.e.

F2 = [0, 1/9] [ [2/9, 3/9] [ [6/9, 7/9] [ [8/9, 9/9].

We continue similarly further and remove the middle third of each of the closed intervals obtained
on the previous step. Each set Fk is the union of 2k closed intervals [↵k,�k], each of length 3�k.

Thus, we obtain an infinite nested sequence of closed sets F0 � F1 � F2 � . . . . The Cantor set

C = \n�1Fn

is the intersection of all these closed sets.

Theorem 4.31. (a) The Cantor set C has cardinality of continuum and (b) The Lebesgue
measure of C is 0.

Proof. To prove (a) we shall use the ternary expansions of real numbers

x = 0.a1a2a3 . . . , where a1, a2, · · · 2 {0, 1, 2}.
Each such symbol (i.e. an infinite sequence of digits 0, 1, 2) represents the real number

x =
a1
3

+
a2
32

+
a3
33

+ . . .

which is finite and lies in the interval [0, 1]:

x  2

3
+

2

32
+

2

33
+ · · · = 2

3
(1 +

1

3
+

1

32
+

1

33
+ . . . ) =

2

3
· 1

1� 1
3

= 1.

⇤

Example 4.32. Let’s show that 0.02020202 · · · = 1/4. Indeed,

0.02020202 · · · = 2

32
+

2

34
+

2

36
+ · · · = 2

9
· [1 + 1

9
+

1

92
+ . . . ] =

2

9
· 1

1� 1
9

=
1

4
.

Some real numbers admit two di↵erent ternary representations, for example the expansion

x = 0.01222222 . . .

represents the number

0.02 =
2

9
.

Indeed,
x = 1/9 + 2/27 · [1 + (1/3) + (1/3)2 + . . . ] = 2/9.

Exercise: Show that only rational numbers of the form x = a
b with a and b integers and

b a power of 3 have two di↵erent ternary expansions. All other numbers have a unique ternary
expansion.
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Lemma 4.33. A point x 2 [0, 1] belongs to the Cantor set C ⇢ [0, 1] if and only if it admits a
ternary expansion without 1, i.e. with the symbols 0, 2 only.

Proof. This follows from the way the Cantor set C is constructed: on the step k we delete
the numbers having the digit 1 on the position k. ⇤

Thus, we obtain a map from the set S of all sequences of symbols {0, 2} onto the Cantor set
C. This map becomes bijective once we remove from S a countable subset consisting of sequences
having infinite tails of the digit 2. This proves that C has cardinality of continuum, i.e. the
statement (a) Theorem 4.31.

To prove the statement (b) of Theorem 4.31 we count the total measure of the intervals removed
from [0, 1]. On the first step we removed an interval of length 1/3, on the second step we removed 2
intervals of length 1/32, and in general on step n we remove 2n�1 intervals of length 3�n. Summing
up

1/3 + 2/9 +
4

27
+ · · ·+ 2n�1

3n
+ . . .

=
1

2
· [ 2
3
+

4

9
+ · · ·+ 2n

3n
+ . . . ]

=
1

2
· 2/3

1� 2/3
= 1,

we find that the total measure removed from the interval [0, 1] equals 1.


