CHAPTER 4

Topology of metric spaces

4.1. Continuous maps between metric spaces

Let (X,dx) and (Y,dy) be two metric spaces and let f : X — Y be a map. The following
definition mimics the standard € — § definition of continuity of functions of real variable.

DEFINITION 4.1. We shall say that the map f : X — Y is continuous at a point 2o € X
if for any € > 0 there exists § > 0 such that for any x € X satisfying dx(z,2z9) < ¢ one has

dy (f(x), f(zo)) < e

We can rephrase this definition using the concept of a ball:

DEFINITION 4.2. A map f : X — Y is continuous at a point g € X if for any € > 0 there
exists § > 0 such that f(B(z;d)) C B(f(xo);e€).
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Recall that B(zo;d) stands for an open ball with centre xo and radius 0.
Instead of f(B(xo;8)) C B(f(zo);€) one may equivalently write B(xo;8) C f~1(B(f(x0);€)).

DEFINITION 4.3. We shall say that a map f : X — Y between metric spaces is continuous if it
is continuous at every point zy € X.

DEFINITION 4.4. A map f : X — Y between metric spaces is a homeomorphism if it is
continuous, bijective and its inverse f~! : Y — X is also continuous.

EXAMPLE 4.5. Any interval [a,b] is homeomorphic to [0,1]. Indeed, f : [0,1] — [a,b] given
by f(z) = a+ (b— a) - x is a continuous bijective map and its inverse f~!(y) = (b —a) ' (y — a),
f=1:]a,b] — [0,1] is also continuous.

Similarly, any half open interval (a,b] is homeomorphic to (0,1] and to [0,1).

Any open interval (a,b) is homeomorphic to (0,1).

EXAMPLE 4.6. The open interval (—1,1) is homeomorphic to the real line R. Indeed, we may
define f: (=1,1) — R by f(x) = tan(%F). This function f : (—1,1) — R is bijective and its inverse
function g : R — (—1,1) is given by g(y) = % -tan~!(y); clearly f and g are continuous.
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EXAMPLE 4.7. An open interval (0, 1) is not homeomorphic to the closed interval [0, 1]. Indeed,
from previous courses we know that any continuous function f : [0,1] — (0,1) attains its maximum
and minimum; hence there exist no continuous functions f : [0,1] — (0,1) which are surjective.

Similarly, (0, 1) is not homeomorphic to (0, 1] (exercise).

Homeomorphism is an equivalence relation between metric spaces: it is symmetric, reflexsive
and transitive.

If f: X =Y and g: Y — Z are homeomorphisms then their composition go f : X — Z is
also a homeomorphism.

4.2. Open and closed subsets of metric spaces
Let (X, d) be a metric space.

DEFINITION 4.8. A subset U C X is open if for any € U there exists € > 0 such that
B(z;e) C U.

EXAMPLE 4.9. An open interval (a,b) C R is open. Indeed, if x € (a,b), we can take ¢ =
i min{|z — a|, |z — b|}. Then B(z;e) = (z — €,z +¢€) C (a,b).
The half open interval (a, b] is not open since there exists no € > 0 such that B(b;¢) C (a,b].

LEMMA 4.10. In any metric space (X, d), an open ball B(c;r) C X is open.

PROOF. Let x € B(c;r), i.e. d(z,c) <r. Take e = r—d(x,c) > 0 and consider the ball B(z, €).
If y € B(x,¢€) then d(y,c) < d(y,z) +d(z,c) = d(y,x) +r — e < r. Hence we see that the open ball
B(x,¢€) is contained in B(c;r). O

The main properties of the family of open subsets of a metric space are summarised in the
Lemma below:

LEMMA 4.11. In a metric space (X, d),

(01) Any union of open subsets of X is open;

(02) Any finite intersection of open subsets of X is open;
(03) The sets U = X and U = are open.

ProOOF. (O1) Let U, C X be a family of open subsets where a € A. Consider their union
U = UpeaU,. If x € U then x € U, for some a € A. Since U, is open, there is € > 0 with the
property B(xz;€) C Uy,. Then clearly B(x;€) C U, i.e. U is open.

(02) Consider now finitely many open subsets Uy,Us,..., Uy C X and let U = ﬁle be their
intersection. If x € U then x € U; for every i = 1,2,...,k. Since U; is open we may find ¢; > 0
such that B(z;¢;) C U;. Then, taking € = min{ey, €a,...,€x}, we shall have B(z;¢) C U, i.e. U is
open.

(03) is obvious. O

THEOREM 4.12. Let (X,dx) and (Y,dy) be metric spaces. A map f: X — 'Y is continuous if
and only if for any open subset U C Y the preimage f~1(U) C X is open in X.

PROOF. Assume that f: X — Y is continuous according with the Definition 4.3. Let U C Y
be open. To show that f~!1(U) C X is open, assume that x € f~}(U), i.e. f(z) € U. Since U is
open, there exists € > 0 such that B(f(z);e) C U. Then, according to Definition 4.3, we may find
§ > 0 with the property f(B(z;0)) C B(f(x);¢), i.e. B(z;6) C f~YH(B(f(z);¢)) C f~1(U). Hence,
F~YU) is open.
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Conversely, suppose that f : X — Y is such that for any open set U C Y the preimage f~1(U) C
X is open. We want to show that f is continuous as defined in Definition 4.3. For any =z € X
and for any € > 0 the ball B(f(z);€) C Y is open. Therefore, its preimage f~1(B(f(z);¢)) C X is
open. Since x € f~1(B(f(x);€)), there exists § > 0 with B(x;8) C f~1(B(f(z);€)), or equivalently,
f(B(z;9)) C (B(f(x);€)). Therefore, f is continuous. O

Next we define closed subsets of a metric space.

DEFINITION 4.13. Let (X,d) be a metric space. A subset F' C X is said to be closed if its
complement F° = X — F' is open. Equivalently, ' C X is closed if for any x € X — F' there exists
€ > 0 such that B(z;e) N F = ().

LEMMA 4.14. In a metric space (X, d),

(F1) Any intersection of closed subsets of X is closed;
(F2) Any finite union of closed subsets of X is closed;
(F3) The sets F =X and F =0 are closed.

ProOF. (F1) Let F, C X, where a € A, be a family of closed subsets. Consider their inter-
section F' = NacaFy. If © ¢ F then x ¢ F, for some o € A. Since F,, is closed, there exists € > 0
with B(x;€) N F, = 0. Then B(z;¢) N F = 0.

(F2) Let Fy, Fy, ..., F, C X be closed subsets. Consider their union F' = U¥_| F;. If x ¢ F then
x ¢ F; foralli=1,2,...,k. Hence, for any i = 1,...,k there is ¢; > 0 such that B(z;¢e;) N F; = 0.
Taking € = min{ey, ... €, } we shall have B(x;e)NF; = 0 for i = 1,2, ...,k and hence B(x;e)NEF = (.

The property (F3) is obvious. O

THEOREM 4.15. Let (X,dx) and (Y,dy) be metric spaces. A map f: X — 'Y is continuous if
and only if for any closed subset F C'Y the preimage f~1(F) C X is closed in X.

PROOF. This is an obvious corollary of Theorem 4.12. Indeed, since
Y = F) =X~ f7H(F),

we see that the preimage of a closed subset is closed if and only if the preimage of its complement
is open. (I

4.3. The closure of a set

Let (X, d) be a metric space.
For a subset M C X, define M = NF where F' C X runs over all closed subsets containing M.
The set M is called the closure of M. It is the smallest closed subset of X containing M.

LEMMA 4.16. Let (X,d) be a metric space and let M C X be a subset.
(C1) A point x € X belongs to the closure M if and only if B(x;e) N M # () for any e > 0;
(C2) M C M and M = M if and only if M is closed;

(C3) 7 = 7.

(C4) If My C My then Ml - MQ.

(C5) M, UM, = Ml UMQ.

PRrOOF. (C5) We have My C M, and My C M, implying M; U My C My U M. Since the set
M1 UM, is closed we get M; UMy C My U M,.

On the other hand, we have M; C M; U M, and hence M; C M; U M, and similarly, My C
My U M. This gives Ml UMQ C My U Ms. O
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4.4. Convergent sequences in metric spaces
Let 1, x3,... be a sequence of points z,, € X of a metric space (X, d).

DEFINITION 4.17. We say that the sequence {x, } converges to a point xg € X if for any € > 0
there exists NV such that for all n > N one has d(x,,xq) < e. We write zg = lim z,,. Equivalently,
the sequence {x,} converges to oy € X if for any € > 0 there exists N such that for all n > N one
has z,, € B(xo;¢).

ExXAMPLE 4.18. Let X = R with the usual metric. The sequence x,, = % converges to 0 € R.

The sequences y, = (—1)" and z, = n have no limit.
LEMMA 4.19. If a sequence x, € X converges then its limit is unique.

PROOF. Suppose the contrary, i.e. z, converges to zo € X and to z; € X where g #
xh. Take € > 0 so small that 2¢ < d(zg,z(). Then B(zg;e) N B(xh;e) = O as follows from
the triangle inequality, and for large n the point z,, must lie in both balls B(zg;€) and B(zo;¢€)
-contradiction. (]

LEMMA 4.20. A subset F C X is closed if and only if for every convergent sequence of points
T, € F the limit point x¢ also belongs to F.

PROOF. Suppose that F' C X is closed and z,, € F converges to a point zg € X — F'. Then for
some € > 0 the ball B(z;¢) is disjoint from F. However, if z,, — x9, we must have x,, € B(zo;¢€)
for all sufficiently large n. This contradicts the assumption that x, € F.

Suppose that F is not closed, i.e. F# F and F — F # (). Let o € F — F. Then z( belongs to
any closed subset containing F'. For e > 0, the intersection B(zg;€) N F is nonempty since otherwise
we would have F' C X — B(zo; €) - a closed set not containing zo. Thus we see that B(zo; )N F # (.
We may choose z,, € B(xo; %) N F and thus z,, — z¢. Hence the sequence of points x,, € F has
xo ¢ F as its limit. O

4.5. Limit Points

DEFINITION 4.21. Let (X, d) be a metric space. A point 2y € X is a limit point of a subset
F C X if every open ball B(zg;€) contains a point of F' distinct from zg.

EXAMPLE 4.22. If X = R and F = (0, 1] then every point of the closed interval [0, 1] is a limit
point of F. The set {n~';n = 1,2,...} has a unique limit point 0 € R. The set Z C R has no
limit points.

THEOREM 4.23. For a subset F of a metric space X denote by F' C X the set of all limit
points of F'. Then,

(4.1) F=FUF.

PROOF. Suppose that z¢ € F’" and 7y ¢ F. Since F is closed, for some ¢ > 0 one has
B(zg;¢) N F = () which contradicts the assumption that zo is a limit point of F. We see that

P’ C F' and hence F'U F' " ¢ F. The argument of the proof of Lemma 4.20 shows that every point
x € F — F is a limit point of F, i.e. z € F'. Thus, F C FUF’ and (4.1) follows. O

COROLLARY 4.24. A subset of a metric space is closed if it contains all its limit points.

PROOF. A subset F' C X is closed iff F = F and the latter holds if and only if F/ C F, as
follows from Theorem 4.23. O



