
CHAPTER 4

Topology of metric spaces

4.1. Continuous maps between metric spaces

Let (X, dX) and (Y, dY ) be two metric spaces and let f : X ! Y be a map. The following
definition mimics the standard ✏� � definition of continuity of functions of real variable.

Definition 4.1. We shall say that the map f : X ! Y is continuous at a point x0 2 X
if for any ✏ > 0 there exists � > 0 such that for any x 2 X satisfying dX(x, x0)  � one has
dY (f(x), f(x0)) < ✏.

We can rephrase this definition using the concept of a ball:

Definition 4.2. A map f : X ! Y is continuous at a point x0 2 X if for any ✏ > 0 there
exists � > 0 such that f(B(x0; �)) ⇢ B(f(x0); ✏).

X Y

B( f (x); �)
B(x ; � )

Recall that B(x0; �) stands for an open ball with centre x0 and radius �.
Instead of f(B(x0; �)) ⇢ B(f(x0); ✏) one may equivalently write B(x0; �) ⇢ f�1(B(f(x0); ✏)).

Definition 4.3. We shall say that a map f : X ! Y between metric spaces is continuous if it
is continuous at every point x0 2 X.

Definition 4.4. A map f : X ! Y between metric spaces is a homeomorphism if it is
continuous, bijective and its inverse f�1 : Y ! X is also continuous.

Example 4.5. Any interval [a, b] is homeomorphic to [0, 1]. Indeed, f : [0, 1] ! [a, b] given
by f(x) = a + (b � a) · x is a continuous bijective map and its inverse f�1(y) = (b � a)�1(y � a),
f�1 : [a, b] ! [0, 1] is also continuous.

Similarly, any half open interval (a, b] is homeomorphic to (0, 1] and to [0, 1).
Any open interval (a, b) is homeomorphic to (0, 1).

Example 4.6. The open interval (�1, 1) is homeomorphic to the real line R. Indeed, we may
define f : (�1, 1) ! R by f(x) = tan(⇡x2 ). This function f : (�1, 1) ! R is bijective and its inverse
function g : R ! (�1, 1) is given by g(y) = 2

⇡ · tan�1(y); clearly f and g are continuous.
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Example 4.7. An open interval (0, 1) is not homeomorphic to the closed interval [0, 1]. Indeed,
from previous courses we know that any continuous function f : [0, 1] ! (0, 1) attains its maximum
and minimum; hence there exist no continuous functions f : [0, 1] ! (0, 1) which are surjective.

Similarly, (0, 1) is not homeomorphic to (0, 1] (exercise).

Homeomorphism is an equivalence relation between metric spaces: it is symmetric, reflexsive
and transitive.

If f : X ! Y and g : Y ! Z are homeomorphisms then their composition g � f : X ! Z is
also a homeomorphism.

4.2. Open and closed subsets of metric spaces

Let (X, d) be a metric space.

Definition 4.8. A subset U ⇢ X is open if for any x 2 U there exists ✏ > 0 such that
B(x; ✏) ⇢ U .

Example 4.9. An open interval (a, b) ⇢ R is open. Indeed, if x 2 (a, b), we can take ✏ =
1
2 min{|x� a|, |x� b|}. Then B(x; ✏) = (x� ✏, x+ ✏) ⇢ (a, b).

The half open interval (a, b] is not open since there exists no ✏ > 0 such that B(b; ✏) ⇢ (a, b].

Lemma 4.10. In any metric space (X, d), an open ball B(c; r) ⇢ X is open.

Proof. Let x 2 B(c; r), i.e. d(x, c) < r. Take ✏ = r�d(x, c) > 0 and consider the ball B(x, ✏).
If y 2 B(x, ✏) then d(y, c)  d(y, x) + d(x, c) = d(y, x) + r� ✏ < r. Hence we see that the open ball
B(x, ✏) is contained in B(c; r). ⇤

The main properties of the family of open subsets of a metric space are summarised in the
Lemma below:

Lemma 4.11. In a metric space (X, d),

(O1) Any union of open subsets of X is open;
(O2) Any finite intersection of open subsets of X is open;
(O3) The sets U = X and U = ; are open.

Proof. (O1) Let U↵ ⇢ X be a family of open subsets where ↵ 2 A. Consider their union
U = [↵2AU↵. If x 2 U then x 2 U↵ for some ↵ 2 A. Since U↵ is open, there is ✏ > 0 with the
property B(x; ✏) ⇢ U↵. Then clearly B(x; ✏) ⇢ U , i.e. U is open.

(O2) Consider now finitely many open subsets U1, U2, . . . , Uk ⇢ X and let U = \k
i=1 be their

intersection. If x 2 U then x 2 Ui for every i = 1, 2, . . . , k. Since Ui is open we may find ✏i > 0
such that B(x; ✏i) ⇢ Ui. Then, taking ✏ = min{✏1, ✏2, . . . , ✏k}, we shall have B(x; ✏) ⇢ U , i.e. U is
open.

(O3) is obvious. ⇤
Theorem 4.12. Let (X, dX) and (Y, dY ) be metric spaces. A map f : X ! Y is continuous if

and only if for any open subset U ⇢ Y the preimage f�1(U) ⇢ X is open in X.

Proof. Assume that f : X ! Y is continuous according with the Definition 4.3. Let U ⇢ Y
be open. To show that f�1(U) ⇢ X is open, assume that x 2 f�1(U), i.e. f(x) 2 U . Since U is
open, there exists ✏ > 0 such that B(f(x); ✏) ⇢ U . Then, according to Definition 4.3, we may find
� > 0 with the property f(B(x; �)) ⇢ B(f(x); ✏), i.e. B(x; �) ⇢ f�1(B(f(x); ✏)) ⇢ f�1(U). Hence,
f�1(U) is open.
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Conversely, suppose that f : X ! Y is such that for any open set U ⇢ Y the preimage f�1(U) ⇢
X is open. We want to show that f is continuous as defined in Definition 4.3. For any x 2 X
and for any ✏ > 0 the ball B(f(x); ✏) ⇢ Y is open. Therefore, its preimage f�1(B(f(x); ✏)) ⇢ X is
open. Since x 2 f�1(B(f(x); ✏)), there exists � > 0 with B(x; �) ⇢ f�1(B(f(x); ✏)), or equivalently,
f(B(x; �)) ⇢ (B(f(x); ✏)). Therefore, f is continuous. ⇤

Next we define closed subsets of a metric space.

Definition 4.13. Let (X, d) be a metric space. A subset F ⇢ X is said to be closed if its
complement F c = X � F is open. Equivalently, F ⇢ X is closed if for any x 2 X � F there exists
✏ > 0 such that B(x; ✏) \ F = ;.

Lemma 4.14. In a metric space (X, d),

(F1) Any intersection of closed subsets of X is closed;
(F2) Any finite union of closed subsets of X is closed;
(F3) The sets F = X and F = ; are closed.

Proof. (F1) Let F↵ ⇢ X, where ↵ 2 A, be a family of closed subsets. Consider their inter-
section F = \↵2AF↵. If x /2 F then x /2 F↵ for some ↵ 2 A. Since F↵ is closed, there exists ✏ > 0
with B(x; ✏) \ F↵ = ;. Then B(x; ✏) \ F = ;.

(F2) Let F1, F2, . . . , Fk ⇢ X be closed subsets. Consider their union F = [k
i=1Fi. If x /2 F then

x /2 Fi for all i = 1, 2, . . . , k. Hence, for any i = 1, . . . , k there is ✏i > 0 such that B(x; ✏i) \ Fi = ;.
Taking ✏ = min{✏1, . . . ✏k} we shall have B(x; ✏)\Fi = ; for i = 1, 2, . . . , k and hence B(x; ✏)\F = ;.

The property (F3) is obvious. ⇤
Theorem 4.15. Let (X, dX) and (Y, dY ) be metric spaces. A map f : X ! Y is continuous if

and only if for any closed subset F ⇢ Y the preimage f�1(F ) ⇢ X is closed in X.

Proof. This is an obvious corollary of Theorem 4.12. Indeed, since

f�1(Y � F ) = X � f�1(F ),

we see that the preimage of a closed subset is closed if and only if the preimage of its complement
is open. ⇤

4.3. The closure of a set

Let (X, d) be a metric space.
For a subset M ⇢ X, define M = \F where F ⇢ X runs over all closed subsets containing M .

The set M is called the closure of M . It is the smallest closed subset of X containing M .

Lemma 4.16. Let (X, d) be a metric space and let M ⇢ X be a subset.

(C1) A point x 2 X belongs to the closure M if and only if B(x; ✏) \M 6= ; for any ✏ > 0;
(C2) M ⇢ M and M = M if and only if M is closed;

(C3) M = M .
(C4) If M1 ⇢ M2 then M1 ⇢ M2.
(C5) M1 [M2 = M1 [M2.

Proof. (C5) We have M1 ⇢ M1 and M2 ⇢ M2 implying M1 [M2 ⇢ M1 [M2. Since the set
M1 [M2 is closed we get M1 [M2 ⇢ M1 [M2.

On the other hand, we have M1 ⇢ M1 [ M2 and hence M1 ⇢ M1 [M2 and similarly, M2 ⇢
M1 [M2. This gives M1 [M2 ⇢ M1 [M2. ⇤
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4.4. Convergent sequences in metric spaces

Let x1, x2, . . . be a sequence of points xn 2 X of a metric space (X, d).

Definition 4.17. We say that the sequence {xn} converges to a point x0 2 X if for any ✏ > 0
there exists N such that for all n > N one has d(xn, x0) < ✏. We write x0 = limxn. Equivalently,
the sequence {xn} converges to x0 2 X if for any ✏ > 0 there exists N such that for all n > N one
has xn 2 B(x0; ✏).

Example 4.18. Let X = R with the usual metric. The sequence xn = 1
n converges to 0 2 R.

The sequences yn = (�1)n and zn = n have no limit.

Lemma 4.19. If a sequence xn 2 X converges then its limit is unique.

Proof. Suppose the contrary, i.e. xn converges to x0 2 X and to x0
0 2 X where x0 6=

x0
0. Take ✏ > 0 so small that 2✏ < d(x0, x0

0). Then B(x0; ✏) \ B(x0
0; ✏) = ; as follows from

the triangle inequality, and for large n the point xn must lie in both balls B(x0; ✏) and B(x0; ✏)
-contradiction. ⇤

Lemma 4.20. A subset F ⇢ X is closed if and only if for every convergent sequence of points
xn 2 F the limit point x0 also belongs to F .

Proof. Suppose that F ⇢ X is closed and xn 2 F converges to a point x0 2 X �F . Then for
some ✏ > 0 the ball B(x0; ✏) is disjoint from F . However, if xn ! x0, we must have xn 2 B(x0; ✏)
for all su�ciently large n. This contradicts the assumption that xn 2 F .

Suppose that F is not closed, i.e. F 6= F and F � F 6= ;. Let x0 2 F � F . Then x0 belongs to
any closed subset containing F . For ✏ > 0, the intersection B(x0; ✏)\F is nonempty since otherwise
we would have F ⇢ X�B(x0; ✏) - a closed set not containing x0. Thus we see that B(x0;

1
n )\F 6= ;.

We may choose xn 2 B(x0;
1
n ) \ F and thus xn ! x0. Hence the sequence of points xn 2 F has

x0 /2 F as its limit. ⇤

4.5. Limit Points

Definition 4.21. Let (X, d) be a metric space. A point x0 2 X is a limit point of a subset
F ⇢ X if every open ball B(x0; ✏) contains a point of F distinct from x0.

Example 4.22. If X = R and F = (0, 1] then every point of the closed interval [0, 1] is a limit
point of F . The set {n�1;n = 1, 2, . . . } has a unique limit point 0 2 R. The set Z ⇢ R has no
limit points.

Theorem 4.23. For a subset F of a metric space X denote by F 0 ⇢ X the set of all limit
points of F . Then,

F = F [ F 0.(4.1)

Proof. Suppose that x0 2 F 0 and x0 /2 F . Since F is closed, for some ✏ > 0 one has
B(x0; ✏) \ F = ; which contradicts the assumption that x0 is a limit point of F . We see that
F 0 ⇢ F and hence F [ F 0 ⇢ F . The argument of the proof of Lemma 4.20 shows that every point
x 2 F � F is a limit point of F , i.e. x 2 F 0. Thus, F ⇢ F [ F 0 and (4.1) follows. ⇤

Corollary 4.24. A subset of a metric space is closed if it contains all its limit points.

Proof. A subset F ⇢ X is closed i↵ F = F and the latter holds if and only if F 0 ⇢ F , as
follows from Theorem 4.23. ⇤


