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4.6. Dense subsets
DEFINITION 4.25. In a metric space (X,d) a subset A C X is dense if A = X.

EXAMPLE 4.26. The set of rationals QQ is dense in X = R as any real number is a limit of a
sequence of rational numbers. Similarly, Q™ C R" is dense with respect to any of the metrics d,,
where p € [1, 00].

LEMMA 4.27. A subset A C X is dense if and only if every non-empty open subset of X contains
a point of A.

PROOF. Suppose that A C X is dense, i.e. A= X, and U C X is a non-empty open subset with
ANU = (. Then A is contained in the closed set (X — U) and hence X C (X — U) - contradiction.
Now, let us assume that a subset A C X is such that every non-empty open subset of X
contains a point of A. Then A = X since otherwise the set U = X — A would be non-empty, open
and disjoint from A. a

4.7. Open subsets of R

Here we consider the real line R with the standard metric.

THEOREM 4.28. Any open subset U C R is the union of a finite or countable collection of
pairwise disjoint open intervals.

PRrOOF. Let U C R be open. For z,y € U we shall write x ~ y if there exists an open interval
(a, B) such that z,y € (o, ) C U. We note that ~ is an equivalence relation: if z ~ y and y ~ z
then 2,y € (o,8) C U and y,z € (v,6) C U then (o, 8) U (v,6) = (/,§’) where o = min{a, v}
and &' = max{3,d}. Thus, z,z € (o/,8") C U.
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Consider the partition of U into the equivalence classes with respect to ~

(4.2) U=||I.

We claim that each equivalence class I is an open interval (o, (;), where o, = inf I and 8, =
sup I;. The inclusion I, C (o, 3;) is obvious since clearly «., 8, ¢ I,;. If x,y € I, then the interval
connecting x and y is contained in I, i.e. I, contains any interval with boundary points in 7.
Therefore, I. = (a,, ;). The number of distinct intervals in the decomposition (4.2) is at most
countable as may may choose a rational point in each of the intervals. O

EXAMPLE 4.29. The complement of the closed interval [a,b] C R is the open subset (—oo,a) U
(b, 0), the union of two disjoint open intervals.

COROLLARY 4.30. Every closed subset F' C R is obtained by removing a finite or countably
infinite collection of pairwise disjoint open intervals.
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4.8. The Cantor set

The Cantor set C' C [0,1] is a closed subset with remarkable properties.
We construct the Cantor set inductively as follows. Let
Fy, =10,1]
and let Fy C Fy be obtained by removing the open interval (1/3,2/3), i.e.
Fy =0,1/3]U[2/3,1].
On the next step we remove the middle third from each of the obtained intervals, i.e.
F,=1[0,1/9]U[2/9,3/9] U[6/9,7/9] U[8/9,9/9].

We continue similarly further and remove the middle third of each of the closed intervals obtained

on the previous step. Each set F}, is the union of 2 closed intervals [ax, Bx], each of length 37F.
Thus, we obtain an infinite nested sequence of closed sets Fy D Fy D F; D .... The Cantor set

C= ngan

is the intersection of all these closed sets.
THEOREM 4.31. (a) The Cantor set C' has cardinality of continuum and (b) The Lebesgue
measure of C is 0.
PRrOOF. To prove (a) we shall use the ternary expansions of real numbers
x =0.a1a2a3..., where aj,as,---€{0,1,2}.

Each such symbol (i.e. an infinite sequence of digits 0,1, 2) represents the real number
al an as
r=—+5+tz+...

[

3 32 3
which is finite and lies in the interval [0, 1]:
x<2+3+3+~~:2(+1+i+i+...):g- LI
-3 3 33 3 3 32 33 3 1—%
O
EXAMPLE 4.32. Let’s show that 0.02020202 - - - = 1/4. Indeed,

2 2 02 2112 1L

9 9 92 9 1—-5 4

0.02020202 - - - = = + = + =
Some real numbers admit two different ternary representations, for example the expansion

r = 0.01222222. ..

represents the number
0.02 = —.
9

r=1/9+2/27-[1+(1/3)+ (1/3)> +...] = 2/9.
2 with a and b integers and

Indeed,

Exercise: Show that only rational numbers of the form z =
b a power of 3 have two different ternary expansions. All other numbers have a unique ternary

expansion.
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LEMMA 4.33. A point x € [0,1] belongs to the Cantor set C C [0,1] if and only if it admits a
ternary expansion without 1, i.e. with the symbols 0,2 only.

PRrOOF. This follows from the way the Cantor set C' is constructed: on the step k we delete
the numbers having the digit 1 on the position k. (I

Thus, we obtain a map from the set S of all sequences of symbols {0,2} onto the Cantor set
C. This map becomes bijective once we remove from S a countable subset consisting of sequences
having infinite tails of the digit 2. This proves that C' has cardinality of continuum, i.e. the
statement (a) Theorem 4.31.

To prove the statement (b) of Theorem 4.31 we count the total measure of the intervals removed
from [0, 1]. On the first step we removed an interval of length 1/3, on the second step we removed 2
intervals of length 1/3%, and in general on step n we remove 2"~ ! intervals of length 3=". Summing
up
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we find that the total measure removed from the interval [0, 1] equals 1.



