## CHAPTER 4

# Topology of metric spaces

#### 4.1. Continuous maps between metric spaces

Let  $(X, d_X)$  and  $(Y, d_Y)$  be two metric spaces and let  $f: X \to Y$  be a map. The following definition mimics the standard  $\epsilon - \delta$  definition of continuity of functions of real variable.

DEFINITION 4.1. We shall say that the map  $f: X \to Y$  is continuous at a point  $x_0 \in X$  if for any  $\epsilon > 0$  there exists  $\delta > 0$  such that for any  $x \in X$  satisfying  $d_X(x, x_0) \leq \delta$  one has  $d_Y(f(x), f(x_0)) < \epsilon$ .

We can rephrase this definition using the concept of a ball:

DEFINITION 4.2. A map  $f: X \to Y$  is continuous at a point  $x_0 \in X$  if for any  $\epsilon > 0$  there exists  $\delta > 0$  such that  $f(B(x_0; \delta)) \subset B(f(x_0); \epsilon)$ .



Recall that  $B(x_0; \delta)$  stands for an open ball with centre  $x_0$  and radius  $\delta$ .

Instead of  $f(B(x_0; \delta)) \subset B(f(x_0); \epsilon)$  one may equivalently write  $B(x_0; \delta) \subset f^{-1}(B(f(x_0); \epsilon))$ .

Definition 4.3. We shall say that a map  $f: X \to Y$  between metric spaces is continuous if it is continuous at every point  $x_0 \in X$ .

DEFINITION 4.4. A map  $f: X \to Y$  between metric spaces is a homeomorphism if it is continuous, bijective and its inverse  $f^{-1}: Y \to X$  is also continuous.

EXAMPLE 4.5. Any interval [a,b] is homeomorphic to [0,1]. Indeed,  $f:[0,1] \to [a,b]$  given by  $f(x) = a + (b-a) \cdot x$  is a continuous bijective map and its inverse  $f^{-1}(y) = (b-a)^{-1}(y-a)$ ,  $f^{-1}:[a,b] \to [0,1]$  is also continuous.

Similarly, any half open interval (a, b] is homeomorphic to (0, 1] and to [0, 1).

Any open interval (a, b) is homeomorphic to (0, 1).

EXAMPLE 4.6. The open interval (-1,1) is homeomorphic to the real line **R**. Indeed, we may define  $f:(-1,1)\to \mathbf{R}$  by  $f(x)=\tan(\frac{\pi x}{2})$ . This function  $f:(-1,1)\to \mathbf{R}$  is bijective and its inverse function  $g:\mathbf{R}\to(-1,1)$  is given by  $g(y)=\frac{2}{\pi}\cdot\tan^{-1}(y)$ ; clearly f and g are continuous.

Example 4.7. An open interval (0,1) is not homeomorphic to the closed interval [0,1]. Indeed, from previous courses we know that any continuous function  $f:[0,1]\to(0,1)$  attains its maximum and minimum; hence there exist no continuous functions  $f:[0,1]\to(0,1)$  which are surjective.

Similarly, (0,1) is not homeomorphic to (0,1] (exercise).

Homeomorphism is an equivalence relation between metric spaces: it is symmetric, reflexsive and transitive.

If  $f:X\to Y$  and  $g:Y\to Z$  are homeomorphisms then their composition  $g\circ f:X\to Z$  is also a homeomorphism.

#### 4.2. Open and closed subsets of metric spaces

Let (X, d) be a metric space.

DEFINITION 4.8. A subset  $U \subset X$  is open if for any  $x \in U$  there exists  $\epsilon > 0$  such that  $B(x;\epsilon) \subset U$ .

EXAMPLE 4.9. An open interval  $(a,b) \subset \mathbf{R}$  is open. Indeed, if  $x \in (a,b)$ , we can take  $\epsilon = \frac{1}{2} \min\{|x-a|, |x-b|\}$ . Then  $B(x;\epsilon) = (x-\epsilon, x+\epsilon) \subset (a,b)$ .

The half open interval (a, b] is not open since there exists no  $\epsilon > 0$  such that  $B(b; \epsilon) \subset (a, b]$ .

LEMMA 4.10. In any metric space (X, d), an open ball  $B(c; r) \subset X$  is open.

PROOF. Let  $x \in B(c; r)$ , i.e. d(x, c) < r. Take  $\epsilon = r - d(x, c) > 0$  and consider the ball  $B(x, \epsilon)$ . If  $y \in B(x, \epsilon)$  then  $d(y, c) \le d(y, x) + d(x, c) = d(y, x) + r - \epsilon < r$ . Hence we see that the open ball  $B(x, \epsilon)$  is contained in B(c; r).

The main properties of the family of open subsets of a metric space are summarised in the Lemma below:

LEMMA 4.11. In a metric space (X, d),

- (O1) Any union of open subsets of X is open;
- (O2) Any finite intersection of open subsets of X is open;
- (O3) The sets U = X and  $U = \emptyset$  are open.

PROOF. (O1) Let  $U_{\alpha} \subset X$  be a family of open subsets where  $\alpha \in A$ . Consider their union  $U = \bigcup_{\alpha \in A} U_{\alpha}$ . If  $x \in U$  then  $x \in U_{\alpha}$  for some  $\alpha \in A$ . Since  $U_{\alpha}$  is open, there is  $\epsilon > 0$  with the property  $B(x; \epsilon) \subset U_{\alpha}$ . Then clearly  $B(x; \epsilon) \subset U$ , i.e. U is open.

(O2) Consider now finitely many open subsets  $U_1, U_2, \ldots, U_k \subset X$  and let  $U = \bigcap_{i=1}^k$  be their intersection. If  $x \in U$  then  $x \in U_i$  for every  $i = 1, 2, \ldots, k$ . Since  $U_i$  is open we may find  $\epsilon_i > 0$  such that  $B(x; \epsilon_i) \subset U_i$ . Then, taking  $\epsilon = \min\{\epsilon_1, \epsilon_2, \ldots, \epsilon_k\}$ , we shall have  $B(x; \epsilon) \subset U$ , i.e. U is open.

(O3) is obvious.

THEOREM 4.12. Let  $(X, d_X)$  and  $(Y, d_Y)$  be metric spaces. A map  $f: X \to Y$  is continuous if and only if for any open subset  $U \subset Y$  the preimage  $f^{-1}(U) \subset X$  is open in X.

PROOF. Assume that  $f: X \to Y$  is continuous according with the Definition 4.3. Let  $U \subset Y$  be open. To show that  $f^{-1}(U) \subset X$  is open, assume that  $x \in f^{-1}(U)$ , i.e.  $f(x) \in U$ . Since U is open, there exists  $\epsilon > 0$  such that  $B(f(x); \epsilon) \subset U$ . Then, according to Definition 4.3, we may find  $\delta > 0$  with the property  $f(B(x; \delta)) \subset B(f(x); \epsilon)$ , i.e.  $B(x; \delta) \subset f^{-1}(B(f(x); \epsilon)) \subset f^{-1}(U)$ . Hence,  $f^{-1}(U)$  is open.

Conversely, suppose that  $f: X \to Y$  is such that for any open set  $U \subset Y$  the preimage  $f^{-1}(U) \subset X$  is open. We want to show that f is continuous as defined in Definition 4.3. For any  $x \in X$  and for any  $\epsilon > 0$  the ball  $B(f(x); \epsilon) \subset Y$  is open. Therefore, its preimage  $f^{-1}(B(f(x); \epsilon)) \subset X$  is open. Since  $x \in f^{-1}(B(f(x); \epsilon))$ , there exists  $\delta > 0$  with  $B(x; \delta) \subset f^{-1}(B(f(x); \epsilon))$ , or equivalently,  $f(B(x; \delta)) \subset (B(f(x); \epsilon))$ . Therefore, f is continuous.

Next we define closed subsets of a metric space.

DEFINITION 4.13. Let (X,d) be a metric space. A subset  $F \subset X$  is said to be closed if its complement  $F^c = X - F$  is open. Equivalently,  $F \subset X$  is closed if for any  $x \in X - F$  there exists  $\epsilon > 0$  such that  $B(x;\epsilon) \cap F = \emptyset$ .

Lemma 4.14. In a metric space (X, d),

- (F1) Any intersection of closed subsets of X is closed;
- (F2) Any finite union of closed subsets of X is closed;
- (F3) The sets F = X and  $F = \emptyset$  are closed.

PROOF. (F1) Let  $F_{\alpha} \subset X$ , where  $\alpha \in A$ , be a family of closed subsets. Consider their intersection  $F = \bigcap_{\alpha \in A} F_{\alpha}$ . If  $x \notin F$  then  $x \notin F_{\alpha}$  for some  $\alpha \in A$ . Since  $F_{\alpha}$  is closed, there exists  $\epsilon > 0$  with  $B(x; \epsilon) \cap F_{\alpha} = \emptyset$ . Then  $B(x; \epsilon) \cap F = \emptyset$ .

(F2) Let  $F_1, F_2, \ldots, F_k \subset X$  be closed subsets. Consider their union  $F = \bigcup_{i=1}^k F_i$ . If  $x \notin F$  then  $x \notin F_i$  for all  $i = 1, 2, \ldots, k$ . Hence, for any  $i = 1, \ldots, k$  there is  $\epsilon_i > 0$  such that  $B(x; \epsilon_i) \cap F_i = \emptyset$ . Taking  $\epsilon = \min\{\epsilon_1, \ldots, \epsilon_k\}$  we shall have  $B(x; \epsilon) \cap F_i = \emptyset$  for  $i = 1, 2, \ldots, k$  and hence  $B(x; \epsilon) \cap F = \emptyset$ . The property (F3) is obvious.

THEOREM 4.15. Let  $(X, d_X)$  and  $(Y, d_Y)$  be metric spaces. A map  $f: X \to Y$  is continuous if and only if for any closed subset  $F \subset Y$  the preimage  $f^{-1}(F) \subset X$  is closed in X.

PROOF. This is an obvious corollary of Theorem 4.12. Indeed, since

$$f^{-1}(Y - F) = X - f^{-1}(F),$$

we see that the preimage of a closed subset is closed if and only if the preimage of its complement is open.  $\Box$ 

#### 4.3. The closure of a set

Let (X, d) be a metric space.

For a subset  $M \subset X$ , define  $\overline{M} = \cap F$  where  $F \subset X$  runs over all closed subsets containing M. The set  $\overline{M}$  is called the closure of M. It is the smallest closed subset of X containing M.

LEMMA 4.16. Let (X,d) be a metric space and let  $M \subset X$  be a subset.

- (C1) A point  $x \in X$  belongs to the closure  $\overline{M}$  if and only if  $B(x;\epsilon) \cap M \neq \emptyset$  for any  $\epsilon > 0$ ;
- (C2)  $M \subset \overline{M}$  and  $M = \overline{M}$  if and only if M is closed;
- (C3)  $\overline{M} = \overline{M}$ .
- (C4) If  $M_1 \subset M_2$  then  $\overline{M}_1 \subset \overline{M}_2$ .
- (C5)  $\overline{M_1 \cup M_2} = \overline{M}_1 \cup \overline{M}_2$ .

PROOF. (C5) We have  $M_1 \subset \overline{M}_1$  and  $M_2 \subset \overline{M}_2$  implying  $M_1 \cup M_2 \subset \overline{M}_1 \cup \overline{M}_2$ . Since the set  $\overline{M}_1 \cup \overline{M}_2$  is closed we get  $\overline{M}_1 \cup \overline{M}_2 \subset \overline{M}_1 \cup \overline{M}_2$ .

On the other hand, we have  $M_1 \subset M_1 \cup M_2$  and hence  $\overline{M}_1 \subset \overline{M_1 \cup M_2}$  and similarly,  $\overline{M}_2 \subset \overline{M_1 \cup M_2}$ . This gives  $\overline{M}_1 \cup \overline{M}_2 \subset \overline{M}_1 \cup \overline{M}_2$ .

# 4.4. Convergent sequences in metric spaces

Let  $x_1, x_2, \ldots$  be a sequence of points  $x_n \in X$  of a metric space (X, d).

DEFINITION 4.17. We say that the sequence  $\{x_n\}$  converges to a point  $x_0 \in X$  if for any  $\epsilon > 0$  there exists N such that for all n > N one has  $d(x_n, x_0) < \epsilon$ . We write  $x_0 = \lim x_n$ . Equivalently, the sequence  $\{x_n\}$  converges to  $x_0 \in X$  if for any  $\epsilon > 0$  there exists N such that for all n > N one has  $x_n \in B(x_0; \epsilon)$ .

EXAMPLE 4.18. Let  $X = \mathbf{R}$  with the usual metric. The sequence  $x_n = \frac{1}{n}$  converges to  $0 \in \mathbf{R}$ . The sequences  $y_n = (-1)^n$  and  $z_n = n$  have no limit.

Lemma 4.19. If a sequence  $x_n \in X$  converges then its limit is unique.

PROOF. Suppose the contrary, i.e.  $x_n$  converges to  $x_0 \in X$  and to  $x_0' \in X$  where  $x_0 \neq x_0'$ . Take  $\epsilon > 0$  so small that  $2\epsilon < d(x_0, x_0')$ . Then  $B(x_0; \epsilon) \cap B(x_0'; \epsilon) = \emptyset$  as follows from the triangle inequality, and for large n the point  $x_n$  must lie in both balls  $B(x_0; \epsilon)$  and  $B(x_0; \epsilon)$ -contradiction.

LEMMA 4.20. A subset  $F \subset X$  is closed if and only if for every convergent sequence of points  $x_n \in F$  the limit point  $x_0$  also belongs to F.

PROOF. Suppose that  $F \subset X$  is closed and  $x_n \in F$  converges to a point  $x_0 \in X - F$ . Then for some  $\epsilon > 0$  the ball  $B(x_0; \epsilon)$  is disjoint from F. However, if  $x_n \to x_0$ , we must have  $x_n \in B(x_0; \epsilon)$  for all sufficiently large n. This contradicts the assumption that  $x_n \in F$ .

Suppose that F is not closed, i.e.  $F \neq \overline{F}$  and  $\overline{F} - F \neq \emptyset$ . Let  $x_0 \in \overline{F} - F$ . Then  $x_0$  belongs to any closed subset containing F. For  $\epsilon > 0$ , the intersection  $B(x_0; \epsilon) \cap F$  is nonempty since otherwise we would have  $F \subset X - B(x_0; \epsilon)$  - a closed set not containing  $x_0$ . Thus we see that  $B(x_0; \frac{1}{n}) \cap F \neq \emptyset$ . We may choose  $x_n \in B(x_0; \frac{1}{n}) \cap F$  and thus  $x_n \to x_0$ . Hence the sequence of points  $x_n \in F$  has  $x_0 \notin F$  as its limit.

## 4.5. Limit Points

DEFINITION 4.21. Let (X,d) be a metric space. A point  $x_0 \in X$  is a limit point of a subset  $F \subset X$  if every open ball  $B(x_0; \epsilon)$  contains a point of F distinct from  $x_0$ .

EXAMPLE 4.22. If  $X = \mathbf{R}$  and F = (0,1] then every point of the closed interval [0,1] is a limit point of F. The set  $\{n^{-1}; n = 1, 2, ...\}$  has a unique limit point  $0 \in \mathbf{R}$ . The set  $\mathbf{Z} \subset \mathbf{R}$  has no limit points.

Theorem 4.23. For a subset F of a metric space X denote by  $F' \subset X$  the set of all limit points of F. Then,

$$(4.1) \overline{F} = F \cup F'.$$

PROOF. Suppose that  $x_0 \in F'$  and  $x_0 \notin \overline{F}$ . Since  $\overline{F}$  is closed, for some  $\epsilon > 0$  one has  $B(x_0; \epsilon) \cap \overline{F} = \emptyset$  which contradicts the assumption that  $x_0$  is a limit point of F. We see that  $F' \subset \overline{F}$  and hence  $F \cup F' \subset \overline{F}$ . The argument of the proof of Lemma 4.20 shows that every point  $x \in \overline{F} - F$  is a limit point of F, i.e.  $x \in F'$ . Thus,  $\overline{F} \subset F \cup F'$  and (4.1) follows.

COROLLARY 4.24. A subset of a metric space is closed if it contains all its limit points.

PROOF. A subset  $F \subset X$  is closed iff  $\overline{F} = F$  and the latter holds if and only if  $F' \subset F$ , as follows from Theorem 4.23.