1. For the metric $d_{L^{1}}(f, g)$ defined by

$$
d_{L^{1}}(f, g)=\int_{a}^{b}|f(x)-g(x)| d x
$$

where $f, g \in C[a, b]$, compute the distance $d_{L^{1}}(f, g)$ between $f(x)=e^{x}$ and $g(x)=2$ where $[a, b]=[0,5]$.
2. Let $X=\mathbb{R}^{m}$. For any $x=\left(x_{1}, \ldots, x_{m}\right), y=\left(y_{1}, \ldots, y_{m}\right) \in X$, we set

$$
d_{\infty}(x, y):=\max _{k}\left\{\left|x_{k}-y_{k}\right|\right\} .
$$

Prove that d_{∞} defines a metric on X.
3. Let (X, d) be a metric space. Define two new functions d_{a} and d_{b} on $X \times X$ by

$$
d_{a}(x, y):=\min \{d(x, y), 1\}, \quad d_{b}(x, y):=\frac{d(x, y)}{1+d(x, y)}, \quad \text { for } \quad x, y \in X
$$

Prove that d_{a} and d_{b} are also metrics on X.
4. We define "the Jungle metric" d_{J} on $X=\mathbb{R}^{2}$ by

$$
d_{J}(x, y):= \begin{cases}\left|x_{2}-y_{2}\right| & \text { if } x_{1}=y_{1} \\ \left|x_{2}\right|+\left|x_{1}-y_{1}\right|+\left|y_{2}\right| & \text { otherwise }\end{cases}
$$

("climb down from the tree, walk to another one, climb up the tree"). Prove that d_{J} defines a metric on X.

