MTH 4104
Mondays 16-18
Fickns 14-15
29103
$01 / 04$ no lectures
We have Week 1 lectures
04103 (Mantay) 16-18 \$heel LT
Of 103 (fricay) 14-15 AHs 2

Tutoring start in Week 2

What I do:
every week, I' ll give you

- typed-up notes
${ }^{1}$ Enerythis in here is
- hand-written notes examinable \uparrow us you see in lectures.

5 Example sheets.

Assessments
$2 \times 10 \%$ wid-term
$\left(\begin{array}{l}\text { Week } 6 \\ \text { Week } 12\end{array}\right.$
80% Final exam.
What this conure is count?
We axiomatic what we know very well ers integers,

Euclid's algorithm, modular arithmetic, complex number, polynomids, matrices)
vie spot "common dehominuturs" of these mathematical concepts.
For example, well see

$$
\mathbb{Z}:=\{,-2,-1,0,1,2 \cdots\}
$$

the set at integers rings
\& te set of polynomials in

1 varisble with coeffts in \mathbb{Q}

$$
x^{2}+2 x+4, \quad \frac{1}{2} x^{2}+\frac{1}{3} x+\frac{1}{4}
$$

have similar "afebtaic structars
Similarly,

$$
\left.\begin{array}{rl}
Q= & H e \text { set at } \\
\text { rationd } \\
& \text { nmber } \\
=\left\{\frac{r}{s}\right. & r, s \in \mathbb{Z} \\
& s \neq 0
\end{array}\right\}
$$

$\$$
the jet if Lanrent sethes
in' 1 -varicbe with coeffits in \mathbb{Q}

$$
\begin{aligned}
& \sum_{n \geq-N} c_{n} x^{n} \quad \text { etk. fields) } \\
& N>0 \quad c_{n} \in \mathbb{Q} \text {. } \\
& \text { e.s. } x^{-1}+2 x+2 x^{2}+2 x^{3}+\cdots \\
& x^{-10}+x^{-9}+\frac{1}{2} x^{-4} \quad \text { etc. }
\end{aligned}
$$

also have similar allobric stractures.

Well prove gehotal stakiments abunt rinss, ficks etc.

This is useful because one we prove those things, thine statements would hold for any examples.

Main Reference
Alex Fink's lecture notes

$$
\begin{aligned}
& 2022-2023 \\
& (\text { QMplus })
\end{aligned}
$$

- R. Allenby
"Rings, field and grams
Introduction to abstrut agebin"
- P. Cameron
"Intro to Algeblin"
Sol Revising bits and bobs from NSF
Let \mathbb{Z} be te set is intones.

By a non-negative intoser,
I mean an integer ≥ 0
By a positive integer
I mean $-11->0$
By a negative integer
I mean $-11-<0$
Propuasticin 1 Let a and b be integers.

Assume $b>0$
(bart a can still be negative)
Then there exist integers

$$
q \text { and } r
$$

sit. $\quad a=b q+r$
with $0 \leq r<b$
T q is often referred to as
to grant
r - 11 -
Moreover,
the remainder
q and r are unique, ie.

Examples

$$
\text { if }\left(q_{1}, r_{1}\right)
$$

$$
a=b q_{1}+r_{1}
$$

$$
a=100 \quad b=7 \&\left(q_{2}, r_{2}\right) \quad 0 \leq q_{2}+r_{2} b
$$

$$
\begin{array}{r}
0 b b=18\left(q_{2}, r_{2}\right)=b q_{2}+r_{2} \\
100=7 \cdot 14+\frac{2}{\bar{q}} \quad \text { ten } q_{1}=q_{2} \\
r \\
0 \leq 2<7_{1}=r_{2}
\end{array}
$$

$$
\begin{aligned}
& a=-100 \quad b=7 \\
& -100=\underline{(-15) \cdot 7}+\sum^{+5} \\
& 0 \leq 5<7 \\
& a=2 \quad b=3 \\
& 2=0.3+2
\end{aligned}
$$

$$
\begin{aligned}
& a \leq 2<3 \\
& a=-2 \quad b=3 \\
& -2=(-1) \cdot 3+1 \\
& 0 \leq 1<3
\end{aligned}
$$

Prout of Propositim 1.
Existence
Let $\$$ be He set of interers of to form $a+s b \geq 0$
(wlere s tanges over \mathbb{Z})
Since $a=a+o b$.
S cantrius a and teeneture $\{$ is non-empty Let r be te smallest element id S. Because $r \in S_{1}$
it is at the form

$$
r=a+(-q) b \geq 0
$$

for some integer q.
These q and r are what we are looking for. It remains to clock $r<b$

Supple $r \geq b$
(The goal is to find conturicition)
Then

$$
\begin{aligned}
& r-b=(a-q b)-b \\
&=a-(q+1) b \\
&<a-b q=t
\end{aligned}
$$

because $b>0$
\& $r-b$ deficios an elementco S that is smaller than r, contruclictiof th minimality of r

Def let a s b be integers. We say that a divides b if there exists an integer C

$$
\text { st. } \quad b=a \cdot c
$$

What happens if $a=0$?
For to statement " 0 divides b " to make sears, $\exists c \leqslant t . b=0 . c$ $=0$
forcing b to be zero!
In otter warts, the only inhgeer 0 divides is zero itself.

Note that I'm only taking about 0 divides $O^{\prime \prime}$ and not aleut "0/"
Example
Every integer, including 0 , divides 0 .

$$
\frac{0}{\bar{b}}=a \cdot \frac{0}{c}
$$

Def Let $a s b$ be integer.
\# common divisor of $a s b$
is a mon-heartive integer r with the property Hat r divide a \& r divides b.

A common divisor od a sb is called the greatest common divisor (and written of gad (a, b))
if any other common divisor is smaller than r
hie. if $\$$ is ancter common devises.
ten $s<r$:
Examples $a=12 \quad b=18$

$$
\begin{aligned}
& \operatorname{ged}(12,18)=6 \\
& a=12 \quad b=-18 \\
& \operatorname{scd}(12,-18)=6
\end{aligned}
$$

If a is a mu-negatice integer,

$$
\operatorname{gcd}(a, 0)=a
$$

This require a prat.
RK Any common divisor of a \& b divides $\operatorname{scd}(a, b)$.

Example $a=50 \quad \operatorname{ged}(501(00)=50$ $b=100$
$2,5,10,25$ are all common dĩ̃ons \& they all divine $50=$ gd !!

Compute $\operatorname{gcd}(198,78)=6$

$$
\begin{aligned}
& \underline{\underline{198}}=78 \cdot 2+42 \\
& 78=42 \cdot 1+36 \\
& 42=30 \cdot 1+6 \\
& 36=6 \cdot 6+0
\end{aligned}
$$

$$
\operatorname{sed}(-78,198)=6
$$

$$
\begin{aligned}
& \text { Recall } \begin{array}{l}
a, b \quad 8 \quad b>0 \\
a=b q+r \\
\quad 0 \leq r<b \\
-78=198 \cdot(-1)+120 \\
198=120 \cdot 1+78 \\
120=78 \cdot 1+42 \\
78=42 \cdot 1+36 \\
42=36 \cdot 1+6 \\
36=6.6+0
\end{array}
\end{aligned}
$$

This Eukit's alsorithm is based on the followig stctewnent:

Prove Let a s b be intsers
Suppule $\quad b>0$

$$
\text { \& } \begin{aligned}
a=b q & +r \\
0 & \leq r<b
\end{aligned}
$$

Then $\operatorname{gd}(a, b)=\operatorname{gd}(b, t)$
Recall $\quad \operatorname{sch}(198.78)$
$198=78.2+42$
By Prap6, $\operatorname{scd}(198,78)=\operatorname{scd}(78,42)$

What is $\operatorname{scd}(78,42)$?

$$
\begin{aligned}
& 78=42.1+36
\end{aligned}
$$

By Prop $6, \operatorname{ged}(78,42)$
Sell (42, 36)
Repenting this process,
We get

$$
\operatorname{sed}(198.78)=\operatorname{sed}(78,42)=\operatorname{sed}(4230)
$$

Lemma $a, b \in \mathbb{Z}$

$$
\begin{aligned}
\operatorname{gcd}(a, b) & =\operatorname{gcd}(-a, b) \\
& =\operatorname{scd}(a,-b) \\
& =\operatorname{scd}\left(-a_{1}-b\right) .
\end{aligned}
$$

Theckem 7 If a s b are iutrgers, thare exist intrgers $x \& 5$
sit. $\quad a r+b s=\operatorname{gd}(a, b)$
To put it another way,
the equation $a x+b y=\operatorname{scd}(a, b)$
has an integer solution.
Find r \& s sit.

$$
198 r+78 s=6
$$

$$
\begin{aligned}
& \frac{198}{198}=78 \cdot 2+42 \\
& 6 \stackrel{*}{=} 42-1 \cdot 30 \\
& \text { 用 } 18=42.1+36 \\
& \text { - } 42=36 \cdot 1+6 \\
& 36=6 \cdot 6+0 \\
& 42-1 \cdot(78 \\
& -1 \cdot(4) \\
& \stackrel{2}{=} 22-1 \cdot 78 \\
& 2 \cdot((98-2.78) \\
& =1.78 \\
& =2 \cdot 198-5.78 \\
& 6=2 \cdot 198+(-5) \cdot 78 \\
& (r, s)=(2,-5) .
\end{aligned}
$$

It is pussile to do this for
Exerive. $\operatorname{ged}(-78,198)$

