4.6. Dense subsets

Definition 4.25. In a metric space (X, d) a subset $A \subset X$ is dense if $\bar{A}=X$.
Example 4.26. The set of rationals \mathbb{Q} is dense in $X=\mathbf{R}$ as any real number is a limit of a sequence of rational numbers. Similarly, $\mathbb{Q}^{m} \subset \mathbf{R}^{m}$ is dense with respect to any of the metrics d_{p} where $p \in[1, \infty]$.

Lemma 4.27. A subset $A \subset X$ is dense if and only if every non-empty open subset of X contains a point of A.

Proof. Suppose that $A \subset X$ is dense, i.e. $\bar{A}=X$, and $U \subset X$ is a non-empty open subset with $A \cap U=\emptyset$. Then A is contained in the closed set $(X-U)$ and hence $\bar{X} \subset(X-U)$ - contradiction.

Now, let us assume that a subset $A \subset X$ is such that every non-empty open subset of X contains a point of A. Then $\bar{A}=X$ since otherwise the set $U=X-\bar{A}$ would be non-empty, open and disjoint from A.

4.7. Open subsets of R

Here we consider the real line \mathbf{R} with the standard metric.
Theorem 4.28. Any open subset $U \subset \mathbf{R}$ is the union of a finite or countable collection of pairwise disjoint open intervals.

Proof. Let $U \subset \mathbf{R}$ be open. For $x, y \in U$ we shall write $x \sim y$ if there exists an open interval (α, β) such that $x, y \in(\alpha, \beta) \subset U$. We note that \sim is an equivalence relation: if $x \sim y$ and $y \sim z$ then $x, y \in(\alpha, \beta) \subset U$ and $y, z \in(\gamma, \delta) \subset U$ then $(\alpha, \beta) \cup(\gamma, \delta)=\left(\alpha^{\prime}, \delta^{\prime}\right)$ where $\alpha^{\prime}=\min \{\alpha, \gamma\}$ and $\delta^{\prime}=\max \{\beta, \delta\}$. Thus, $x, z \in\left(\alpha^{\prime}, \delta^{\prime}\right) \subset U$.

Consider the partition of U into the equivalence classes with respect to \sim

$$
\begin{equation*}
U=\bigsqcup_{\tau} I_{\tau} \tag{4.2}
\end{equation*}
$$

We claim that each equivalence class I_{τ} is an open interval $\left(\alpha_{\tau}, \beta_{\tau}\right)$, where $\alpha_{\tau}=\inf I_{\tau}$ and $\beta_{\tau}=$ $\sup I_{\tau}$. The inclusion $I_{\tau} \subset\left(\alpha_{\tau}, \beta_{\tau}\right)$ is obvious since clearly $\alpha_{\tau}, \beta_{\tau} \notin I_{\tau}$. If $x, y \in I_{\tau}$ then the interval connecting x and y is contained in I_{τ}, i.e. I_{τ} contains any interval with boundary points in I_{τ}. Therefore, $I_{\tau}=\left(\alpha_{\tau}, \beta_{\tau}\right)$. The number of distinct intervals in the decomposition (4.2) is at most countable as may may choose a rational point in each of the intervals.

Example 4.29. The complement of the closed interval $[a, b] \subset \mathbf{R}$ is the open subset $(-\infty, a) \cup$ (b, ∞), the union of two disjoint open intervals.

Corollary 4.30. Every closed subset $F \subset \mathbf{R}$ is obtained by removing a finite or countably infinite collection of pairwise disjoint open intervals.

4.8. The Cantor set

The Cantor set $C \subset[0,1]$ is a closed subset with remarkable properties.
We construct the Cantor set inductively as follows. Let

$$
F_{0}=[0,1]
$$

and let $F_{1} \subset F_{0}$ be obtained by removing the open interval $(1 / 3,2 / 3)$, i.e.

$$
F_{1}=[0,1 / 3] \cup[2 / 3,1] .
$$

On the next step we remove the middle third from each of the obtained intervals, i.e.

$$
F_{2}=[0,1 / 9] \cup[2 / 9,3 / 9] \cup[6 / 9,7 / 9] \cup[8 / 9,9 / 9] .
$$

We continue similarly further and remove the middle third of each of the closed intervals obtained on the previous step. Each set F_{k} is the union of 2^{k} closed intervals $\left[\alpha_{k}, \beta_{k}\right]$, each of length 3^{-k}.

Thus, we obtain an infinite nested sequence of closed sets $F_{0} \supset F_{1} \supset F_{2} \supset \ldots$ The Cantor set

$$
C=\cap_{n \geq 1} F_{n}
$$

is the intersection of all these closed sets.
Theorem 4.31. (a) The Cantor set C has cardinality of continuum and (b) The Lebesgue measure of C is 0 .

Proof. To prove (a) we shall use the ternary expansions of real numbers

$$
x=0 . a_{1} a_{2} a_{3} \ldots, \quad \text { where } \quad a_{1}, a_{2}, \cdots \in\{0,1,2\} .
$$

Each such symbol (i.e. an infinite sequence of digits $0,1,2$) represents the real number

$$
x=\frac{a_{1}}{3}+\frac{a_{2}}{3^{2}}+\frac{a_{3}}{3^{3}}+\ldots
$$

which is finite and lies in the interval $[0,1]$:

$$
x \leq \frac{2}{3}+\frac{2}{3^{2}}+\frac{2}{3^{3}}+\cdots=\frac{2}{3}\left(1+\frac{1}{3}+\frac{1}{3^{2}}+\frac{1}{3^{3}}+\ldots\right)=\frac{2}{3} \cdot \frac{1}{1-\frac{1}{3}}=1 .
$$

Example 4.32. Let's show that $0.02020202 \cdots=1 / 4$. Indeed,

$$
0.02020202 \cdots=\frac{2}{3^{2}}+\frac{2}{3^{4}}+\frac{2}{3^{6}}+\cdots=\frac{2}{9} \cdot\left[1+\frac{1}{9}+\frac{1}{9^{2}}+\ldots\right]=\frac{2}{9} \cdot \frac{1}{1-\frac{1}{9}}=\frac{1}{4}
$$

Some real numbers admit two different ternary representations, for example the expansion

$$
x=0.01222222 \ldots
$$

represents the number

$$
0.02=\frac{2}{9}
$$

Indeed,

$$
x=1 / 9+2 / 27 \cdot\left[1+(1 / 3)+(1 / 3)^{2}+\ldots\right]=2 / 9
$$

Exercise: Show that only rational numbers of the form $x=\frac{a}{b}$ with a and b integers and b a power of 3 have two different ternary expansions. All other numbers have a unique ternary expansion.

Lemma 4.33. A point $x \in[0,1]$ belongs to the Cantor set $C \subset[0,1]$ if and only if it admits a ternary expansion without 1, i.e. with the symbols 0,2 only.

Proof. This follows from the way the Cantor set C is constructed: on the step k we delete the numbers having the digit 1 on the position k.

Thus, we obtain a map from the set S of all sequences of symbols $\{0,2\}$ onto the Cantor set C. This map becomes bijective once we remove from S a countable subset consisting of sequences having infinite tails of the digit 2 . This proves that C has cardinality of continuum, i.e. the statement (a) Theorem 4.31.

To prove the statement (b) of Theorem 4.31 we count the total measure of the intervals removed from $[0,1]$. On the first step we removed an interval of length $1 / 3$, on the second step we removed 2 intervals of length $1 / 3^{2}$, and in general on step n we remove 2^{n-1} intervals of length 3^{-n}. Summing up

$$
\begin{aligned}
& 1 / 3+2 / 9+\frac{4}{27}+\cdots+\frac{2^{n-1}}{3^{n}}+\ldots \\
= & \frac{1}{2} \cdot\left[\frac{2}{3}+\frac{4}{9}+\cdots+\frac{2^{n}}{3^{n}}+\ldots\right] \\
= & \frac{1}{2} \cdot \frac{2 / 3}{1-2 / 3}=1,
\end{aligned}
$$

we find that the total measure removed from the interval $[0,1]$ equals 1 .

