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Probability and Statistics I – 2019/20

These notes are a summary of what is lectured. They do not contain all examples or

explanations and are NOT a substitute for your own notes. The notes are based on a

previous version of the module by Hugo Maruri-Aguilar and on the textbook mentioned

below.

Course web page: Full details of the module (lecture notes, model solutions, contact

details, office hours, video recordings, etc.) are available on the course web page:

https://qmplus.qmul.ac.uk/course/view.php?id=10517

If you have an urgent query contact me by email: w.just@qmul.ac.uk

Final exam: The final exam will count with 80% towards your module mark.

• The final exam will be OPEN SOURCE. All questions count.

• PERMITTED:

– Any printed, handwritten, photocopied etc. material.

– The use of electronic devices such as calculators, laptops, mobile

phones etc. to access the Internet (Google, Wikipedia,...) and to

run software (such as R).

• PROHIBITED:

– To use electronic devices for the purpose of communication (e.g.

Email, Twitter, Instagram, Facebook, mobile phone calls, etc.).

– To share material with other students.

Marked exam script (feedback): You can obtain a copy of your MARKED FINAL

EXAM SCRIPT, at about 3 weeks after the final exam. If you wish to obtain a copy of
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your marked final exam script send me a request by email, by April 10th 2020 at the very

latest: w.just@qmul.ac.uk.

Use your COLLEGE EMAIL ADDRESS and put your STUDENT ID in the subject field.

Mid term test: We will run a multiple choice mid term test in week 7 which counts

with 20% towards your module mark.

Tutorials: The lecture notes contain the problem sheets as well, see the appendix. Most

(but not all) of the problems require the use of software, hence we run the tutorials in

computer labs.

Solutions to courseworks will be made available on the course web page at the end of the

relevant week.

There is no need to submit any coursework. If you want to receive personalised feedback

on your work speak to me.

It is vital that you attend the computer labs and that you do the coursework

questions, as otherwise you won’t acquire the necessary skills to pass the

module.

Tutorials will start in week 2.

There are no tutorials or lectures in week 7 (reading week).

Literature: Parts of the lecture notes have been based on the textbook:

Michael Sullivan

Statistics: Informed Decisions Using Data

Pearson
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§0 Introduction

By and large Statistics is data analysis using predominantly tools and concepts from

Probability.

a) Illustrative examples

The ideas behind and the challenges in Statistics can be suitably illustrated by a couple

of examples.

Example 0.1 (The german tank problem) The tanks produced by Germany in WWII

had equipment with a consecutive serial number, i.e., tanks were essentially labelled by in-

tegers 1, 2, . . . , N . The Allies knew about this practise and they were interested to get a

good estimate about the number N of tanks produced. They had serial numbers from cap-

tured or destroyed tanks, i.e., they had a random sample of size n < N of serial numbers

(say for instance 124, 3, 65, 122, 48). Given such an information what would be a suitable

estimate for N . In the example above N is certainly larger than 124, and it is unlikely

that N is very large, say 20, 000 (as it would have been unlikely to capture only tanks with

very low serial numbers). What would be the best estimate for N , or an expected value, or

even a complete probability distribution? The Allied solved this highly nontrivial problem

surprisingly well.

Example 0.2 (Simpon’s paradox) Two treatments for a disease, say drug A and drug

B, are tested on a group of 390 patients. Drug A is given to 160 patients of whom 100

are men and 60 are women. 20 of these men and 40 of these women recover. Drug B is

given to 230 patients of whom 210 are men and 20 are women. 50 of these men and 15 of

these women recover. With drug A 20/100 = 20% of the men recover while with drug B

50/210 = 23.8 . . .% of the men recover. Hence drug B is more effective for men. As for

women with drug A 40/60 = 66.6 . . .% of women recover while with drug B 15/20 = 75%

of women recover. Hence drug B is more effective for women. However if we ignore

the gender then with drug A 60/160 = 37.5% of patients recover while with drug B only
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65/230 = 28.2 . . .% of the patients recover. Hence drug A seems to be more effective.

This paradox and the inconclusive results is a consequence of the unfortunate design of

the study.

Example 0.3 (Polling) On June 27th 2019 ukpollingreport.co.uk reports some latest

results on UK voting intention:

“I am a little cautious of the value of voting intention polls at this point, we can expect the

appointment of a new Prime Minister to have a significant impact on political support,

so voting intention polls right now seem a trifle redundant. However, for what they are

worth there have been two new polls this week so far.

YouGov for the Times had topline figures of CON 22%(+2), LAB 20%(nc), LDEM 19%(-

2), BREX 22%(-1), GRN 10%(+1). Fieldwork was Monday to Tuesday, and changes are

from mid-June.

Ipsos MORI‘s monthly political monitor in the Standard had topline figures of CON

26%(+1), LAB 24%(-3). LDEM 22%(+7), BREX 12%(-4), GRN 8%(-1). Fieldwork

was over the weekend, and changes are from last month.”

How accurate are these figures, in fact how is polling done? Polling happens in many

areas of social life, for instance, pricing of adverts in TV programmes, introduction of a

new product, etc.. Accurate polls have an enormous economical and social value. But how

can we estimate or improve their accuracy?

b) Basic notions

Like any other subject, Statistics uses a common language to formulate problems and

solutions. However, these notions are often not as rigorously defined as, say, a pure

mathematician would prefer.

The entire group of objects to be studied is called the population. A population may be

finite or infinite, a population may be real or hypothetical. A sample is a subset of the

population that is being studied.
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Different types of collecting data: There are different methods to obtain data for a

statistical analysis:

• A survey is the collection of data from a sample of the population. If data are

obtained from the whole population the study is called a census.

• In an observational study researchers observe the behaviour of individuals without

trying to influence the outcome of the study.

• In a designed experiment researchers apply some treatment to the units under in-

vestigation and measure the response.

Example 0.4 400 people are asked whether they prefer Coke or Pepsi. Such a study is

a survey.

The UK BioBank has recruited 500,000 volunteers and follows the medical records until

they die, recording which diseases they get. This is an observational study.

Sixty patients with carpal tunnel syndrome are divided into two groups. One group is

treated weekly with acupuncture and an exercise regimen. The other group is treated

weekly with the same exercise regimen only. After one year, both groups are questioned

about their level of pain. This is a designed experiment.

As already mentioned these concepts have to be taken with a grain of salt, as we do not

speak about precisely defined objects (like in real life).

Different types of data: Studies may express their measurements in terms of (real)

numbers (say the ambient temperature) or categories (say: satisfied/dissatisfied). The

former type is called quantitative data, the latter type qualitative data. While some

textbooks distinguish between variables and data (the variable is the abstract concept

similar to a function f , the data is the outcome similar to the value f(x) in the range) I

won’t make this distinction here.

• (Quantitative) Continuous variables/data are variables which are given in terms of

real numbers, such as the blood pressure.
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• (Quantitative) Discrete variables/data are variables which are given by integers (or

any other countable number set) such as attendance numbers in lectures.

• (Qualitative) Categorical variables/data (sometimes also called factors) are variables

which are expressed in terms of categories (such as, e.g., eye colour) where the

categories have no sense of order.

• (Qualitative) Ordinal variables/data are variables which are expressed in terms of

categories (for instance see the QMUL module evaluation: Definitely agree, Mostly

agree, Neutral, Mostly disagree, Definitely disagree) where the categories have an

obvious order.

Again this notion suggest a level of rigour which is often not met in applications. Consider

e.g. the delay times of busses. If the delay time is given, say, in seconds then the data is

discrete, but if you allow to express delay times at an arbitrary precision (say 5 minutes

23 seconds 438 milliseconds 128 microseconds 745 nanoseconds ...) then the data is

continuous. Also the notion of categorical and ordinal variables may be slightly blurred.

Suppose you record the colour of cars (blue, red, black, yellow, ...). You may say that

there is no obvious order (i.e. the data is categorical). However it may be possible to

impose a natural order by arranging colours along the visible spectrum.

Example 0.5 The 2018/19 module evaluation questionnaire in MTH4107 showed the

following result for the question “My mathematical background has prepared me well for

this module”: Definitely agree (12), Mostly agree (37), Neutral (23), Mostly disagree (6),

Definitely disagree (1). The variable/data is ordinal (note that the type of variable/data

is determined by the type of answers to the question, not by the frequencies/student num-

bers).

c) Software

We will use the software R to perform the required calculations in this module. R is an

open source statistics software package which is freely available (see e.g. https://www.r-

project.org/ if you want to install the software on your computer). R is a command
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line software. The graphics interface Rstudio facilitates the use of R. R and Rstudio are

installed on the QMUL teaching network.

General help how to use R is available, e.g., at

https://www.statmethods.net/r-tutorial/index.html or by using Google. More details can

be found, e.g., in https://cran.r-project.org/doc/contrib/Paradis-rdebuts en.pdf

You can use R as well on your mobile via web pages without the need of installing the

software, for instance

• https://rdrr.io/snippets/

• https://rextester.com/l/r online compiler

• https://www.tutorialspoint.com/execute r online.php

• http://makemeanalyst.com/run-your-r-code/

Check some of those pages with your mobile as you may find it convenient to use R in

exams (and mobiles will be permitted in exams for using web pages).

If you start Rstudio a window will open which consists of three main panels (see figure

0.1)

R can do elementary computations

> 2+3*6; 1/7; 1/2-1/3

[1] 20

[1] 0.1428571

[1] 0.1666667

One may enter multiple commands separated by ;

R knows plenty of analytic functions and constants
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Figure 0.1: Main window in Rstudio. The bottom left panel is the workspace for entering

commands at the prompt >.

> sqrt(2); sin(2); exp(-1.5); cos(pi)

[1] 1.414214

[1] 0.9092974

[1] 0.2231302

[1] -1

Values can be “stored” in variables by assigning numbers to symbols using <-

> a<-2.5; b<- -2.2

The variables then appear in your environment panel (top right) and can be used for

computations
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> a+b

[1] 0.3

It is often useful to have numbers in a list/vector, e.g., -1,0,1,2,3. There are (at least) two

ways to generate such a list. You can simply use -1:3 to produce a list of integers

> -1:3

[1] -1 0 1 2 3

or you can use the sequence command seq(-1,3,1) which is more flexible. The third

argument is the increment between successive entries

> seq(-1,3,1)

[1] -1 0 1 2 3

With the sequence command you can generate lists where the entries are non integer and

the increments are any real number, e.g.

> seq(0.2,2.2,0.5)

[1] 0.2 0.7 1.2 1.7 2.2

You can also type in a list by hand, e.g. 20,0.5,12,-2.2, by using the c command to obtain

the correct data format

> c(20,0.5,12,-2.2)

[1] 20.0 0.5 12.0 -2.2
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You can assign lists to variables as usual, e.g., assign the list π/2, π, 3π/2, 2π5π/2 to the

variable x

> x<-seq(pi/2,5*pi/2,pi/2)

> x

[1] 1.570796 3.141593 4.712389 6.283185 7.853982

If one types in the variable name the content of the variable is displayed.

If one applies a function to a list, say sin, then the function is applied to each entry. For

instance

> sin(x)

[1] 1.000000e+00 1.224647e-16 -1.000000e+00 -2.449294e-16

[5] 1.000000e+00

Note that R does computations in double precision (up to 16 digits) hence there occur

rounding errors of the size of 10−16. The second and the fourth entry of the previous list

are actually zero.

You will have noticed that R display funny labels [1] and [5]. The labels label the

elements of the output, i.e. the first element of the list has label [1], the second label

[2], and the last label [5]. Labels are only displayed if a new output line starts. We can

access elements in a list by using these labels, e.g. x[3] stands for the third element of

the list x

> x[3]

[1] 4.712389

(Note the [1] in the output is the label for the single output). Since sin(x) is here also



0 INTRODUCTION 14

a list (see the output above) we can similarly access its elements, e.g.

> sin(x)[4]

[1] -2.449294e-16

(Note carefully the sequence of the brackets). For the computer geeks: sin(x[4]) will

give the same result, but it is processed differently. While sin(x)[4] just looks up the

fourth element in the list sin(x) (which is computationally fast) the command sin(x[4])

looks up the fourth element in the list x and then computes the sin of this number (which

is computationally time consuming). But we are not running a programming module here,

so do not worry about efficiency. One can as well replace elements in a list by different

numbers using assignments. If we want to change the third element in the list x to zero

then just assign 0 to x[3]

> x

[1] 1.570796 3.141593 4.712389 6.283185 7.853982

> x[3]<-0

> x

[1] 1.570796 3.141593 0.000000 6.283185 7.853982

>

R offers plenty of high level commands to perform rather diverse tasks and we will use and

study them during the course of this module. One of those is the command for plotting

data (and there are different ways doing that). In its simplest form the command plot

aims at plotting points in the plane. The command expects the x and y coordinates to

appear in two lists. Hence for plotting the points (0, 0), (2, 1), (−1.5, 3), (0.5,−2.2) assign

the x and y coordinates to two lists and then plot y versus x using the plot command
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> x<-c(0,2,-1.5,0.5)

> y<-c(0,1,3,-2.2)

> plot(x,y)

The plot will appear in the lower right panel of Rstudio, see figure 0.2. You can connect

Figure 0.2: Plotting points in the plane. See as well the list of variables in the environment,

top right panel.

the points by line segments using the option type.

> plot(x,y,type="l")

As you see the new plot command will replace the previous plot.

There are different ways to plot functions but none of them is completely satisfactory.

Suppose you want to plot the function x2 sin(3x) in the interval [−5, 5]. One way doing

that is to generate x and y values in lists. First generate a sufficiently dense list of x
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values where you want to evaluate the function, and then produce the corresponding list

of y values. Finally plot y versus x

> x<-seq(-5,5,0.1)

> y<-x^2*sin(3*x)

> plot(x,y,type="l")

Now suppose we want to include the graph of the function x2 in our plot as well. Generate

the corresponding y values and assign them to another list (say z). If we would use the

plot command the previous plot would disappear. To add an element to the existing plot

use the command lines.

> z<-x^2

> lines(x,z,type="l")

The result is shown in figure 0.3

R offers as well online help on each command. If you want to learn more about, e.g., the

plot command use ?, i.e.,

> ?plot

The lower right panel will then display the online help page which you can study carefully

to learn about various options of the command. The online help works similarly for other

R commands.

The horizontal menu bars of Rstudio allow you to scroll through the plots you have

produced, to save plots in pdf format, and to save your entire session.
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Figure 0.3: Rstudio window when plotting the graphs of y = x2 sin(x) and z = x2 as

described in the text.

Rstudio has plenty of predefined data sets and they can be listed with data(). The

commands View(EuStockMarkets) or head(EuStockMarkets) allow you to display some

details of a particular data set (the one which appears as the argument). Data are

organised in a table/matrix, i.e., you can access say the third entry in the second column by

EuStockMarkets[3,2]. The third column is obtained by leaving the row index blank, i.e.

EuStockMarkets[,3]. For instance plot(EuStockMarkets[,4],EuStockMarkets[,1])

plots the FTSE vs. the DAX.

d) R and the world

Before we conclude the introduction let me briefly comment on a general non mathematical

issue. A mathematics degree will provide you with all the skills to continue your career

either in industry or in academia, and this module aims to contribute to this success. For

real world problems (i.e. everything beyond problem sheets) Statistics (and any other

mathematical subject!) requires computations to be done by electronic means. There are

various different programming tools and the one we introduce in this module, R, is widely

recognised in the commercial and the academic world.
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• R knowledge is highly valued in the job market (see e.g. figure 0.4). If you like R

make sure you invest time learning more.

Figure 0.4: Screenshot of a job portal, https://www.indeed.co.uk/Job-Portal-jobs, indi-

cating the salary ranges for applicants with background in Statistics and Programming.

• There are many online resources where you can learn more R. You just need to

check Google or Youtube. The one flagged in figure 0.5 teaches you how to install

R and R studio as well as the basics of R. Not all tutorials you will find are equally

suited so make sure you check a few until you find one that is right for you.

Figure 0.5: Screenshot of an online R tutorial, https://www.youtube.com/watch?v=UY

clmg1 KLk.
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• Statistics is the essential ingredient of tech-

niques that are currently revolutionising

industry: Artificial Intelligence, Machine

Learning, Data Science, Data Analytics,. . . .

The more you invest in this module the bet-

ter placed you will be to participate in these

exciting new developments.

• Make sure that you check the careers pages of any companies mentioned by the

school/college (see figure 0.6 for examples) and similar ones as they might offer

exciting internship opportunities that could boost your employability.

Figure 0.6: Left: Screenshot from YouGov’s early careers page https://jobs.yougov.

com/early-careers . Right: Screenshot from Ipsos Mori’s career page, https://www.ipsos.

com/ipsos-mori/en-uk/graduates .

But you do not have to write your job applications this afternoon. I hope you will first

enjoy (at least parts of) the current module.
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Progress Check:

1. What kinds of methods do you know to collect data?

2. Explain the difference between qualitative and quantitative

data.

3. Give examples for discrete data, continuous data, ordinal data,

and categorical data.

4. Make yourself familiar with using R on your mobile, your tablet,

your laptop, or any other electronic device.

5. Do you know how to implement (assign) a list in R?

6. Are you able to plot a simple function like ln(x) in R?

7. Do you know how to get information about the datasets which

are implemented in R?
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§1 Discrete Random Variables

Random variables are functions defined on the sample space S. Discrete random variables

take discrete values, here we assume they take integer values (the most frequent case).

Definition 1.1 (Discrete random variable) A discrete random variable is a function

from S to Z.

We just recall a few important fundamental concepts.

a) Basic quantities

A random variable is completely determined by its probability mass function (pmf).

Definition 1.2 (Probability mass function) The probability mass function (pmf) of

a random variable X is the function which given k has output P(X = k)

k 7→ P(X = k) .

Expectation and variance tell us something about the typical values and the uncertainty

related with the random variable.

Definition 1.3 (Expectation, variance, and standard deviation) If X is a discrete

random variable which takes values k then the expectation of X (or the expected value of

X), called E(X), is defined by

E(X) =
∑
k

kP(X = k) .

The variance of X, called Var(X), is defined by

Var(X) = E(X2)− (E(X))2 = E((X − E(X))2)

while the standard deviation σX is defined by

σX =
√

Var(X) .
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Example 1.1 We toss a fair coin twice and count the number of heads with the random

variable X. The sample space reads {tt, th, ht, hh} and X takes values 0, 1, 2. Obviously

the pmf reads

k 0 1 2

P (X = k) 1/4 1/2 1/4

Expectation, variance, and standard deviation are given by

E(X) = 0× 1

4
+ 1× 1

2
+ 2× 1

4
= 1

Var(X) = (0− 1)2 × 1

4
+ (1− 1)2 × 1

2
+ (2− 1)2 × 1

4
=

1

2

σX =
1√
2
.

b) Special discrete random variables

Bernoulli(p) distribution: Consider a random variable X which takes values 0 and 1

with pmf

k 0 1

P (X = k) 1− p p

which we call the Bernoulli(p) distribution. We write X ∼ Bernoulli(p). Examples of the

distribution are shown in figure 1.1.

0 1

k

P
(X

=
k)

0.
0

0.
4

0.
8

0 1

k

P
(X

=
k)

0.
0

0.
4

0.
8

0 1

k

P
(X

=
k)

0.
0

0.
4

0.
8

Figure 1.1: Bernoulli(p) distribution as a bar plot for p = 0.2 (left), p = 0.5 (middle) and

p = 0.8 (right).

Expectation, variance, and standard deviation:

E(X) = p, Var(X) = p(1− p), σX =
√
p(1− p) .
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Example 1.2 Toss a biased (or fair) coin once and let X count the number of heads

seen. Then X ∼ Bernoulli(p) where p measures the bias of the coin (actually: p − 1/2

quantifies the bias).

Binomial distribution: Denote by X` with ` = 1, . . . , n n independent Bernoulli(p)

random variables and consider the sum X = X1 + . . . + Xn. The pmf of X is given by

the Binomial(n, p) distribution

P (X = k) =

(
n

k

)
pk(1− p)n−k .

We say X ∼ Bin(n, p).
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Figure 1.2: Binomial(n, p) distribution as a bar plot for n = 15 and p = 0.2 (left), p = 0.5

(middle) and p = 0.8 (right).

Expectation, variance, and standard deviation:

E(X) = np, Var(X) = np(1− p), σX =
√

Var(X) =
√
np(1− p) .

Example 1.3 If a (biased) coin with probability p coming up “head” is tossed n times,

and if X denotes the random variable counting the numbers of heads then X ∼ Bin(n, p).

Geometric distribution: Suppose we make an unlimited number of independent Bernoulli(p)

trials. Let T be the number of trials up to and including the first success. The pmf of T

is given by

P (T = k) = (1− p)k−1p .

We say T has the geometric distribution, T ∼ Geom(p).

Expectation, variance, and standard deviation:

E(T ) =
1

p
, Var(T ) =

1− p
p2

, σT =

√
1− p
p

.
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Figure 1.3: Geometric(p) distribution as a bar plot for p = 0.2 (left), p = 0.5 (middle)

and p = 0.8 (right).

Example 1.4 A biased coin has probability p to show head. We toss the biased coin until

we see head for the first time. Let T denote the random variable counting the number of

coin tosses. T ∼ Geom(p) and P(T = k) is the probability that we perform exactly k coin

tosses.

Hypergeometric distribution: A bag contains n balls, m white balls and n−m black

balls. You pick ` balls at random without replacement. Let X denote the number of white

balls you pick. Then the pmf of X reads

P(X = k) =

(
m
k

)(
n−m
`−k

)(
n
`

) .

We say X obeys the Hypergeometric(n,m, `) distribution X ∼ Hg(n,m, `).

Remark: We pick ` balls from n balls. With unordered sampling without replacement

the size of the sample space is
(
n
`

)
(the denominator of the expression). The event X = k

contains outcomes where we pick k white balls and `− k black balls. The white balls we

pick from the subset of m white balls, giving
(
m
k

)
possibilities, whereas the black balls we

pick from the subset of n − m black balls, giving
(
n−m
`−k

)
possibilities (giving rise to the

numerator).

Expectation, variance, and standard deviation:

E(X) = `
m

n
, Var(X) = `

m

n

n−m
n

n− `
n− 1

, σX =

√
`m(n−m)(n− `)

n
√
n− 1

.

Remark:

• The actual computation of the expectation and the variance can be accomplished
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Figure 1.4: Hypergeometric(n,m, `) distribution as a bar plot for ` = 15 and: n = 20,

m = 4 (left), n = 40, m = 8 (middle) and n = 80, m = 16 (right). Obviously the pmf is

zero if k > m.

using factorial moments (see e.g. Introduction to Probability). But the computation

is far from trivial.

• If n and m are large the issue of picking with or without replacement becomes less

important and the probability to pick a white ball is approximately m/n for each

pick. Hence the Hypergeometric distribution Hg(n,m, `) is well approximated by

the Binomial distribution Bin(m/n, `) for n and m large (compare figure 1.2, left

panel, with figure 1.4, right panel – and problem 2).

Negative binomial distribution: Consider a sequence of independent Bernoulli(p)

trials. Given a fixed integer r denote by T the random variable which counts the number

of failures when we have seen in total r successes (for the first time). An outcome of the

event T = k consists of a sequence of r successes and k failures, fsff . . . ...sfss. Each

such outcome (each such simple event) has probability pr(1−p)k. Since the last Bernoulli

trial has to be a success and all the other trials can come in any order, there are
(
r+k−1
r−1

)
possibilities to chose the r − 1 successes among the possible r + k − 1 instances. Hence

the pmf of T is given by

P(T = k) =

(
k + r − 1

r − 1

)
pr(1− p)k .

We say X obeys the NegativeBinomial(r, p) distribution, X ∼ NB(r, p).

Expectation, variance, and standard deviation:

E(T ) =
(1− p)r

p
, Var(T ) =

(1− p)r
p2

, σT =

√
(1− p)r
p
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Figure 1.5: NegativeBinomial(r, p) distribution as a bar plot for r = 3 and: p = 0.3 (left),

p = 0.5 (middle) and p = 0.7 (right).

Remark:

• Some parts of the literature may use a slightly different definition of the negative

binomial distribution The most common variations are where the random variable

T is counting different things. The definition supplied here is consistent with the

implementation in R.

• The computation of the expectation and the variance is possible but slightly tedious.

Example 1.5 We roll a die repeatedly until we have seen a “6” three times (for the first

time). Compute the probability that we roll the die 10 times.

Denote by p = 1/6 the probability that we roll a six. Each roll is a Bernoulli(p) trial. If

T denotes the number of failures (the number of times we do not roll a six) then T obeys

the NegativeBinomial(r, p) distribution with r = 3 and p = 1/6. The total number of rolls

is T + 3, hence the probability to roll the die 10 times is given by

P(T = 7) =

(
7 + 3− 1

3− 1

)(
1

6

)3(
1− 1

6

)7

.

The numerical value can be easily computed in R

> dnbinom(7, size=3, prob=1/6)

[1] 0.04651361

Hence the probability for exactly 10 rolls is at about 4.7%.
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Uniform distribution: Assume you roll a fair die and X denotes the number shown.

All the events X = k with k = 1, . . . , 6 have the same probability P (X = k) = 1/6.

We call such a pmf a uniform distribution. In general: assume X takes values m,m +

1, . . . ,m + n and all such events X = k are equally likely, P (X = k) = 1/(n + 1),

k = m,m+ 1, . . . ,m+ n. The corresponding pmf

P(X = k) =

 1/(n+ 1) if m ≤ k ≤ n+m

0 else

is called (discrete) uniform distribution, X ∼ U(m,m+ n).
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Figure 1.6: Discrete uniform distribution U(m,m+ n) for m = −2 and n = 5.

Expectation, variance, and standard deviation:

E(X) = m+
n

2
, Var(X) =

n(n+ 2)

12
, σX =

√
n(n+ 2)

2
√

3
.

Remark: The computation of expectation and variance is fairly straightforward.

Poisson distribution: Consider a random variableX which takes values k = 0, 1, 2, 3, . . ..

Denote by λ > 0 a fixed positive real number. Define the pmf of the random variable X

by

P(X = k) =
λk

k!
e−λ .

We say that X has the Poisson(λ) distribution, in short X ∼ Poisson(λ).

Expectation, variance, and standard deviation:

E(X) = λ, Var(X) = λ, σX =
√
λ .
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Figure 1.7: Poisson distribution for λ = 0.5 (left), λ = 2 (middle) and λ = 4 (right).

Example 1.6 The first real application of the Poisson distribution was published by

Ladislaus von Bortkiewicz in 1898 (“The Law of Small Numbers”) where he recorded the

number of Prussian cavalry soldiers kicked to death by their horses per year (in 10 cavalry

corps over 20 years). The actual historical data are (frequencies and relative frequencies)

No. deaths per year 0 1 2 3 4

frequency 109 65 22 3 1

relative freq. 0.545 0.325 0.110 0.015 0.005

It is easy to check that the mean number of deaths is 0.61. The recorded data agree

surprisingly well with the Poisson distribution with λ = 0.61.

> dpois(0:4, 0.61)

[1] 0.543350869 0.331444030 0.101090429 0.020555054 0.003134646

The Poisson distribution captures cases where in a large population – here the Prussian

army – things happen with small probability – here soldiers being killed by horsekicks (or

more formally: a large number of Bernoulli trials where each trial has a small probability).

Summary:
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range E(X) Var(X) R command (pmf)

X ∼ Ber(p) 0, 1 p p(1− p) -

X ∼ Bin(n, p) 0, 1, . . . , n np np(1− p) dbinom(k,n,p)

X ∼ Geom(p) 1, 2, 3, . . .
1

p

1− p
p2

dgeom(k,p)

X ∼ Hg(n,m, `) (0, 1, . . . , `) `
m

n
`
m

n

n−m
n

n− `
n− 1

dhyper(k,m,n-m,l)

X ∼ NB(r, p) 0, 1, 2, . . .
(1− p)r

p

(1− p)r
p2

dnbinom(k,r,p)

X ∼ U(m,m+ n) m, . . . , n+m m+
n

2

n(n+ 2)

12
-

X ∼ Poisson(λ) 0, 1, 2, . . . λ λ dpois(k,lambda)

Remark: Note that pmfs have a bell type shape if a large number of independent inci-

dents is involved, see for instance figures 1.2 (middle), 1.4 (right), or 1.7 (right). We will

explore this important issue in section 3

c) Advanced concepts

Cumulative distribution function (cdf): So far we have focused on the probability

that a random variable X takes a certain value, P(X = k), the so called pmf. Now we

consider the probability that a random variable does not exceed a certain value, P(X ≤ k).

Example 1.7 You roll five fair die. Let X denote the largest number seen. To compute

the probability that the largest number seen is four, i.e, P(X = 4), consider the two events

X ≤ 4 and X ≤ 3. Obviously the event X = 4 contains all the outcomes which are

contained in X ≤ 4 but not in X ≤ 3, hence P(X = 4) = P(X ≤ 4) − P(X ≤ 3).

The expressions of the right hand side are easily evaluated as P(X ≤ 4) = (4/6)5 and

P(X ≤ 3) = (3/6)5.

The example illustrates the usefulness of the so called cumulative distribution function.

Definition 1.4 (Cumulative distribution function) The cumulative distribution func-

tion (cdf) of a random variable X is the function which given t has output P(X ≤ t)

t 7→ P(X ≤ t) .
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Remark:

• Unlike the pmf (see definition 1.2) the cdf is a function which is defined for any real

value t. For instance, in example 1.7 P (X ≤ 4) = (4/6)5 and P(X ≤ 4.38) = (4/6)5

as well. The cdf is a piecewise constant function, see figures 1.8 and 1.9.
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Figure 1.8: Bar plot of the pmf (left) and graph of the cdf (right) of the (discrete) uniform

distribution U(1, 6), i.e., pmf and cdf of the distribution for rolling a fair die.
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Figure 1.9: Bar plot of the pmf (left) and graph of the cdf (right) of the Hypergeometric

distribution with m = 16, n = 80 and ` = 15, see figure 1.4 (right)

• If X is a random variable which takes values 0, 1, 2, 3, . . . then

P (X ≤ t) = P(X = 0) + P(X = 1) + . . .+ P(X = btc)

where btc denotes the largest integer which is smaller or equal to t, e.g. b2.8c = 2.

• Obviously the pmf and the cdf are related by

P (X = k) = P(X ≤ k)− P(X ≤ k − 1)
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and more generally for any integers k ≤ `

P (k ≤ X ≤ `) = P(X ≤ k)− P(X ≤ `− 1) .

While pmfs are computed in R using the prefix d (see above) the cdfs of various random

variables are easily computed in R with a prefix p.

Example 1.8 A bag contains 20 red balls and 30 blue balls. You pick 15 balls at random

without replacement. Let X denote the number of blue balls you pick. Compute the

probability that you pick between (and including) 5 and 10 blue balls, i.e. compute P(5 ≤

X ≤ 10).

Obviously X is a hypergeometric random variable with n = 50 (total number of balls), m =

30 (number of blue balls) and ` = 15 (number of balls we pick), i.e. X ∼ Hg(50, 30, 15).

The required probability can be expressed in terms of the cumulative distribution

P(5 ≤ X ≤ 10) = P(X ≤ 10)− P(X ≤ 4) .

The expressions can be computed in R using the command phyper for the cdf of the

hypergeometric distribution

> phyper(10,30,20,15)-phyper(4,30,20,15)

[1] 0.8248473

Moment generating function (mgf): Expectations of powers, such as E(X2) or

E(X5) (so called moments of the pmf) can be efficiently computed though a moment

generating function.

Definition 1.5 (Moment generating function) Let X be a discrete random variable

which takes integer values. The moment generating function (mgf) of X is the function

which given t has output E(etX)

t 7→MX(t) = E(etX) .
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Remark:

• If for instance X takes values 0, 1, 2, 3, . . . the mgf reads

MX(t) = E(etX) =
∑
k

etkP(X = k) = P(X = 0) + etP(X = 1) + e2tP(X = 2) + . . .

• At t = 0 the mgf evaluates as

MX(0) = E(etX)
∣∣
t=0

=
∑
k

e0P(X = k) = 1 .

Since the first derivative of ekt with respect to t is given by kekt we obtain for the

first derivative at t = 0

M ′
X(0) =

dE(etX)

dt

∣∣∣∣
t=0

=
∑
k

ke0P(X = k) = E(X) .

In the same way for higher order derivatives

M
(n)
X (0) =

dnE(etX)

dtn

∣∣∣∣
t=0

=
∑
k

kne0P(X = k) = E(Xn) .

Hence the mgf MX(t) allows to compute moments of any order.

Example 1.9 Assume the random variable X obeys the Binomial distribution with pa-

rameters n and p, X ∼ Bin(n, p). Using the so called Binomial theorem the mgf of the

Binomial distribution reads

MX(t) = E(etX) =
n∑
k=0

etkP(X = k) =
n∑
k=0

(
n

k

)(
et
)k
pk(1− p)n−k =

(
1− p+ pet

)n
.

Clearly MX(0) = 1 and the derivative

M ′
X(t) = np(1−p+pet)n−1et, M ′′

X(t) = n(n−1)p2(1−p+pet)n−2e2t+np(1−p+pet)n−1et

gives M ′
X(0) = E(X) = np, M ′′

X(0) = E(X2) = n(n− 1)p2 + np with Var(X) = E(X2)−

(E(X))2 = np− np2 (as required, see section 1b)).
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Progress Check:

1. What is a discrete random variable

2. Explain what is meant by a pmf.

3. What is a cdf and why is this concept useful? What is a mgf and

why is this concept useful?

4. Give an example of an experiment/random variable which is de-

scribed by the binomial distribution, by the geometric distribu-

tion, by the hypergeometric distribution, and by the negative

binomial distribution.

5. Which kind of experiments/set up are described by the Poisson

distribution.

6. State the pdf of the Bernoulli(p) distribution and calculate the

cdf and the mgf.

7. How do the pmfs of the uniform, of the geometric, and of the

binomial distribution look like. In which way do they differ (e.g.

in terms of range and shape)?
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§2 Continuous Random Variables

So far we have considered random variables which take integer values (e.g. rolling a die

and recording the number). Expressions such as P(X = 2) were perfectly meaningful

(defining the pmf).

a) Probability densities

Let us now consider continuous random variables, that means random variables which

can take any real value. Examples can be waiting times at bus stops (as the waiting

time does not have to be an integer multiple of seconds) or diameters of footballs. In

that case an expression like P(X = 2) is meaningless (or to be precise: it is zero) as

the probability that you wait exactly two seconds is zero (it can easily happen that you

wait 3 milliseconds longer, or 5 microseconds shorter). Probabilities make only sense if

you specify an interval, say P(1.99 < X ≤ 2.01) for the probability to wait between 1.99

seconds and 2.01 seconds. Of course such intervals can be as short or as long as you wish.

Since probabilities of disjoint events are additive, e.g. P(1.99 < X ≤ 2) + P(2 < X ≤

2.01) = P(1.99 < X ≤ 2.01) the expression can be written as an integral containing the

so called probability density function fX

Definition 2.1 (Probability density function) The probability density function (pdf)

fX of a continuous random variable X is defined by

P(a ≤ X ≤ b) =

∫ b

a

fX(t)dt

for any values a ≤ b.

Remark:

• The area under the graph of the pdf fX over an interval [a, b] represents the proba-

bility P(a ≤ X ≤ b) of observing the random variable X in that interval (see figure

2.1).
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• Since the probability of a continuous random variable X taking a single value is

zero, e.g., P(X = a) = 0 the following probabilities are equivalent

P(a ≤ X ≤ b) = P(a < X ≤ b) = P(a ≤ X < b) = P(a < X < b) .

• Positivity of probabilities implies that fX(x) ≥ 0. Since X takes a value between

−∞ and +∞ the condition P(−∞ < X < ∞) = 1 implies the normalisation

condition

1 =

∫ ∞
−∞

fX(t)dt .

Example 2.1 Denote by X the waiting time at a bus stop. Assume that the waiting time

is uniformly distributed between 3 and 5 minutes. That means the pdf is constant in the

interval [3, 5] and zero elsewhere

fX(x) =

 c if 3 ≤ x ≤ 5

0 else
.

Normalisation gives the value of the constant c

1 =

∫ ∞
−∞

fX(t)dt =

∫ 5

3

cdt = 2c ⇒ c =
1

2
.

The probability that we wait between 4 and 4 1/2 minutes is given by

P(4 < X < 4.5) =

∫ 4.5

4

fX(t)dt =

∫ 4.5

4

1

2
dt =

1

4
.

Expectation and variance are defined in the usual way (see definition 1.3) with sums being

replaced by integrals.

Definition 2.2 (Expectation and variance) If X is a continuous random variable

with pdf fX(x) the expectation of X (or the expected value of X), called E(X), is de-

fined by

E(X) =

∫ ∞
−∞

tfX(t)dt .

The variance of X, called Var(X), is defined by

Var(X) = E(X2)− (E(X))2 = E((X − E(X))2) =

∫ ∞
−∞

(t− E(X))2fX(t)dt .
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Figure 2.1: Uniform pdf of bus waiting times. The shaded area indicates the probability

P(4 < X < 4.5).

Remark: One often uses the symbol µX = E(X) (or simply µ = E(X)) for the expec-

tation and σ2
X = Var(X) (or simply σ2 = Var(X)) for the variance of a random variable.

Then σX =
√

Var(X) denotes the so called standard deviation.

Example 2.2 Consider the bus waiting time of example 2.1. The expectation is given by

µ = E(X) =

∫ ∞
−∞

tfX(t)dt =

∫ 5

3

t
1

2
dt = 4

as expected. The variance follows as

σ2 = Var(X) =

∫ ∞
−∞

(t− µ)2fX(t)dt =

∫ 5

3

(t− 4)2 1

2
dt =

∫ 1

−1

s2

2
ds =

1

3
.

For the cumulative distribution function of a continuous random variable we can directly

use the definition 1.4, i.e., the cdf is given by

FX(x) = P(X ≤ x) =

∫ x

−∞
fX(t)dt .

Therefore the derivative of the cdf gives the pdf

dFX(x)

dx
= fX(x) .

Since the pdf is non-negative, fX(x) ≥ 0, the slope of the cdf is non-negative as well, i.e.,

FX(x) is a monotonic increasing function.

In addition (see as well the fundamental theorem of Calculus)

P(a ≤ X ≤ b) =

∫ b

a

fX(t)dt =

∫ b

−∞
fX(t)dt−

∫ a

−∞
fX(t)dt = FX(b)− FX(a) .
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Example 2.3 The cdf of the bus waiting times in example 2.1 follows directly by integra-

tion

FX(x) =

∫ x

−∞
fX(t)dt =


0 if x < 3

x/2 if 3 ≤ x ≤ 5

1 if x > 5
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8

x
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X
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Figure 2.2: Cdf FX(x) of bus waiting times in example 2.1, see figure 2.1 for the pdf

fX(x). Clearly the derivative of the cdf gives the pdf, F ′X(x) = fX(x).

b) Special continuous random variables

Uniform distribution: The pdf of a continuous random variable which is uniformly

distributed in an interval [a, b] is given by (see example 2.1)

fX(x) =

 1/(b− a) if a ≤ x ≤ b

0 else
.

We say that X is uniformly distributed in the interval [a, b], X ∼ U(a, b).

Expectation and variance follow by straightforward integration (see example 2.2)

µ = E(X) =

∫ b

a

t

b− a
dt =

a+ b

2

and

σ2 = Var(X) =

∫ b

a

t2

b− a
dt− (a+ b)2

4
=
b2 + ab+ a2

3
− (a+ b)2

4
=

(b− a)2

12
.
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The cumulative distribution function follows easily by integration (see example 2.3)

FX(x) =

∫ x

−∞
fX(t)dt =


0 if x < a

x/(b− a) if a ≤ x ≤ b

1 if x > b

.

The pdf and the cdf can be evaluated in R with the commands dunif(x,min=a,max=b)

and punif(x,min=a,max=b) respectively.

Exponential distribution: Consider a continuous random variable X which takes non-

negative values with pdf

fX(x) =

 0 if x < 0

λe−λx if x ≥ 0
.

We say X is exponentially distributed with decay rate λ, X ∼ Exp(λ).
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Figure 2.3: Pdf fX(x) of an exponential random variable, X ∼ Exp(λ), with rate λ = 0.7

(left), λ = 2 (middle), λ = 4 (right).

Example 2.4 The times between two successive radioactive decays is exponentially dis-

tributed.

Expectation and variance follow by straightforward integration

µ = E(X) =

∫ ∞
0

tλe−λtdt =
1

λ

and

σ2 = Var(X) =

∫ ∞
0

t2λe−λtdt− 1

λ2
=

2

λ2
− 1

λ2
=

1

λ2
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In a similar way we derive the cdf. Obviously FX(x) = 0 if x < 0 (since the pdf vanishes

in this case) and

FX(x) =

∫ x

0

λe−λtdt = 1− e−λx, (x ≥ 0) .
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Figure 2.4: Cdf FX(x) of an exponential random variable, X ∼ Exp(λ), with rate λ = 0.7

(left), λ = 2 (middle), λ = 4 (right). See figure 2.3 for the corresponding pdfs fX(x). The

pdf is the derivative of the cdf F ′X(x) = fX(x).

The pdf fX(x) of the exponential distribution can be computed in R by dexp(x,rate=lambda)

while the cdf FX(x) in R is given by pexp(x,rate=lambda)

Example 2.5 Suppose the waiting time for a bus is exponentially distributed X ∼ Exp(0.4)

when measured in minutes. The expected waiting time is

E(X) = 1/λ = 1/0.4 = 2.5 (minutes) .

The probability that one waits for more than 5 minutes is

P(X > 5) = 1− P(X ≤ 5) = 1− FX(5)

The probability can be evaluated with a calculator or in R

> 1-pexp(5,rate=0.4)

[1] 0.1353353

c) Normal distribution

A continuous random variable X with pdf

fX(x) =
1

σ
√

2π
e−(x−µ)2/(2σ2)
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Figure 2.5: Pdf fX(x) of exponentially distributed bus waiting times, X ∼ Exp(0.4). The

shaded area stands for the probability P(X > 5).

is said to be normally distributed.

The graph of the pdf is bell shaped with a maximum at µ and a width approximately

given by the standard deviation σ.
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Figure 2.6: Pdf of a normal random variable with µ = 0.5 and σ = 1.5. The vertical

solid line at x = µ = 0.5 indicates the value of µ whereas the two vertical dashed lines at

x = µ± σ illustrate the meaning of the parameter σ.

Normalisation: Using the substitution z = (x− µ)/σ one can confirm that the pdf is

normalised ∫ ∞
−∞

fX(x)dx =

∫ ∞
−∞

1√
2π
e−z

2/2dz = 1 .

The final integral
∫∞
−∞ e

−z2/2dz =
√

2π cannot be computed by elementary methods.
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Expectation: Using the same substitution z = (x− µ)/σ we obtain

E(X) =

∫ ∞
−∞

xfX(x)dx =

∫ ∞
−∞

(zσ + µ)
1√
2π
e−z

2/2dz = σ

∫ ∞
−∞

z
1√
2π
e−z

2/2dz + µ = µ .

Variance: Using again the substitution z = (x− µ)/σ we obtain

Var(X) =

∫ ∞
−∞

(x− µ)2fX(x)dx =

∫ ∞
−∞

σ2z2 1√
2π
e−z

2/2dz =
σ2

√
2π

∫ ∞
−∞

e−z
2/2dz = σ2

where the penultimate step has been done by integration by parts.

We say the random variable is a normal random variable with expectation µ and variance

σ2, X ∼ N(µ, σ2). The normal pdf is determined by expectation and variance.
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Figure 2.7: Pdf of a normal random variable with: µ = 1.0 and σ = 0.5 (left), µ = −0.5

and σ = 0.5 (middle), µ = −0.5 and σ = 1.5 (right). The vertical solid line at x = µ

indicates the value of the expectation whereas the two vertical dashed lines at x = µ± σ

illustrate the meaning of the standard deviation σ.

Standardisation: In the previous calculations we have used the substitution

Z =
X − µ
σ

.

If we use this substitution to define a new random variable Z then this random variable

has expectation E(Z) = (E(X)− µ)/σ = 0 and variance Var(Z) = Var (X)/σ2 = 1, i.e.,

Z ∼ N(1, 0). We call Z a standard normal random variable and all computations can be

reduced to the standard normal pdf. SinceX < a, X−µ < a−µ and (X−µ)/σ < (a−µ)/σ

denote the same events we have

P(a < X ≤ b) = P((a− µ)/σ < Z ≤ (b− µ)/σ) =

∫ (b−µ)/σ)

(a−µ)/σ

1√
2π
e−z

2/2dz .

In what follows we will therefore consider the simpler case of a standard normal random

variable with µ = 0 and σ = 1.
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Cumulative density function: The cdf of the standard normal random variable Z ∼

N(1, 0) is given by

FZ(z) = P(Z ≤ z) = Φ(z) =

∫ z

−∞

1√
2π
e−t

2/2dt .

The integral cannot be solved by elementary methods, it defines a new analytic function

Φ, the so called probability integral. The graph of the function has a characteristic S shape

(see figure 2.8) with Φ(−∞) = 0, Φ(∞) = 1 and Φ(−z) = 1 − Φ(z). The function can

be computed in R with the command pnorm(x) (if no additional arguments are given R

assumes the expectation to be µ = 0 and the variance to be σ2 = 1).
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Figure 2.8: Probability integral (cdf of a standard normal random variable, Z ∼ N(0, 1)).

Example 2.6 Assume X is a normal random variable with expectation µ and variance

σ2, X ∼ N(µ, σ2). Compute the probability that X differs from its expectation by more

than one standard deviation, i.e., compute P(|X − µ| > σ).

Since the events |X − µ| > σ and |(X − µ)/σ| > 1 are identical standardisation gives

P(|X − µ| > σ) = P(|Z| > 1)

with Z being a standard normal random variable. Since

P(|Z| > 1) = P(Z > 1) + P(Z < −1) = 1− P(Z < 1) + P(Z < −1)

we have

P(|X − µ| > σ) = P(|Z| > 1) = 1− Φ(1) + Φ(−1)

The value can be easily computed in R
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> 1-pnorm(1)+pnorm(-1)

[1] 0.3173105

Hence a normal random variable differs from its expectation by more than one standard

deviation with probability 31.7% (see figure 2.9).
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Figure 2.9: Pdf of a standard normal random variable Z ∼ N(0, 1) with expectation

µ = 0 and variance σ2 = 1. The shading indicates the region where the random variable

differs from its expectation by more than one standard deviation, i.e., it represents the

probability P(|Z| > 1).

Similarly, the probability that a normal random variable differs from its mean by more

than two standard deviations is given by

P(|X − µ| > 2σ) = P(|Z| > 2) = 1− Φ(2) + Φ(−2)

> 1-pnorm(2)+pnorm(-2)

[1] 0.04550026

i.e. by 4.6% (see figure 2.10). Hence a normal random variable X ∼ N(µ, σ2) takes a

value in the interval [µ− 2σ, µ+ 2σ] with 95.4% probability.
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Figure 2.10: Pdf of a standard normal random variable Z ∼ N(0, 1) with expectation

µ = 0 and variance σ2 = 1. The shading indicates the region where the random variable

differs from its expectation by more than two standard deviations, i.e., it represents the

probability P(|Z| > 2).

z-scores/quartiles: Let Z ∼ N(0, 1) denote a standard normal random variable. So

far we computed probabilities that Z exceeds a threshold, P(Z > a). Now consider the

reverse problem. Given a probability α let us compute the threshold zα such that

P(Z > zα) = α

i.e. that Z exceeds the threshold with probability α, see figure 2.11.
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Figure 2.11: Pdf of a standard normal random variable Z ∼ N(0, 1) and graphical illus-

tration of the z-score zα. Left: If α denotes the size of the shaded area then the left

boundary of the shaded area is at z = zα. Right: If α denotes the size of the shaded area

then the right boundary of the shaded area is at z = −zα.

To compute zα observe that

α = P(Z > zα) = 1− P(Z ≤ zα) = 1− Φ(zα)
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We solve

Φ(zα) = 1− α

for zα using the inverse function Φ−1

zα = Φ−1(1− α) .

The inverse probability integral is available in R by the command qnorm(x).

The value zα is sometimes called a standard normal quantile. the value zα is the threshold

such that P(Z ≤ zα) = 1− α. Hence:

• α = 1/2: P (Z ≤ z1/2) = 1/2. z1/2 is called the median (see section 4??)

• α = 1/4: P (Z ≤ z1/4) = 3/4. z1/4 is called the upper quartile (see section 4??)

• α = 3/4: P (Z ≤ z3/4) = 1/4. z3/4 is called the lower quartile (see section refsec4b)

of the standard normal random variable Z.

Example 2.7 Consider a normal random variable X with expectation µ and variance

σ2. Compute the threshold a so that X exceeds its expectation with probability 1%, i.e..

compute C such that P(X − µ > C) = 0.01. Standardisation tells us that

0.01 = P(X − µ > C) = P(Z > C/σ) = P(Z > z0.01)

so that C/σ = z0.01 with z0.01 = Φ−1(1− 0.01) = Φ−1(0.99).

> qnorm(0.99)

[1] 2.326348

Hence C = σ2.32 . . . and X exceeds its expectation by 2.3 standard deviations with prob-

ability 1%.

Since the pdf of Z is a symmetric function the area under the graph in the interval [zα,∞)

is identical to the area under the graph in the interval (−∞,−zα], see figure 2.11. Hence

we have shown
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Lemma 2.1 (z-score) Denote by Z a standard normal random variable, Z ∼ N(0, 1).

Then

α = P(Z > zα) = P(Z < −zα)

and

P(|Z| > zα) = P(Z > zα) + P(Z < −zα) = 2P(Z > zα) = 2α

where

zα = Φ−1(1− α) .

Example 2.8 Consider a normal random variable X with expectation µ and variance σ2.

Compute the threshold b so that X deviates from its expectation with probability 5%, i.e..

compute b such that P(|X − µ| > b) = 0.05. Standardisation tells us that

0.05 = P(|X − µ| > b|) = P(|Z| > a/σ) = P(|Z| > z0.025)

so that b/σ = z0.025 with z0.025 = Φ−1(1− 0.025) = Φ−1(0.975).

> qnorm(0.975)

[1] 1.959964

Hence b = σ1.95 . . . and X deviates from its expectation by 1.96 standard deviations with

probability 5%. That is in fact consistent with the result of example 2.6.

Moment generating function: The mgf, definition 1.5, of a normal random variable

with expectation µ and variance σ2 can be computed explicitly

Lemma 2.2 Denote by X a normal random variable with expectation µ and variance σ2.

The mgf is given by

MX(t) = E(etX) = etµ+t2σ2/2 .

Proof: Using the standardisation X = µ+σZ with the standard normal random variable

Z ∼ N(0, 1) we have

MX(t) = E(etX) = E(et(σZ+µ)) = etµE(etσZ) .
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With the definition 2.2 and the pdf of a standard normal random variable the expectation

evaluates as

E(etσZ) =

∫ ∞
−∞

etσz
1√
2π
e−z

2/2dz =

∫ ∞
−∞

1√
2π
e−(z−tσ)2/2eσ

2t2/2dz

= eσ
2t2/2

∫ ∞
−∞

1√
2π
e−u

2/2du = eσ
2t2/2 .

Hence the mgf of the random variable X ∼ N(µ, σ2) reads

MX(t) = etµ+t2σ2/2 .

�.

Obviously MX(0) = 1. Furthermore M ′
X(t) = (µ+ tσ2)etµ+t2σ2/2 and M ′

X(0) = µ = E(X)

gives the expectation. Finally M ′′
X(0) = σ2 + µ2 = E(X2) gives the second moment in

accordance with the variance.
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Progress Check:

1. Explain the difference between a discrete and a continuous ran-

dom variable.

2. What is meant by a pdf? How are pdfs related with probabilities?

3. What is the meaning of the area under the graph of a pdf.

4. State the expectation and the standard deviation of the expo-

nential distribution.

5. Explain the meaning of the parameters which are contained in

the normal distribution.

6. What does the term probability integral mean? Why is this con-

cept useful?

7. What does the notion z-score mean. How is this concept related

with probabilities?
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§3 Central Limit Theorem

Example 3.1 You toss a coin which has probability p = 0.3 coming up head n = 50

times. Xk, k = 1, . . . , n is the Bernoulli(p) random variable which gives 1 if the kth toss

shows head (and zero if the coin shows tail). Hence the sum X = X1 + X2 + . . . + Xn is

the random variable which counts the number of heads seen. We know that X obeys the

Binomial(n, p) distribution (see example 1.3), that the expectation is given by E(X) = np

and the variance is given by Var(X) = np(1− p). If n is large (say if np(1− p) is larger

than 10) the pmf of X is very well approximated by the pdf of a normal random variable

with µ = np and σ2 = np(1− p), see figure 3.1.
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Figure 3.1: Symbols: Binomial distribution with n = 50 and p = 0.3. Line: Normal

distribution with expectation µ = np = 15 and variance σ2 = np(1 − p) = 10.5. Left:

Distributions over the full range. Right: same data on a finer scale.

The exact probability that we see k heads is given by

P(X = k) =

(
n

k

)
pk(1− p)n−k .

Let Y denote the continuous normal random variable Y with expectation µ = np and

variance σ2 = np(1 − p), Y ∼ N(np, np(1 − p)). The exact probability P(X = k) is

very well approximated by the probability of Y taking values in the symmetric interval

[k − 1/2, k + 1/2], i.e.,

P(X = k) ≈ P(k − 1/2 ≤ Y ≤ k + 1/2) =

∫ k+1/2

k−1/2

1√
2π
e−(t−µ)2/(2σ2)dt

To judge the quality of the approximation we compute the exact value (for n = 50, p = 0.3,

k = 16) with R
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> n<-50

> p<-0.3

> k<-16

> dbinom(k,size=n,prob=p)

[1] 0.1147002

To compute the approximation we first use standardisation to reduce the quantity to the

probability integral

P(k − 1/2 ≤ Y ≤ k + 1/2) = P(Y ≤ k + 1/2)− P(Y ≤ k − 1/2)

= P
(
Y − µ
σ

<
k + 1/2− µ

σ

)
− P

(
Y − µ
σ

<
k − 1/2− µ

σ

)
= Φ

(
k + 1/2− µ

σ

)
− Φ

(
k − 1/2− µ

σ

)
The numerical value can now be easily computed using R (n, p and k have been already

assigned in the R commands above)

> mu<-n*p

> sigma<-sqrt(n*p*(1-p))

> pnorm((k+1/2-mu)/sigma)-pnorm((k-1/2-mu)/sigma)

[1] 0.1169709

The approximation reproduces the first two digits.

There is no need to approximate the binomial distribution by a normal distribution. But

the example tells us that sums of random variables can be well approximated by a normal

random variable. Such a statement is in fact valid in general, and that is the reason why

normal random variables appear frequently in mathematics and in applications.

Proposition 3.1 (Central limit theorem) Let X1, X2, . . . , Xn be n independent iden-

tically distributed random variables with expectation E(Xk) = µ and variance Var(Xk) =
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σ2. Denote by X = X1+X2+. . .+Xn the sum of these random variables and by Y a normal

(continuous) random variable with expectation E(Y ) = nµ and variance Var(Y ) = nσ2.

Then the pmf of X is well approximated by the pdf of Y for large values of n

P(a ≤ X ≤ b) ≈ P(a− 1/2 ≤ Y ≤ b+ 1/2) .

The proposition has been stated in an informal way, i.e., we have not defined what we

mean by “well approximated”, and what we mean by “large values of n”. Writing down

the proposition in rigorous terms would require a machinery way beyond first year mathe-

matics (and that means a proof is even more beyond first year mathematics). Nevertheless

the proposition is key to almost all approaches in mathematical statistics.

Example 3.2 We roll a fair die 120 times and record the sum of all rolls. Xk denotes

the number shown in the kth roll. The sum of all rolls is the random variable X =

X1 + X2 + . . . + Xn. Compute the probability that the sum of all rolls is between (and

including) 410 and 430, i.e., compute P(410 ≤ X ≤ 430).

Here n = 120, µ = E(Xk) = 7/2 and σ2 = Var(Xk) = 35/12. We may apply the

normal approximation of the central limit theorem since n is reasonably large. Denote by

Y a normal continuous random variable with expectation µY = E(Y ) = nµ = 420 and

variance σ2
Y = Var(Y ) = nσ2 = 350. Then

P(410 ≤ X ≤ 430) ≈ P(410−1/2 ≤ Y ≤ 430+1/2) = P(Y ≤ 430+1/2)−P(Y ≤ 410−1/2) .

Using standardisation (with µY = 420 and σY =
√

350)

P (Y ≤ 430 + 1/2)− P(Y ≤ 410− 1/2)

= P
(
Y − 420√

350
≤ 430 + 1/2− 420√

350

)
− P

(
Y − 420√

350
≤ 410− 1/2− 420√

350

)
= Φ

(
10 + 1/2√

350

)
− Φ

(
−10− 1/2√

350

)
the numerical result can be easily obtained using R

> pnorm((10+1/2)/sqrt(350))- pnorm((-10-1/2)/sqrt(350))

[1] 0.4253719
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That means with 42.5% chance the sum of the rolls is between 410 and 430.

Furthermore within the normal approximation example 2.6 tells us that with 95.4% chance

the random variable X (i.e. the sum) takes values in the interval [µX − 2σX , µX + 2σX ]

(here: µX = E(X) = nE(Xk) = 420, σ2
X = Var(X) = nVar(Xk) = 350), i.e. in the

interval [382, 458].

The central limit theorem guarantees normal behaviour for a large number of terms in

the sum. If the individual terms are normal random variables as well, then the sum is a

normal random variable even for a small number of terms.

Proposition 3.2 Let X1, X2, . . . , Xn be n independent normal random variables, Xk ∼

N(µ, σ2) with expectation E(Xk) = µ and variance Var(Xk) = σ2. Denote by X =

X1 + X2 + . . . + Xn the sum of these random variables. Then X is a normal random

variable, X ∼ N(nµ, nσ2) with expectation E(X) = nµ and variance Var(X) = nσ2.

Proof: The mgf of X reads

MX(t) = E(etX) = E(et(X1+X2+...+Xn)) = E(etX1etX2 . . . etXn) = E(etX1)E(etX2) . . .E(etXn)

where we have used the independence of Xk to write the expectation of the product as

the product of the expectations. Each factor is the mgf of a normal random variable, so

that lemma 2.2 tells us that

M(t) =
(
etµ+t2σ2/2

)n
= etnµ+t2nσ2/2 .

This result is the mgf of a normal random variable with expectation nµ and variance nσ2.

�.
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Progress Check:

1. Explain in lay terms what is meant by the central limit theorem.

2. How can the central limit theorem be used to evaluate proba-

bilities of sums of random variables?

3. Consider the binomial distribution. Under which conditions can

the binomial distribution be approximated by a normal distribu-

tion.

4. Let Z1 and Z2 be two standard normal random variables. State

the pdf of the sum, Z1 + Z2.

5. You roll a die 3000 times. How can you compute the probability

that the sum of all rolls exceeds 15000 using the central limit

theorem.

6. You roll a die 3 times. Explain why you cannot use the central

limit theorem to compute the probability that the sum of all

rolls exceeds 15.

7. A bag contains 500 gold and 500 copper coins. You pick 700 coins

without replacement. Let Xk count whether the kth pick has

resulted in a gold coin (i.e. Xk = 1 if the kth pick has been a

gold coin and Xk = 0 otherwise) so that X = X1 + X2 + . . . + X700

is the total number of gold coins you have picked. Explain why

one cannot use the central limit theorem to compute the pdf of

X.
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§4 Exploratory Data Analysis

We want to use the previous abstract concepts to obtain information from measured data

sets. A first step is just the visualisation of some statistical aspects of data sets.

a) Basic concepts

Qualitative data:

Example 4.1 Data for the 2018 final exam in MTH4107 lists for each of the 207 students

the grade (x1, x2, . . . , x207). This type of data is ordinal (as grades have a natural order:

A,B,C,D,E,F). To display a data summary compute frequencies, i.e. list for each grade

the number of students: A grade (124 students), grade B (37 students), grade C (23

students), grade D (8 students), grade E (4 students), grade F (11 students).

For qualitative data (ordinal or categorical) one can lists for each category the number

of occurrences. A frequency distribution lists for each category the number of occurrences

(as above). The relative frequency is the proportion of observations within a category,

i.e., the frequency divided by the sum of all frequencies. A relative frequency distribution

lists for each category the relative frequency.

Example 4.2 In example 4.1 the sum of all frequencies (total number of students) is

207. The relative frequency distribution is: grade A: 124/207, grade B: 37/207, grade C:

23/207, grade D: 8/207, grade E: 4/207, grade F: 11/207.

Frequency distributions may be visualised by bar charts where one plots for each category

the frequency or relative frequency by a bar of corresponding height. R easily allows to

produce bar charts with the command barplot and two arguments, containing the data

and the names of the categories (see figure 4.1).
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> x<-c(124,37,23,8,4,11)

> grade<-c("A","B","C","D","E","F")

> barplot(x,names.arg=grade)
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Figure 4.1: Bar chart of the grades in the MTH4107 final exam in 2018.

For a relative frequency distribution just compute the sum of all frequencies by sum(x)

and divide each entry of x by the sum using x/sum(x).

Quantitative discrete data:

Example 4.3 The marks of the students failing MTH4107 in 2018 were: 26, 35, 23, 32,

35, 33, 39, 32, 25, 38, 34. A frequency distribution can be obtained as before by using e.g.

the marks/data as categories, i.e., mark 23 (1 student), mark 25 (1 student), mark 32 (2

students), mark 33 (1 student), mark 34 (1 student), mark 35 (2 students), mark 38 (1

student), mark 39 (1 student).

A bar chart can be directly obtained from the data set using the command hist. The

option breaks tells R how to group the data, here we chose break points at half integer

marks (22.5, 23.5, . . . , 38.5, 39.5).
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> x<-c(26, 35, 23, 32, 35, 33, 39, 32, 25, 38, 34)

> hist(x,breaks=seq(22.5,39.5,1))
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Figure 4.2: Histogram of the fails in the MTH4107 final exam in 2018.

Bar charts/histograms (for quantitative data or ordinal data) can be characterised as

“symmetric”, “unimodal” (one maximum), “multimodal” (more than one maximum),

“skewed right” (tilted towards right), “skewed left” (tilted towards left).
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Figure 4.3: Top (from left to right): bar chart of a symmetric, a skewed-left and a

skewed-right distribution. Bottom (from left to right): bar chart of a unimodal and of a

bimodal/multimodal distribution.
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b) Measures for centrality and dispersion

Consider quantitative datasets. The number of entries (observations) is denoted by n.

Example 4.3 is a quantitative dataset with n = 11.

Mean and median: Denote by (x1, x2, . . . , xn) the data set. The so called sample mean

is defined by

x̄ =
1

n

n∑
k=1

xk =
1

n
(x1 + x2 + . . .+ xn)

Assume the data points (x1, x2, . . . , xn) are sorted in increasing order (i.e., xk ≤ xk+1), a

so called order statistics. If n is odd the entry in the middle of the sequence has index

(n+ 1)/2 and we call the data entry x(n+1)/2 = Q2 the median. If n is even there are “two

middle entries” at n/2 and n/2 + 1 and we call the average (xn/2 + xn/2+1)/2 = Q2 the

median.

Example 4.4 Consider the data set of example 4.3. The order statistics of this data set

reads 23, 25, 26, 32, 32, 33, 34, 35, 35, 38, 39 with n = 11. Hence entry (11+1)/2 = 6 is

the middle entry and x6 = 33 is the median. A simple calculation shows that the sample

mean is x̄ = 32. Mean and median can be easily evaluated using R

> x<-c(26, 35, 23, 32, 35, 33, 39, 32, 25, 38, 34)

> mean(x); median(x)

[1] 32

[1] 33

Remark:

• Mean and median quantify the average value of the data set, e.g., the value where

the bar chart has its central part (see figure 4.2).

• If the bar chart is symmetric we have x̄ = Q2, if the bar chart is skewed left we have

x̄ < Q2, and if the bar chart is skewed right we have x̄ > Q2.



4 EXPLORATORY DATA ANALYSIS 58

Variance and quartiles: Given a data set (x1, x2, . . . , xn) the sample mean locates the

central part of the data set, and the numbers xk − x̄ somehow characterise the spread of

the data set. The sample mean resembles an expectation value if we assume all entries

in the data set to be equally likely (i.e. having probability 1/n to occur). Hence it is

tempting to define a measure for the spread along the lines of a variance of a random

variable as

σ2
x =

1

n

n∑
k=1

(xk − x̄)2 .

This quantity is called the population variance (if the size n of the sample is the entire

population size). For a pretty subtle reason it is better to consider the so called sample

variance defined by

s2
x =

1

n− 1

n∑
k=1

(xk − x̄)2

since the population variance is a biased estimator (to be discussed in section 5??). The R

command var(x) computes the sample variance of the data set. As discussed previously

the sample standard deviation sx (or simply s) gives a measure for the spread/dispersion

of the bar chart. The standard deviation can be computed using sd(x).

Suppose we have sorted the data in increasing order (x1, x2, . . . , xn). The median Q2

divides the data set in two parts of equal size, a lower part and an upper part, e.g.

(x1, . . . , x(n+1)/2−1) and (x(n+1)/2+1, . . . xn) if n is odd, or (x1, . . . , xn/2) and (xn/2+1, . . . xn)

if n is even. The median of the lower part is called the lower quartile Q1 and the median

of the upper part is called the upper quartile Q3. Hence the quartiles Q1, Q2, Q3 split the

data set in four parts of equal size.

Example 4.5 Consider the order statistics of the data set of example 4.3, (23, 25, 26,

32, 32, 33, 34, 35, 35, 38, 39). The median is Q2 = 33. The lower half of the sorted data

set is (23, 25, 26, 32, 32) and its median gives the lower quartile Q1 = 26 of the full data

set. The upper half of the data set is (34, 35, 35, 38, 39) and its median is the upper

quartile Q3 = 35 of the original data set.

Quartiles can be directly computed in R using the command quantile. The option

probs=0.25 selects the lower quartile, the option probs=0.75 selects the upper quartile.

There are at least nine (!) different non equivalent ways to define quartiles, the option

type=2 selects the definition presented here.
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> x<-c(26, 35, 23, 32, 35, 33, 39, 32, 25, 38, 34)

> c(quantile(x,probs=0.25, type=2), quantile(x,probs=0.75, type=2))

25% 75%

26 35

Median and quartiles split the bar chart of relative frequencies in regions where the bar

chart has 25% weight, see figure 4.4
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Figure 4.4: Relative frequencies of the fails in the MTH4107 final exam in 2018, see figure

4.2. The vertical lines are (from left to right) lower quartile Q1, median Q2 and upper

quartile Q3.

The interquartile range (IQR) is defined by

IQR = Q3 −Q1 .

It gives a measure for the spread/dispersion of the data set/bar chart. IQR(x,type=2)

computes the IQR.

Example 4.6 Consider the data set of example 4.3. Sample variance, sample standard

deviation, and IQR are given by
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> x<-c(26, 35, 23, 32, 35, 33, 39, 32, 25, 38, 34)

> var(x)

[1] 27.4

> sd(x); IQR(x,type=2)

[1] 5.234501

[1] 9

As expected the IQR is at about twice the standard deviation.

Five-number summary and boxplots: Denote by (x1, . . . , xn) a quantitative data

set. Denote by mx the smallest number in the data set (the minimum) and by Mx

the largest number in the data set (the maximum). The five numbers (the so called

five-number summary) mx, Q1, Q2, Q3,Mx give a brief quantitative characterisation of the

data set (in terms of range, central part, and spread).

Example 4.7 Consider the data set of example 4.3. The five-number summary can be

computed with the R command summary (which returns as well the mean, the option

quantile.type specifies the version of quantiles used)

> x<-c(26, 35, 23, 32, 35, 33, 39, 32, 25, 38, 34)

> summary(x,quantile.type=2)

Min. 1st Qu. Median Mean 3rd Qu. Max.

23 26 33 32 35 39

The five-number summary can be visualised in a so called boxplot. The boxplot consists of

a rectangle positioned above the interval [Q1, Q3]. The median is shown by a line through

the box positioned at Q2. Two lines outside the box extend from Q3 to the maximum of

the data set, and from Q1 to the minimum of the data set. A boxplot for the data set of

example 4.3 is shown in figure 4.5
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A boxplot can be produced in R with the command boxplot(x) The command uses a

different definition of the quartiles, hence the position of Q1 and Q3 may differ slightly

from the previous calculation. A boxplot may contain as well particular data points,

which are considered to be outliers (see the R documentation for details).

25
30

35

Figure 4.5: Boxplot of the data set of example 4.3, with median Q2 = 33 indicated by the

horizontal line through the box, upper quartile Q3 = 33 indicated by the upper bound

of the box, lower quartile Q1 = 29 indicated by the lower bound of the box, and the two

whiskers extending to minimum 23 and maximum 39 of the data set.

c) Correlation and scatter diagrams

So far we have considered quantitative data of the type (x1, x2, . . . , xn), i.e., a single

quantity xk measured for each item k, so called univariate data. Let us now consider

the case that we measure (at least) two quantities xk and yk for each item, so called

multivariate data ([x1, y1], [x2, y2], . . . , [xn, yn]).

Example 4.8 The raw exam marks of 29 students in the 2019 Calculus I exam and the

Introduction to Probability exam are listed in a table:

Calc I 62 84 18 64 88 69 66 69 73 84 95 82 68 91 65

Int. Prob 84 73 47 74 64 86 88 76 76 79 98 85 72 81 93

Calc I 100 83 95 91 82 44 83 45 82 93 74 73 91 14

Int. Prob 91 90 89 95 77 91 75 62 90 61 77 69 65 49
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For each student there are two mark entries, i.e., we have bivariate/multivariate data. For

each module (each component) one can perform the univariate data analysis described in

the previous section. However, the interesting aspect is whether there are correlations

between the marks in both modules.

Scatter plots: To visualise any correlations within a multivariate data set ([x1, y1],

[x2, y2], . . . , [xn, yn]) produce a plot where you show xk versus yk, a so called scatter plot.

If (an extreme case) yk would be a function of xk, i.e., yk = f(xk) the scatter plot would

just show the graph of the function. If points are scattered in the plane it means that

there is no such simple relationship.

Example 4.9 Represent the multivariate data of example 4.8 in a scatter plot, i.e., plot

Probability marks yk vs. Calculus marks xk. In R assign marks to lists and plot lists

against each other.

x<-c(62,84,18,64,88,69,66,69,73,84,95,82,68,91,65,

100,83,95,91,82,44,83,45,82,93,74,73,91,14)

y<-c(84,73,47,74,64,86,88,76,76,79,98,85,72,81,93,

91,90,89,95,77,91,75,62,90,61,77,69,65,49)

plot(x,y,xlab="Calc I",ylab="Int. Prob.")

The scatter plot indicates that there is some minor positive correlation between the two

module marks as a higher mark in Calculus I has a tendency to have a higher mark in

Introduction to Probability. But the correlation does not look strong.

Correlation coefficient: To quantify a (linear) correlation one can resort to the idea

of covariance and correlation coefficients. If you recall the definition of the covariance

of two random variables Cov(X, Y ) = E(X − E(X)(Y − E(Y )) and if you compare the

definition of variance Var(X) and sample variance s2
x it is sensible to introduce the sample

covariance

sxy =
1

n− 1

n∑
k=1

(xk − x̄)(yk − ȳ)
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Figure 4.6: Scatter plot of the 2019 final exam marks of Calculus I and Introduction to

Probability for 29 students.

as a measure for the correlation between the two data sets. Like the correlation coeffi-

cient corr(X, Y ) = Cov(X, Y )/
√

Var(X)Var(Y ) one divides by the sample variances to

introduce the sample linear correlation coefficient

r =
sxy
sxsy

.

The sample correlation coefficient has the properties

• −1 ≤ r ≤ 1

• If the two data are linearly related with positive slope a > 0, yk = axk + b, then

r = 1

• If the two data are linearly related with positive slope a < 0, yk = axk + b, then

r = −1

Hence r quantifies the degree by which data are linearly correlated. The proof of these

statements is fairly straightforward but requires some familiarity with manipulating sums

like, e.g., the Cauchy Schwarz inequality (see as well the proofs for analogous properties

of the correlation coefficient).

Example 4.10 Consider the multivariate data of example 4.8. The sample correlation

coefficient can be computed with the R command cor.
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x<-c(62,84,18,64,88,69,66,69,73,84,95,82,68,91,65,

100,83,95,91,82,44,83,45,82,93,74,73,91,14)

y<-c(84,73,47,74,64,86,88,76,76,79,98,85,72,81,93,

91,90,89,95,77,91,75,62,90,61,77,69,65,49)

> cor(x,y)

[1] 0.5281328

The correlation coefficient is positive (indicating that a higher mark in Calculus I points

towards a higher mark in Introduction to probability, and vice versa) but there is no linear

relation between both marks as the correlation coefficient differs substantially from 1.

Remark:

• A positive or negative correlation does not mean any causality (e.g. that one feature

causes the other). Correlations may be mitigated by other factors or they may be

spurious (i.a. accidental).

• A certain value of the correlation coefficient does not mean that the value is signifi-

cant (i.e. relevant). We will discuss those issues in section 6 (these kind of questions

are actually a key aspect in Statistics).
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Progress Check:

1. Explain what is meant by a frequency distribution and by a rel-

ative frequency distribution.

2. Which measures for centrality do you know? What do these

measures tell you?

3. Which measures for dispersion do you know? What do these mea-

sures tell you?

4. Which information is contained in a boxplot?

5. The QMUL student evaluation questionnaires contain questions

which can be answered by “definitely agree”, “mostly agree”,

“neutral, “mostly disagree”, “definitely disagree”. Which of

the following quantities make sense to summarise the answers:

the mean, the median, the standard deviation, the interquartile

range?

6. How do you produce a scatter plot, and which information does

the plot contain?

7. Which information is contained in the correlation coefficient?

What does a positive/negative value mean, and how is this re-

flected in the scatter plot?
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§5 Sampling Distributions

Example 5.1 We want to obtain the average height of the British population. We could

do a census, i.e., recording the height of each individual and then compute the arithmetic

mean, which gives the exact average height (the so called population mean). But such a

procedure is impractical or at least far to expensive. Instead we could do a survey, i.e., we

take a random sample of say n = 10, 000 people, record their heights (x1, x2, . . . , xn) and

compute the sample mean x̄. But how accurate is such a sample mean? If we do another

survey we obtain a different data set (x1, x2, . . . , xn) and a different sample mean. In fact

each entry xk can be viewed as the outcome of a random variable Xk which gives the value

of the kth data entry. The sample mean X̄ = (X1 +X2 + . . .+Xn)/n becomes a random

variable as well. The random variables X1,X2,. . . ,Xn are independent since we take a

random sample of the population and their expectation µ = E(Xk) is the exact population

mean (the number we want to estimate). So the research question is: what can we say

about the distribution of X̄ and how likely is it that its values differ much from µ.

In general: if we have collected a random sample of size n, then the actual data set

(x1, x2, . . . , xn) may be viewed as a realisation of n (mutually) independent random vari-

ables (X1, X2, . . . , Xn) which have identical distribution. In fact, the random variables

are independent if we sample with replacement (which is unlikely in most surveys) or if we

sample from an infinite population. If we sample without replacement then the size N of

the population needs to be much larger than the sample size n to guarantee independence.

See for instance the hypergeometric distribution (see figure 1.4) which covers picking balls

without replacement and the Binomial distribution (see figure 1.2) which covers picking

balls with replacement.

a) Estimators for mean and proportion

Denote by X1, X2, . . . , Xn n (mutually) independent identically distributed random vari-

ables with expectation µ = E(X) and variance Var(Xk) = σ2. Denote by

X̄ =
1

n

n∑
k=1

Xk =
1

n
(X1 +X2 + . . .+Xn)
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the sample mean. Since we use the sample mean to estimate µ the sample mean is called

an estimator for the mean µ. Given a particular sample with values x1, x2, . . . , xn the

numerical value of the sample mean x̄ is called a point estimate for the expectation µ.

Here we will first study the properties of the sample mean, assuming that µ and σ are

given. This knowledge will then be used in section 6 to estimate parameters of a distri-

bution from a sample.

Definition 5.1 (Statistic) A real function g(X1, X2, . . . , Xn) of random variables X1,

X2, . . . , Xn is called a statistic.

Obviously the sample mean is a statistic.

Proposition 5.1 Let X1, X2,. . . , Xn be n mutually independent random variables having

the same expectation and variance, µ = E(Xk) and σ2 = Var(Xk) for k = 1, . . . , n. Then

the expectation µX̄ and the variance σ2
X̄

of the sample mean X̄ are given by

a) µX̄ = E(X̄) = µ

b) σ2
X̄ = Var(X̄) =

σ2

n

Proof: The proof is a simple application of the linearity of expectation and independence

a) Linearity of expectation tells us that

E(X̄) =
1

n
E(X1 +X2 + . . .+Xn) =

1

n
(E(X1) + E(X2) + . . .+ E(Xn)) =

1

n
nµ = µ

b) Mutual independence of the random variables tells us that

Var(X̄) =
1

n2
(Var(X1) + . . .+ Var(Xn)) =

σ2

n

�.

Remark:
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• The pdf of the random variable X̄ is called the sampling distribution (of the sample

mean)

• The variance of X̄, σX̄ = σ2/n, becomes smaller when the sample size n increases.

• The central limit theorem (see proposition 3.1) tells us that regardless of the shape

of the underlying population the sampling distribution of X̄ becomes approximately

normal, X̄ ∼ N(µ, σ2/n) for large n.

Example 5.2 The exact population mean of the final exam marks in Introduction to

Probability in 2019 has been µ = 70.21 with variance σ2 = 380.27 (by computing the

averages among all students). You ask a random sample of 10 students who took the exam

for their final exam mark and you compute the sample mean. Compute the probability that

the sample mean is 5 or more marks below the actual mean µ.

If Xk is the random variable which gives the mark of the kth student in your sample the

sample mean is

X̄ =
1

n

n∑
k=1

Xk

with n = 10. We are supposed to compute the probability P(X̄ ≤ 70.21− 5).

Proposition 3.1 tells us that X̄ is an approximate normal random variable with mean and

variance given by proposition 5.1, X̄ = N(µ, σ2/n) with µ = 70.21, σ2 = 380.27, and

n = 10. This statement has to be taken with a grain of salt as the sample size n is fairly

small. Standardisation of the random normal variable with µX̄ = µ and σ2
X̄

= σ2/n gives

P(X̄ ≤ 65.21) = P

(
X̄ − µ√
σ2/n

≤ −5√
σ2/n

)
= Φ

(
−5√
σ2/n

)
.

The numerical value can be easily evaluated in R

> pnorm(-5/sqrt(38.027))

[1] 0.2087348

Hence at about 20.9% of the random samples (that means at about one in five) underes-

timate the mean mark by 5 or more marks.
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Example 5.3 Consider the setup of example 5.2. How large must the size n of the

random sample of students be so that less than 5% of the random samples have a sample

mean which is 5 or more marks below the actual mean (i.e. that less than 5% of the

random samples underestimate the actual mean mark).

In this case we have to compute n such that

P(X̄ ≤ 65.21) < 0.05 .

If we use standardisation for the right hand side we obtain (see example 5.2)

Φ

(
−5√
σ2/n

)
< 0.05 .

Since the probability integral is a monotonic increasing function (i.e. application of the

inverse function preserves inequalities) application of Φ−1 gives

−5√
σ2/n

< Φ−1(0.05)

which can be easily solved for n (observe that Φ−1(0.05) is negative, see e.g. figure 2.8 !)

n >
(−Φ−1(0.05))2σ2

52
.

The numerical value can be easily computed in R

> (-qnorm(0.05))^2*380.27/5^2

[1] 41.15348

You would have to ask more than 41 randomly sampled students (and all of them would

have to be willing to tell you their mark). Again some critical thinking should be exercised.

The required value of n is fairly large compared to the population size, and the assumption

of independence may be violated.

So far we based our analysis on the mean µ and the variance σ2 of each observation Xk to

evaluate properties of the sample mean X̄. The situation becomes simpler if we consider

the special case to estimate a proportion of a population.



5 SAMPLING DISTRIBUTIONS 70

Example 5.4 The true proportion p of home owners in the UK can be obtained by a

census (i.e. ask each individual whether they own a property). Alternatively one may

estimate the proportion by a survey, i.e., from a random sample (x1, . . . , xn) of size n.

One may record home owners by a digit xk = 1 and non home owners by a digit xk = 0.

Hence home ownership becomes a Bernoulli(p) random variable Xk (taking values 0 and

1). The estimate of the proportion p is the number of home owners (i.e. the number of

ones) divided by the sample size n, i.e., the sample proportion X̄ = (X1+. . .+Xn)/n gives

an estimator for the proportion. Since E(X`) = p and Var(X`) = p(1− p) proposition 5.1

tells us that E(X̄) = p and Var(X̄) = p(1− p)/n.

In general: If X1, . . . , Xn are Bernoulli(p) random variables telling us whether an individ-

ual belongs to a group in the population then the sample proportion X̄ is an unbiased

estimator for the proportion of members of the group and

E(X̄) = p, Var(X̄) =
p(1− p)

n
.

Example 5.5 In the 2019 Calculus I final exam 41.4% of students got an A grade. You

ask a random sample of 15 students (who took that exam) whether they obtained an A.

Compute the probability that more than 50% of students in your sample obtained an A

grade.

Denote by X1, . . . , Xn the n = 15 Bernoulli(p) random variables with p = 0.414. The

variables count whether a student in the sample got an A (i.e. Xk = 1 if student k got

an A, and Xk = 0 otherwise). We have E(X`) = p and Var(X`) = p(1− p). The sample

proportion X̄ counts the fraction of students in the sample which got an A grade. We need

to compute P(X̄ > 0.5). Proposition 5.1 tells us that µX̄ = p and Var(X̄) = p(1 − p)/n

with p = 0.414 and n = 15.

Within the normal approximation standardisation tells us that

P(X̄ > 0.5) = 1−P(X̄ ≤ 0.5) = 1−P(

(
X̄ − µX̄
σX̄

≤ 0.5− µX̄
σX̄

)
= 1−Φ

(
0.5− p√
p(1− p)/n

)
.

Evaluation in R is straightforward
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> 1-pnorm((0.5-0.414)/sqrt(0.414*(1-0.414)/15))

[1] 0.249447

That means for at about 25% (i.e a quarter) of the random samples one obtains a sample

proportion with more than 50% A grades.

Remark:

• Independence condition: To simplify the analysis we assume that the random vari-

ables X1, . . . , Xn in a random sample of size n are independent. If we sample

randomly from an infinite population or from a finite population with replacement

then independence is guaranteed. If we sample from a finite population of size N

without replacement independence is a good approximation if the sample size is at

most 5% of the population size, n ≤ 0.05N .

• Normality condition: If each individual is modelled by a normal random variable

Xk ∼ N(µ, σ2) then the sample mean X̄ is a normal random variable as well, by

proposition 3.2, for any sample size n. If Xk are Bernoulli(p) random variables the

sample mean X̄ is well approximated by a normal random variable if the sample size

is sufficiently large, np(1 − p) > 10. For general random variables Xk the sample

mean is often well approximated by a normal random variable if n > 20.

b) Bias

Definition 5.2 (Unbiased estimator) Consider n identically distributed independent

random variables X1, . . . , Xn (a sample of size n) where the distribution of Xk contains a

parameter θ. The statistic g(X1, . . . , Xn) is called an unbiased estimator for θ is

E(g(X1, . . . , Xn)) = θ .

Remark:
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• Being an unbiased estimator means that “on average” the estimator gives the correct

parameter value.

• The previous subsection has shown that the sample mean X̄ is an unbiased estimator

for the mean µ = E(X`). If we consider Bernoulli(p) random variables then the

sample proportion X̄ is an unbiased estimator for the sample proportion p = E(X`).

Sample variance: Consider a sample of size n, i.e., n identically distributed indepen-

dent random variables X1, . . . , Xn with Var(X`) = σ2. The naive way to estimate the

variance is the statistic

S2
P =

1

n

n∑
k=1

(
Xk − X̄

)2
=

1

n

n∑
k=1

X2
k −

(
X̄
)2

This estimator is, however, biased.

Lemma 5.1 Denote by X1, . . . , Xn n identically distributed, independent random vari-

ables with E(X`) = µ and Var(X`) = σ2. Then

E(S2
P ) =

n− 1

n
σ2 .

That means S2
P is biased and it slightly underestimates the variance.

Proof: Using linearity of expectation

E
(
S2
P

)
=

1

n

n∑
k=1

E(X2
k)− E(X̄2)

Using the definition of variance we have

E(X2
k) = Var(Xk) + (E(Xk))

2 = σ2 + µ2

and (using proposition 5.1 as well)

E(X̄2) = Var(X̄) + (E(X̄))2 =
σ2

n
+ µ2

Therefore

E
(
S2
P

)
=

1

n
n(σ2 + µ2)− σ2

n
− µ2 =

n− 1

n
σ2

�.
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To obtain an unbiased estimator we multiply S2
P with n/(n − 1) resulting in the sample

variance (see section 4??)

S2 =
1

n− 1

n∑
k=1

(
Xk − X̄

)2
.

c) Mean square error

Consider a sample of size n, (X1, . . . , Xn). The sample mean is an unbiased estimator for

the mean µ, but there are other unbiased estimators. For instance X1 (just the first data

entry, ignoring all the other n − 1 entries) is an unbiased estimator since by definition

E(X1) = µ. Intuitively the sample mean is the better estimator, but why?

The size of the variance of the estimator tells us by how much a typical value differs

from the mean. By definition Var(X1) = σ2, but by proposition 5.1 Var(X̄) = σ2/n, i.e.,

the variance decreases with the sample size and becomes small for large samples. Hence

the estimate becomes more accurate. Therefore the sample mean is the much better

estimator.

Definition 5.3 (Mean square eror) Consider n independent identically distributed ran-

dom variables X1, . . . , Xn (a sample of size n). Denote by θ parameter of the distribution

of Xk, and by g(X1, . . . , Xn) a statistic which is an estimator for the parameter θ. The

mean square error (mse) of the estimator is defined by

MSEg = E((g(X1, . . . , Xn)− θ)2) .

Remark: If the estimator is unbiased, θ = E(g(X1, . . . , Xn)), the mean square error is

given by

MSEg = E((g(X1, . . . , Xn)− E(g(X1, . . . , Xn)))2)) = Var(g(X1, . . . , Xn)) .
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d) Simulation of random variables

We have discussed various pmfs and pdfs in sections 1b), 2??, 2??, for instance the Bi-

nomial distribution. One may consider such a random variable as a hypothetical (or

theoretical) population. Any n numbers (x1, . . . , xn) drawn from such a distribution can

be considered as a sample of size n. These so called pseudorandom numbers can be

generated numerically (but the actual algorithms are way beyond first year UG mathe-

matics). Numerically generated finite samples can be used to model systems or to check

and confirm theoretical results.

Example 5.6 A bag contains n = 50 balls 20 red balls and m = 30 blue balls. You

pick ` = 15 balls at random, see example 1.8, and we count the number of blue balls we

pick. Let X denote the number of blue balls you pick. The random variable obeys the

hypergeometric distribution X ∼ Hg(50, 30, 15). If we perform the experiment repeatedly,

say n = 200 we obtain a data set of 200 numbers (x1, . . . , xn). Instead of doing the actual

200 experiments we can generate such a data set in R using the command rhyper

> x<-rhyper(200,30,20,15)

> x[10:20]

[1] 9 8 10 10 13 13 10 8 9 9 6

(the second command x[10:20] just displays the part from x10 to x20). We can compute

the sample mean and the sample variance

> mean(x); var(x)

[1] 9.085

[1] 2.701281

The values slightly differ from the theoretical prediction, see section 1b), E(X) = `m/n = 9

and Var(X) = 18/7 as we base our computation on a particular finite sample. We may

as well plot the relative frequencies of the data set
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> hist(x,freq=FALSE,breaks=seq(-0.5,15.5,1))

The option freq=FALSE tells R to compute the relative frequencies, and the sequence

breaks=seq(-0.5,14.5,1) specifies the grouping of the data. We may as well add the

exact theoretical result by points

> lines(0:15,dhyper(0:15,30,20,15),type="p")
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Figure 5.1: Relative frequencies as a histogram obtained from a simulation of the Hyper-

geometric distribution Hg(50, 30, 15). The symbols are the exact values of the hypergeo-

metric distribution. Left: Sample size 200, right: sample size 5000.

Agreement becomes better for larger sample size (see figure 5.1).

Continuous random variables may be treated the same way.

Example 5.7 Assume the waiting times (in units of minutes) at a bus stop are exponen-

tially distributed with decay rate λ = 0.4, T ∼ Exp(0.4). We can simulate a sample of

500 waiting times
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> x<-rexp(500,0.4)

> x[120:130]

[1] 2.33918482 0.22072580 0.09658925 0.97787379

[5] 2.66325354 0.49060909 2.14893974 5.94831907

[9] 1.48453527 3.74587232 1.11054274

Sample mean and sample variance of the data set are

> mean(x);var(x)

[1] 2.354746

[1] 6.160399

and they agree reasonable well with the exact theoretical results E(T ) = 1/λ = 2.5 and

Var(T ) = 1/λ2 = 6.25. The histogram of the dataset and the comparison with the theoret-

ical curve are shown in figure 5.2 (We chose the grouping of the histogram sensibly, not

too small, not too large, here a bin size of 0.5. We also chose the resolution for the line

reasonable fine, here 0.1).

> hist(x,freq=FALSE,breaks=seq(0,25,0.5))

> lines(seq(0,25,0.1),dexp(seq(0,25,0.1),0.4),type="l")

We can even perform rather complex tasks, e.g., simulating the sample distribution of the

sample mean.

Example 5.8 Consider a random variable which obeys the Poisson distribution with pa-

rameter λ = 4, X ∼ Poisson(λ). Consider samples of size n = 50. A single sample

(x1, . . . , xn) and its sample mean x̄ can be easily computed
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Figure 5.2: Relative frequencies as a histogram obtained from a simulation of the (contin-

uous) exponential distribution Exp(0.4) with sample size 500. The line is the exact result

of the exponential distribution.

> x<-rpois(50,lambda=4)

> mean(x)

[1] 3.98

We can compute the sample mean in one line as well

> mean(rpois(50,lambda=4))

[1] 3.64

Note that the numerical value differs as we have generated a different sample, the sam-

ple mean is a random variable! To plot the bar chart of the sample mean we need to

generate a sufficiently large data set of sample means (i.e. we have to execute the above

command repeatedly). That can be done with the R command replicate which performs

the command repeatedly, say 3 times

> replicate(3,mean(rpois(n=50,lambda=4)))

[1] 3.76 4.03 4.34
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The result are three sample means in list format. Lets us compute 1000 sample means

and then produce a histogram

> xbar<-replicate(1000,mean(rpois(n=50,lambda=4)))

> hist(xbar,freq=FALSE,seq(3,5,0.1))

Proposition 5.1 tells us that the sample mean obeys approximately a normal distribution

with mean µX̄ = E(X) = λ = 4 and variance σ2
X̄

= λ/n = 2/25. We can add the graph

of the pdf to our plot (with reasonably high resolution), see figure 5.3.

> lines(seq(3,5,0.02),dnorm(seq(3,5,0.02),mean=4,sd=sqrt(2/25)))
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Figure 5.3: Histogram of the sample mean of n = 50 Poisson random variables with λ = 4.

The histogram has been obtained from a data set of 1000 samples. The line is the normal

approximation for the sampling distribution with µX̄ = λ = 4 and σ2
X̄

= λ/n.

As expected the sample mean is approximately a normal random variable.
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Progress Check:

1. Explain the difference between a population and a sample.

2. What is meant by a statistic. Which statistic do you use for

estimating the mean, and which do you use for estimating a pro-

portion.

3. What is meant by a sampling distribution. Describe the circum-

stances under which the shape of the sampling distribution is

approximately normal.

4. What is meant by an unbiased estimator?

5. Which statistic do you use for estimating the variance?

6. What does the mean square error tell you?

7. You toss a fair coin repeatedly until you have seen three heads

(and then you stop tossing). Denote by X the number of tails you

have seen. Which R command do you use to generate 20 outcomes

of this experiment, i.e., a sample of size 20?
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§6 Confidence Intervals

So far we have developed unbiased estimators for the mean, the variance, and the pro-

portion of a population. We have as well studied their statistical properties in terms

of the sampling distribution. How accurate are the numerical values obtained from the

estimators (e.g. how well does the sample mean of a sample reflect the true mean of a

population), i.e., how accurate are the point estimates. We will employ our knowledge of

the sampling distribution to tackle this problem.

Example 6.1 You ask a random sample of ten students for their 2018 final exam mark

in MTH4107 Introduction to Probability: 63, 43, 41, 59, 49, 54, 74, 17, 67, 92. The

sample mean is

> x<-c(63, 43, 41, 59, 49, 54, 74, 17, 67, 92)

> mean(x)

[1] 55.9

The population variance of the final exam mark is 248.58. What can we say about the

true expected mark in the module (i.e. the population mean)?

a) Interval estimate for the sample mean

Consider a sample of size n, (X1, . . . , Xn), where Xk denote independent identically dis-

tributed random variables with expectation µ and variance σ2. Assume for simplicity

that we know the variance σ. The sample mean X̄ is approximately a normal random

variable with expectation µX̄ = µ and variance σ2
X̄

= σ2/n for suitable sample size. Given

a (small) probability α (say α = 0.05) we want to find an interval [µ− δ, µ+ δ] around the

expectation (i.e. we want to find δ) so that with (large) probability 1−α the sample mean

x̄ is contained in that interval. That means the sample mean differs from the expectation
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by more than δ with (small) probability α. The threshold δ is determined by

P(|X̄ − µ| < δ) = 1− α ⇒ P(|X̄ − µ| > δ) = α .

Using standardisation

P
(
|X̄ − µ|
σX̄

>
δ

σX̄

)
= P

(
|Z| > δ

σX̄

)
= α .

The z-score, Lemma 2.1, tells us α = P(|Z| > zα/2), i.e.,

δ

σX̄
= zα/2 = Φ−1

(
1− α

2

)
⇒ δ = σX̄zα/2 .

Hence, the interval [µ−σX̄zα/2, µ+σX̄zα/2] contains the sample mean of the sample with

probability 1− α.

In return that means a sample mean x̄ results in so called confidence interval

[x̄− σX̄zα/2, x̄+ σX̄zα/2] = [x̄− σ√
n
zα/2, x̄+

σ√
n
zα/2]

The fraction of 1− α of such intervals contain the population mean µ. We call 1− α the

level of confidence. A level of confidence 1−α means that the fraction 1−α of all possible

samples result in confidence intervals that contain the parameter µ.

Note: Confidence intervals do not mean that the parameter µ is contained in the interval

with probability 1−α. It is the statement that the fraction 1−α of all confidence intervals

contain the parameter, hence it is a statement about the sample statistic.

Remark: In applications it is sensible to check the independence and the normality

conditions, since we have based the theoretical analysis on the normal approximation of

the sampling distribution.

Example 6.2 Given the data from example 6.1 construct a 95% confidence interval for

the expectation.

Since σ2 = 248.58 and n = 10 we have σ2
X̄

= σ2/n = 24.858.

For confidence level 1− α = 0.95 the z-score is zα/2 = z0.025 = Φ−1(0.975)
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> qnorm(0.975)

[1] 1.959964

With x̄ = 55.9 the confidence interval at confidence level 1− α = 0.95 reads

[x̄− σX̄z0.025, x̄+ σX̄z0.025]

which gives

> barx<-55.9

> sigma<-sqrt(248.58)

> n<-10

> sigmaX<-sigma/sqrt(n)

> alpha<-0.05

> zsc<-qnorm(1-alpha/2)

> barx-sigmaX*zsc; barx+sigmaX*zsc

[1] 46.12805

[1] 65.67195

Hence assuming that our sample does not belong to the 5% (α = 0.05) of exceptional

samples the correct mean mark of the module is contained in the interval [46, 66].

Remark: For simplicity we have assumed that the variance σ2 = Var(Xk) is known. If

σ2 is a priori unknown we may take the sample variance s2 as a proxy if the sample is

sufficiently large. One should keep in mind that a more sophisticated theory would be

required (beyond first year UG mathematics) to deal with this case in a consistent way.

Example 6.3 Consider the marks sample of example 6.1. If the variance σ2 would not

be known we could use the sample variance s2 instead, to compute a confidence interval
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> x<-c(63, 43, 41, 59, 49, 54, 74, 17, 67, 92)

> var(x)

[1] 418.5444

Using the approximation σ2
X̄

= s2/n the confidence interval at confidence level 1−α = 0.95

is then given by

[x̄− σX̄z0.025, x̄+ σX̄z0.025]

which can be easily evaluated in R

> x<-c(63, 43, 41, 59, 49, 54, 74, 17, 67, 92)

> n<-length(x)

> barx<-mean(x)

> sigmaX<-sqrt(var(x)/n)

> alpha<-0.05

> zsc<-qnorm(1-alpha/2)

> barx-sigmaX*zsc; barx+sigmaX*zsc

[1] 43.22001

[1] 68.57999

The 95% confidence interval differs noticeably from the previous calculation. The sample

size is not large enough to justify the normality condition.

b) Interval estimate for the sample proportion

Consider a sample of size n, (X1, . . . , Xn). If Xk are Bernoulli(p) random variables which

signal membership of the individual to a group (i.e., Xk = 1 if individual k belongs to

the group and Xk = 0 otherwise) then the proportion mean X̄ is an unbiased estimator

for the population proportion p. Hence we can use the same confidence interval for the

sample proportion as well. Here we have σ2 = Var(Xk) = p(1 − p) and the variance of
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the sample proportion is σ2
X̄

= σ2/n = p(1 − p)/n. Therefore the confidence interval at

confidence level 1− α is given by

[x̄− σX̄zα/2, x̄+ σX̄zα/2] = [x̄−
√
p(1− p)

n
Φ−1

(
1− α

2

)
, x̄+

√
p(1− p)

n
Φ−1

(
1− α

2

)
] .

Since the exact proportion p is unknown we may replace p by the estimate x̄ to evaluate

the sample variance and we arrive at

[x̄− σX̄zα/2, x̄+ σX̄zα/2] =

[
x̄−

√
x̄(1− x̄)

n
zα/2, x̄+

√
x̄(1− x̄)

n
zα/2

]

for the confidence interval of the sample proportion at confidence level 1 − α, where

zα/2 = Φ−1(1− α/2).

Example 6.4 You ask a random sample of 15 students for their marks in the 2017 final

exam in Introduction to Probability:

79,75,70,26,88,32,83,69,46,50,69,37,72,76,49

To compute the proportion of students getting an A grade convert the data set where 1/0

indicates an A grade/lower grade

1,1,1,0,1,0,1,0,0,0,0,0,1,1,0

The sample proportion estimates the proportion of A grades in this exam, i.e., the point

estimate is given by

> x<-c(1,1,1,0,1,0,1,0,0,0,0,0,1,1,0)

> barx<-mean(x)

> barx

[1] 0.4666667

To construct a 95% confidence interval we need to estimate the variance σ2 to compute

the sample variance σ2
X̄

= σ2/n. Since we deal with Bernoulli(p) random variables the

variance is Var(Xk) = p(1− p), where we replace p by its estimate x̄
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> sigma2<-barx*(1-barx)

> sigma2

[1] 0.2488889

The sample variance s2 would give a very similar estimate

> var(x)

[1] 0.2666667

The variance of the sample mean σ2
X̄

= σ2/n then gives

> sigma2X<-sigma2/length(x)

> sigma2X

[1] 0.01659259

For a 95% confidence interval we have confidence level 1 − α = 0.95, i.e., α = 0.05 and

the z-score zα/2 = Φ−1(1− α/2) is given by

> zsc<-qnorm(1-0.05/2)

> zsc

[1] 1.959964

Finally the 95% confidence interval [x̄− σX̄z0.025, x̄+ σX̄z0.025] reads

> barx-sqrt(sigma2X)*zsc; barx+sqrt(sigma2X)*zsc

[1] 0.2141993

[1] 0.719134
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That means unless our sample of grades is among 5% of exceptional samples the actual

proportion of A grades is contained in the interval [0.214, 0.719].

To compute a 99% confidence interval we can keep the estimate x̄ and the sample variance

σ2
X̄

. We just need to adjust the z-score zα/2 since now 1− α = 0.99 and α = 0.01

> zsc<-qnorm(1-0.01/2)

> zsc

[1] 2.575829

> barx-sqrt(sigma2X)*zsc; barx+sqrt(sigma2X)*zsc

[1] 0.1348683

[1] 0.798465

The 99% confidence interval [0.135, 0.798] is larger. Higher confidence requires that a

larger number of samples result in intervals which contain the actual population proportion,

i.e., higher confidence requires a larger confidence interval.

Which sample size n would be needed to obtain a 95% confidence interval [x̄− δ, x̄+ δ] of

half width δ = 0.1? Since the half width of the confidence interval is given by σ2
X̄
zα/2 with

confidence level 1− α = 0.95, i.e., α = 0.05 the condition on the sample size reads

δ = σ2
X̄zα/2 =

√
p(1− p)

n
zα/2

which gives

n =
p(1− p)zα/2

δ2

with α = 0.05 and δ = 0.1. For (the unknown) value p we could use the estimate x̄.

Alternatively p(1− p) ≤ 1/4 and we could use this value as an upper bound. Hence

n ≤ 1

4

Φ−1(1− α/2)

δ2

which gives
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> 1/4*qnorm(1-0.05/2)/0.1^2

[1] 48.9991

Hence one needs the grades of 49 randomly sampled students to guarantee the 95% confi-

dence interval [0.467− 0.1, 0.467 + 0.1] for the proportion of students scoring an A grade.

However: recall that our approach was based on the assumption of independence, i.e., that

the sample size is small compared to the population size (i.e. the number of students sit-

ting the exam). If such a condition is not valid, i.e., if independence cannot be guaranteed

then one needs more sophisticated approaches.
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Progress Check:

1. Explain in general terms the difference between a point estimate

and an interval estimate.

2. Which quantities do you need to know/evaluate to compute a

95% confidence interval for the sample mean?

3. What does a 95% level of confidence mean?

4. What does a 99% confidence interval for the sample proportion

tell you?

5. How does the size of a confidence interval depend on the sample

size?

6. Given a sample you compute a 95% and a 99% confidence interval

for the sample proportion. Which interval is smaller? Explain

why the interval is smaller.

7. Which conditions does a sample have to satisfy so that you can

compute a confidence interval for the sample mean?
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§7 Hypothesis Testing

a) Basic notions

Example 7.1 We want to figure out whether a coin is fair. We toss the coin repeatedly,

say 10000 times, and we count the number of heads seen. If this number is close to 5000

the coin has a good chance to be fair. Tossing a coin is captured by a Bernoulli(p) random

variable (say, X = 1 meaning head, and X = 0 meaning tail). The statement the coin

is fair is a statement about the bias p, i.e., about a parameter of the probability mass

function, here p = 1/2. Such a statement is called a hypothesis

Definition 7.1 (Hypothesis) A hypothesis is a statement about a parameter θ of the

pmf (or pdf) of a random variable X.

Example 7.2 By tossing the coin many times, say 10000 times, we will not be able to

confirm whether the coin is fair (p = 0.5) just by counting the number of heads. We won’t

be able to exclude a tiny bias, say p = 0.50000000001 (e.g. adding a single atom to one side

of the coin). Hence hypothesis testing does not mean to confirm the hypothesis, it means

finding evidence against the hypothesis. If we find evidence against the hypothesis we reject

(“nullify”) the hypothesis. If we cannot find evidence we do not reject the hypothesis (and

we may be tempted to accept the hypothesis for the time being).

Definition 7.2 (Null hypothesis) In hypothesis testing the central claim, the null hy-

pothesis H0 is a statement θ = θ0 which we intend to find evidence against (to “nullify

the hypothesis”).

Example 7.3 We toss a coin. Our null hypothesis H0 is to have a fair coin, p = 1/2.

Our test procedure consists in tossing the coin 10000 times and counting the number of

heads seen. If this number is close to 5000, say X ∈ [4900, 5100] we do not reject H0,

otherwise we reject H0. Denote by X the number of heads seen X ∼ Bin(10000, p). If we

assume H0 to be true then X ∼ Bin(10000, 1/2) and the probability that the test rejects
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H0 is

P(X < 4900 or X > 5100) = P(X ≤ 4899)+P(X ≥ 5101) = 1−P(X ≤ 5100)+P(X ≤ 4899)

The numerical value can be easily evaluated in terms of the cdf of the Binomial(10000, 1/2)

distribution

> 1-pbinom(5100,size=10000,prob=1/2)+pbinom(4899,size=10000,prob=1/2)

[1] 0.0444258

That means only with a small probability of 4.4% the test rejects the null hypothesis as-

suming the hypothesis is actually true. Such an error is called type-I error and the corre-

sponding probability α is called the significance level.

Definition 7.3 (Significance level) Assume the null hypothesis H0 is valid. We say

a type-I error has occurred if the test procedure for H0 rejects the null hypothesis. The

probability of a type-I error occurring is called the significance level α of the test procedure.

In general we test a null hypothesis against an alternative hypothesis, e.g., in example 7.3

p = 1/2 (the coin being fair) against p 6= 1/2 (the coin being biased).

Definition 7.4 (Alternative hypothesis) The test procedure tests the null hypothesis

H0 against the so called alternative hypothesis H1. The alternative hypothesis specifies

under which conditions the null hypothesis should be rejected.

The properties of the alternative hypothesis determine the type of test procedure. In

example 7.3 with alternative hypothesis p 6= 1/2 we used a test to reject H0 if X > 5100

or X < 4900 a so called two-sided test.

Example 7.4 We toss a coin. We want to test the null hypothesis H0, the coin being

fair (p = 1/2) against the alternative hypothesis H1 that the coin shows more tails than
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heads (p < 1/2). We use the test procedure: toss the coin 10000 times and reject H0 if

we see less than 4900 heads, i.e. we reject H0 if X < 4900 (and we do not reject H0 if

X ≥ 4900). This is a so called one-sided test (left-tailed test).

To compute the significance level α assume H0 is valid. The probability that the test rejects

H0 is given by

α = P(X < 4900) = P(X ≤ 4899)

and the value can be easily evaluated with the cdf of the Binomial(10000, 1/2) distribution

> pbinom(4899,size=10000,prob=1/2)

[1] 0.0222129

That means if the number of heads seen is less than 4900, X < 4900, we reject H0 (against

H1) with significance level 2.2%. If X ≥ 4900 we do not reject H0 (no matter how many

tails we see !).

Remark:

• If we test H0 : θ = θ0 against H1 : θ 6= θ0 we need a two-sided test.

• If we test H0 : θ = θ0 against H1 : θ > θ0 we need a one-sided test (normally: a

right-tailed test).

• If we test H0 : θ = θ0 again-ts H1 : θ < θ0 we need a one-sided test (normally: a

left-tailed test).

Definition 7.3 states that a type-I error occurs if the test rejects the null hypothesis H0

even though H0 is valid. The complementary situation can occur as well, i.e., the test

does not reject H0 even though in some sense H0 is false. That is called a type-II error.

Example 7.5 Assume we use the two-sided test of example 7.3 to test our null hypothesis

(i.e. to find evidence against H0). Assume that p = 0.48 (i.e. H0 is invalid). Then
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Figure 7.1: Illustration of a two-sided test (left), right-tailed test (middle), and left-

tailed test (right). The graph depicts the pdf of the test statistic assuming that the null

hypothesis is valid. The shaded regions indicate the rejection region with the size of the

shaded area being the significance level α.

X ∼ Bin(10000, 0.48) and any outcome X ∈ [4900, 5100] produces a type-II error, i.e. the

test does not reject H0. The probability for a type-II error is (assuming p = 0.48)

P(4900 ≤ X ≤ 5100) = P(X ≤ 5100)− P(X ≤ 4899)

and can be easily evaluated in terms of the cdf of the Binomial(10000, 0.48) distribution

> pbinom(5100,size=10000,prob=0.48)-pbinom(4899,size=10000,prob=0.48)

[1] 0.02322684

Hence there is a 2.3% chance for not rejecting a false hypothesis H0 if p = 0.48.

Definition 7.5 (Power) Assume the null hypothesis H0 (θ = θ0) is not valid and the

parameter takes a value θ = θ1 6= θ0. We say that a type-II error has occurred if the test

for H0 does not reject H0. The probability for a type-II error is denoted by β. 1 − β is

called the power of the test (as with regards to the alternative θ = θ1).

In a nutshell type-I and and type-II errors are summarised in table 1.

Example 7.6 Consider the setup of example 7.3. We change the test procedure: we toss

the coin 10000 times and we do not reject H0 if X ∈ [4950, 5050].
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H0 is valid H0 is (somehow) invalid

Test does not reject H0 correct conclusion type-II error

Test rejects H0 type-I error correct conclusion

Table 1: Summary of the meaning of type I and type II errors.

The significance level of this test is (assuming H0 is valid, i.e., p = 1/2)

α = P(X < 4950 or X > 5050) = P(X ≤ 4949) + P(X ≥ 5051)

= 1− P(X ≤ 5051) + P(X ≤ 4949) .

> 1-pbinom(5050,size=10000,prob=1/2)+pbinom(4949,size=10000,prob=1/2)

[1] 0.3124952

The significance level has increased α = 0.31, but that means a higher probability for type-I

errors (rejecting a valid null hypothesis) of 31.2%.

The probability for type-II errors as with regards to the alternative p = 0.48 (see example

7.5) is (assuming p = 0.48)

β = P(4950 ≤ X ≤ 5050) = P(X ≤ 5050)− P(X ≤ 4949)

which evaluates as

> pbinom(5050,size=10000,prob=0.48)-pbinom(4949,size=10000,prob=0.48)

[1] 0.001387635

Hence the probability of type-II errors is tiny 0.14% and the power 1− β = 0.9986 . . . has

increased (as compared to 0.9767. . . in example 7.5). The test with higher power is better

in “identifying” biased coins (only very few biased coins are not rejected by the test) but

the probability of a type I error is massive (i.e. many fair coins will be rejected by the test

with higher power).



7 HYPOTHESIS TESTING 94

Remark:

• Typically increasing α decreases β. That means increasing the significance level

(increasing the likelihood of type-I errors) decreases the likelihood of type-II errors

(increases the power of the test).

• Similarly decreasing α typically increases β. That means decreasing the significance

level (decreasing the likelihood of type-I errors) increases the likelihood of type-II

errors (decreases the power of the test).

But given this notation mumbo jumbo how do we design suitable test procedures?

b) Test for a population proportion

Example 7.7 QMUL suggest a percentage of (at least) 35% A grades in typical modules.

A randomly selected sample of 15 students who took the 2017 final exam in Introduction

to Probability (see example 6.4 for a different sample) shows 3 A grades and 12 lower

grades, that means only 20% of students in the sample have an A grade. Does that mean

there is enough evidence to state that the final exam did not meet the required 35% of A

grades?

We sample from a population containing two types of objects/individuals, and we want

to test the proportion p of those individuals. The sample of size n, (X1, . . . , Xn), may

be considered as a collection of independent identically distributed Bernoulli(p) random

variables. We want to design a test for the null hypothesis H0 that the proportion p has

the value p = p0.

We base the test on the estimator X̄. Section 5?? and proposition 5.1 tells us that X̄

is an (approximate) normal random variable with mean µX̄ = E(X̄) = p and variance

σ2
X̄

= Var(X̄) = Var(Xk)/n = p(1 − p)/n if the sample has a suitable size (see the

independence and the normality condition). Assume that the null hypothesis p = p0 is

valid. Then standardisation tells us that the statistic

Z =
X̄ − p0√

p0(1− p0)/n
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is a standard normal random variable Z ∼ N(0, 1). We reject the null hypothesis if X̄

substantially deviates from p0, i.e., if Z exceeds a threshold δ. The threshold will be

determined by the significance level of the test.

Two-sided test: We test our null hypothesis H0 : p = p0 against the alternative H1 :

p 6= p0. We reject the null hypothesis if |Z| > δ. The significance level (the probability of

a type-I error, i.e., the probability of rejection assuming H0 is valid) is given by

α = P(|Z| > δ) .

Using lemma 2.1 we have

δ = zα/2 = Φ−1(1− α/2) .

We reject the null hypothesis p = p0 (in favour of the alternative p 6= p0) at significance

level α if the sample mean obeys |Z| > δ, i.e., if∣∣∣∣∣ x̄− p0√
p0(1− p0)/n

∣∣∣∣∣ > zα/2 .

Example 7.8 In 1994, 52% of parents of children in high school felt it was a serious

problem that high school students were not being taught enough maths and science. A

recent survey found that 256 of 800 parents of children in high school felt it was a serious

problem that high school students were not being taught enough math and science. Do

parents feel differently today than they did in 1994, if we apply a significance level of

α = 0.05

Denote by p the proportion of parents who think there is not enough math and science

taught at high school today. Our null hypothesis H0 is: the proportion of parents has not

changed since 1994, i.e. p = p0 = 0.52. The survey gives the estimate X̄ = 256/800 =

0.32. Does that indicate a change at significance level α = 0.05, i.e., should we reject the

null hypothesis? Our alternative hypothesis in this case reads p 6= p0.

Here our sample is small compared to the whole population and np0(1 − p0) > 10, that

means, our test conditions apply (i.e. the normality and the independence condition are
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satisfied, see section 5??). We check the inequality∣∣∣∣∣ x̄− p0√
p0(1− p0)/n

∣∣∣∣∣ > zα/2

with p0 = 0.52, n = 800, α = 0.05, and x̄ = 256/800 using R.

Left-hand side: The standardised proportion mean is given by

> p0<-0.52

> xbar<-256/800

> n<-800

> (xbar-p0)/sqrt(p0*(1-p0)/n)

[1] -11.32277

Right-hand side: the z-score reads

> alpha<-0.05

> qnorm(1-alpha/2)

[1] 1.959964

Hence the inequality is valid and there is sufficient evidence to reject the null hypothesis

at 5% significance level, i.e., the parents’ perception has changed.

Left-tailed test: We test our null hypothesis H0 : p = p0 against the alternative H1 :

p < p0. We reject the null hypothesis if Z is too small, Z < −δ (with δ > 0). The signif-

icance level (the probability of a type-I error, i.e., the probability of rejection assuming

H0 is valid) is given by

α = P(Z < −δ) .

Using lemma 2.1 we have

δ = zα = Φ−1(1− α) .
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We reject the null hypothesis p = p0 (in favour of the alternative p < p0) at significance

level α if the sample proportion obeys

x̄− p0√
p0(1− p0)/n

< −zα .

Example 7.9 Consider the setting of example 7.7. QMUL suggest a percentage of (at

least) 35% A grades in typical modules. Consider the 2017 final exam in Introduction

to Probability (see example 6.4). A randomly selected sample of 15 students shows 3 A

grades. Using this sample is there enough evidence to state that the final exam does not

comply with the college suggestion of 35% A grades at a 10% significance level?

Our sample has size n = 15 with 3 A-grades, i.e., x̄ = 3/15 = 0.2. We use the null

hypothesis of a proportion of p = p0 = 0.35 A-grades, with alternative hypothesis p < p0

(as overperformance in modules is not an issue). To reject the null hypothesis we need to

confirm the inequality
x̄− p0√

p0(1− p0)/n
< −zα

with n = 15, x̄ = 3/15, p0 = 0.35, and α = 0.1.

Left-hand side: The standardised proportion mean is given by

> p0<-0.35

> xbar<-3/15

> n<-15

> (xbar-p0)/sqrt(p0*(1-p0)/n)

[1] -1.217997

Right-hand side: the (negative) z-score reads

> alpha<-0.1

> -qnorm(1-alpha)

[1] -1.281552
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Hence the inequality is violated and we have not enough evidence to reject the null hy-

pothesis, i.e, there is so far no data based evidence to assume that the final exam did not

comply with the 35% A-grade constraint at a 10% significance level.

One has to consider that the sample size of n = 15 is fair small and the normal approxi-

mation used in the analysis may not be valid. In fact np0(1− p0) > 10 does not hold, so

that more sophisticated tools may be needed to perform a solid hypothesis test.

Right-tailed test: We test our null hypothesis H0 : p = p0 against the alternative H1 :

p > p0. We reject the null hypothesis if Z > δ. The significance level (the probability of

a type-I error, i.e., the probability of rejection assuming H0 is valid) is given by

α = P(Z > δ) .

Using lemma 2.1 we have

δ = Φ−1(1− α) = zα .

We reject the null hypothesis p = p0 (in favour of the alternative p > p0) at significance

level α if the sample proportion obeys

x̄− p0√
p0(1− p0)/n

> zα .

Example 7.10 In April 2009, the Gallup organisation surveyed 676 adults aged 18 and

older and found that 352 believed they would not have enough money to live comfortably

in retirement. Does the sample evidence suggests that a majority of adults believe they

will not have enough money in retirement if we use a significance level of 5%?

The first (and major) problem is the formulation of the null and the alternative hypothesis.

Denote by p the fraction of adults who believe they will not have enough money. The

hypothesis p = p0 = 0.5 means that (only) half of the adults believe they have not enough

money, while p > 0.5 means the majority is of that believe. Hence we can state the null

hypothesis as H0 : p = p0 = 0.5 and we are looking for evidence against this hypothesis in

favour of the alternative H1 : p > p0 = 0.5.
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We reject H0 (in favour of H1) if the inequality

x̄− p0√
p0(1− p0)/n

> zα

is satisfied, where p0 = 0.5, n = 676, x̄ = 352/676, and α = 0.05.

Left-hand side: The standardised sample proportion is given by

> p0<-0.5

> xbar<-352/676

> n<-676

> (xbar-p0)/sqrt(p0*(1-p0)/n)

[1] 1.076923

Right-hand side: the z-score reads

> alpha<-0.05

> qnorm(1-alpha)

[1] 1.644854

Hence the inequality is not valid and there is not enough evidence to reject the hypothesis

H0 at significance level 5% (i.e. we cannot reject that only a half, or less, of the population

believes to have insufficient money), even though x̄ = 352/676 = 0.520 . . ..

For this example the independence and the normality condition are both satisfied as the

sample size is small compared to the population size, and np0(1−p0) = 676 ·0.5(1−0.5) >

10.

c) Test for a population mean

Example 7.11 QMUL modules have a target mean mark of 60. Consider the data of

example 6.4 for the 2017 final exam in Introduction to Probability. The sample mean of
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these marks is x̄ = 61.4. Is there sufficient data based evidence to state that students in

this module did better as compared to the college guidelines?

We consider a sample of size n modelled by independent identically distributed random

variables X1, . . . , Xn. Based on the sample mean X̄ we want to design a test for the

population mean µ = E(Xk) with null hypothesis µ = µ0. For simplicity we assume that

the variance σ2 = Var(Xk) is known.

Section 5?? and proposition 5.1 tells us that X̄ is a normal random variable with variance

σX̄ = Var(Xk)/n = σ2/n. Assume that the null hypothesis µ = µ0 is valid. Then

standardisation tells us that the statistic

Z =
X̄ − µ0

σ/
√
n

is a standard normal random variable, Z ∼ N(0, 1). We reject the null hypothesis if

X̄ substantially differs from µ0. Depending on the alternative we apply a two-sided or

one-sided test.

Two-sided test: We test the null hypothesis H0 : µ = µ0 against the alternative H1 :

µ 6= µ0. We reject the null hypothesis if X̄ differs substantially from µ0, that means

|Z| > δ. The threshold δ is related with the significance level α (see above)

α = P(|Z| > δ) ⇒ δ = zα/2 = Φ−1(1− α/2) .

We reject the null hypothesis µ = µ0 (in favour of the alternative µ 6= µ0) at significance

level α if the sample mean obeys ∣∣∣∣ x̄− µ0

σ/
√
n

∣∣∣∣ > zα/2 .

Example 7.12 In 2002 the mean age of an inmate on death row in the US was 40.7 years

with standard deviation 9.6 years. To check whether the mean age of a death row inmate

has changed 32 death row inmates are randomly sampled and one finds a sample mean of

38.9 years. Assume for simplicity that the standard deviation has not changed over time.

Does the sample mean support a change of mean age at a 5% significance level?
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We seek evidence against the null hypothesis H0 : µ = µ0 = 40.7 with alternative H1 :

µ 6= µ0, i.e., we apply a two-sided test. The sample of size n = 32 tells us x̄ = 38.9 with

σ = 9.6 (assumed to be unaffected). To reject the null hypothesis we need to confirm the

inequality ∣∣∣∣ x̄− µ0

σ/
√
n

∣∣∣∣ > zα/2

with significance level α = 0.05.

Left-hand side: The standardised sample mean is given by

> mu0<-40.7

> xbar<-38.9

> n<-32

> sigma<-9.6

> (xbar-mu0)/(sigma/sqrt(n))

[1] -1.06066

Right-hand side: the z-score reads

> alpha<-0.05

> qnorm(1-alpha/2)

[1] 1.959964

The inequality is not valid, hence there is not enough evidence to reject the null hypothesis,

i.e., the sample does not support any change of the mean since 2002.

The sample size is small compared to the population size (hence we can justify indepen-

dence), and the sample size seems to be sufficiently large to justify normality.

Left-tailed test: We test the null hypothesis H0 : µ = µ0 against the alternative H1 :

µ < µ0. We reject the null hypothesis if Z is too small, Z < −δ where the threshold δ is

determined by the significance level (see previous subsection), δ = zα.
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We reject the null hypothesis µ = µ0 (in favour of the alternative µ < µ0) at significance

level α if the sample mean obeys

x̄− µ0

σ/
√
n
< −zα .

Example 7.13 In a study published in the American Journal of Psychiatry (May 2000)

researches measured the effect of alcohol on the development of the hippocampal region in

adolescents. The researchers randomly selected 12 adolescents with alcohol use disorder.

They wanted to determine whether the hippocampal volumes in the alcoholic adolescents

were less than the normal volume of 9.02 cm3. The standard deviation of the volume is

known to be σ = 0.7cm3. An analysis of the sample data revealed that the hippocampal

volume is approximately normal with x̄ = 8.10cm3. Do the data support a reduction in

volume at a significance level of α = 0.01.

Use the null hypothesis µ = µ0 = 9.02 with alternative µ < µ0. Apply the left-tailed test

with x̄ = 8.10, σ = 0.7, n = 12 and α = 0.01, i.e. check the inequality

x̄− µ0

σ/
√
n
< −zα

to reject the null hypothesis.

Left-hand side: The standardised sample mean is given by

> mu0<-9.02

> xbar<-8.1

> n<-12

> sigma<-0.7

> (xbar-mu0)/(sigma/sqrt(n))

[1] -4.552819

Right-hand side: the z-score reads
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> alpha<-0.01

> -qnorm(1-alpha)

[1] -2.326348

The inequality is valid, hence there is sufficient evidence to reject the null hypothesis

µ = µ0 in favour of µ < µ0 at significance level 1%. Observe however that the sample size

n = 12 is fairly small and the usage of the normal approximation is questionable (see the

independence and the normality conditions).

Right-tailed test: We test the null hypothesis H0 : µ = µ0 against the alternative H1 :

µ > µ0. We reject the null hypothesis if Z is too large, Z > δ where the threshold δ is

determined by the significance level (see previous subsection), δ = zα.

We reject the null hypothesis µ = µ0 (against the alternative µ > µ0) at significance level

α if the sample mean obeys
x̄− µ0

σ/
√
n
> zα .

Example 7.14 QMUL modules have a target mean mark of 60. Consider the data of

example 6.4 for the 2017 final exam in Introduction to Probability. Is there any evidence

at 5% significance level that students in this module did better compared to the college

target. The standard deviation of marks in this module is σ = 19.7.

We test the null hypothesis H0 : µ = µ0 = 60 against the alternative H1 : µ > µ0, i.e., we

use a right tailed test. We have to check the inequality

x̄− µ0

σ/
√
n
> zα

with µ0 = 60, σ = 19.7, n = 15, α = 0.05 and x̄ computed from the data set of example

6.4

Left-hand side: The standardised sample mean is given by
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> x<-c(79,75,70,26,88,32,83,69,46,50,69,37,72,76,49)

> mu0<-60

> xbar<-mean(x)

> n<-15

> sigma<-19.7

> (xbar-mu0)/(sigma/sqrt(n))

[1] 0.2752374

Right-hand side: the z-score reads

> alpha<-0.05

> qnorm(1-alpha)

[1] 1.644854

The inequality is not satisfied, i.e., there is insufficient evidence to reject the null hypoth-

esis µ = µ0 = 60 in favour of the alternative µ > µ0 at significance level 5%.

the sample size is at about 7% of the population size (at about 200 students were sitting

the exam), i.e., the independence condition is almost satisfied. However the sample size

is fairly small to comply with the normality condition, and hence more sophisticated tools

may be needed.

d) P -values

P -values are an alternative to perform hypothesis testing. Given an sample of size n, the

P -value, in a nutshell, is the probability to observe an outcome as extreme as the current

observation, assuming the null hypothesis is true. Hence low P -values mean outcomes as

extreme as our current samples are unlikely and we reject the null hypothesis.
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Definition 7.6 (P -value) Given an observation of a sample of size n and a null hypoth-

esis H0, the P -value of the observation is the probability to observe a sample statistic as

extreme or more extreme as the observation under the assumption that the null hypothesis

is true.

At significance level α the null hypothesis is rejected if the P -value obeys P < α.

Remark: Guideline for the interpretation of P -values

• P > 0.1: No evidence against the null hypothesis

• 0.05 < P < 0.1: Weak evidence against the null hypothesis

• 0.01 < P < 0.05: Moderate evidence against the null hypothesis

• 0.001 < P < 0.1: Strong evidence against the null hypothesis

• P < 0.001: Overwhelming evidence against the null hypothesis

Test for a population proportion: Denote by x1, . . . , xn a given (fixed) observation

of n independent identically distributed Bernoulli observables with estimator x̄ for the

sample proportion. Denote by X1, . . . , Xn a general sample with estimator X̄. Denote by

H0 : p = p0 the null hypothesis and by H1 : p 6= p0, H1 : p > p0 and H1 : p < p0 three

possible alternative hypothesis’ corresponding to a two-sided, right-tailed, and left-tailed

test. The P -values in theses cases are given by

• Two-sided test (H0 : p = p0, H1 : p 6= p0)

P = P(|X̄ − p0| > |x̄− p0|) = P

(
|Z| > |x̄− p0|√

p0(1− p0)/n

)

= 2P

(
Z >

|x̄− p0|√
p0(1− p0)/n

)
= 2

(
1− Φ

(
|x̄− p0|√
p0(1− p0)/n

))

where we use the standardisation Z = (X̄ − p0)/
√
p0(1− p0)n .

• Right-tailed test (H0 : p = p0, H1 : p > p0)

P = P(X̄ − p0 > x̄− p0) = P

(
Z >

x̄− p0√
p0(1− p0)/n

)
= 1− Φ

(
x̄− p0√

p0(1− p0)/n

)
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• Left-tailed test (H0 : p = p0, H1 : p < p0)

P = P(X̄ − p0 < x̄− p0) = P

(
Z <

x̄− p0√
p0(1− p0)/n

)
= Φ

(
x̄− p0√

p0(1− p0)/n

)

Example 7.15 According to the U.S. Census Bureau, in 2009, 2.1% of Americans worked

at home. An economist believes that the percentage of Americans working at home has

increased since then. They randomly select 150 working Americans and find that 6 of

them work at home. Does a higher proportion of Americans work at home?

Compare the null hypothesis H0 that the percentage has not changed (p = p0 = 0.021)

with the alternative hypothesis H1 that the percentage has increased (p > p0). We apply a

right-tailed test. The P -value of the survey is given by

P = 1− Φ

(
x̄− p0√

p0(1− p0)/n

)

with x̄ = 6/150 = 0.04, n = 150, and p0 = 0.021.

> barx=0.04

> p0=0.021

> n=150

> 1-pnorm((barx-p0)/sqrt(p0*(1-p0)/n))

[1] 0.0523028

Here P = 0.0523 . . . that means at about 5.2% of samples will give a sample proportion

as high or higher as the one we have seen, assuming that the null hypothesis is valid.

P > α = 0.05 and we have no evidence to reject the null hypothesis at a 5% significance

level. However we reject the null hypothesis at a 10% significance level as P < α = 0.1.

There is weak evidence against the null hypothesis since 0.05 < P < 0.1.

Test for a sample mean: Denote by x1, . . . , xn a given (fixed) observation of n in-

dependent identically distributed random variables with estimator x̄ for the population
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mean. Denote by X1, . . . , Xn a general sample with estimator X̄. Assume that the vari-

ance of the random variables is known, σ2 = Var(Xk). Denote by H0 : µ = µ0 the null

hypothesis for the mean and by H1 : µ 6= µ0, H1 : µ > µ0 and H1 : µ < µ0 three possi-

ble alternative hypothesis’ corresponding to a two-sided, right-tailed, and left-tailed test.

Again using standardisation the P -values in theses cases are given by

• Two- sided test (H0 : µ = µ0, H1 : µ 6= µ0)

P = P(|X̄ − µ0| > |x̄− µ0|) = P
(
|Z| > |x̄− µ0|

σ/
√
n

)
= 2P

(
Z >

|x̄− µ0|
σ/
√
n

)
= 2

(
1− Φ

(
|x̄− µ0|
σ/
√
n

))
.

• Right-tailed test (H0 : µ = µ0, H1 : µ > µ0)

P = P(X̄ − µ0 > x̄− µ0) = P
(
Z >

x̄− µ0

σ/
√
n

)
= 1− Φ

(
x̄− µ0

σ/
√
n

)
.

• Left-tailed test (H0 : µ = µ0, H1 : µ < µ0)

P = P(X̄ − µ0 < x̄− µ0) = P
(
Z <

x̄− µ0

σ/
√
n

)
= Φ

(
x̄− µ0

σ/
√
n

)
.

Example 7.16 Consider the setup of example 7.14. We test the null hypothesis H0 :

µ = µ0 = 60 against the alternative H1 : µ > µ0, i.e., we use a right-tailed test. The P

value of the survey is given by

P = 1− Φ

(
x̄− µ0

σ/
√
n

)
with µ0 = 60, σ = 19.7 and x̄ computed from the data set

> x<-c(79,75,70,26,88,32,83,69,46,50,69,37,72,76,49)

> barx<-mean(x)

> mu0<-60

> sigma<-19.7

> n<-length(x)

> 1-pnorm((barx-mu0)/(sigma/sqrt(n)))

[1] 0.3915669
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Here P = 0.3915 . . . which means that at about 39.2% of samples will give a mean as high

or higher as the one we have seen (which means our value is rather typical).

Since P > α = 0.05 there is insufficient evidence to reject the null hypothesis at a 5%

significance level (as already seen in example 7.14). In fact there no evidence against the

null hypothesis since P > 0.1.
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Progress Check:

1. What is a hypothesis? What is the main purpose of testing a

hypothesis?

2. Explain what the notions null hypothesis and alternative hy-

pothesis mean, and how they are related?

3. According to the U.S. Census Bureau, 10.5% of registered births

in the United States in 2007 were to teenage mothers. A soci-

ologist believes that this percentage has increased since then.

Formulate the null and the alternative hypothesis.

4. For the example described in item 3 explain what it means that

the test results in a type-I error, and what it means that the

test results in a type-II error.

5. Explain under which conditions do you apply a two-sided test, a

right-tailed test, or a left-tailed test.

6. Which statistic do you use to test for a population mean?

7. Explain the meaning of of the notion P-value. A test produces

a P-value of P = 0.15. What do you conclude?
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§8 Appendix

a) Problem sheet 1 / week 2

Problem 1: A bag contains 10 red balls and 20 blue balls. You pick 5 balls at random.

Denote by X the number of red balls you pick.

a) Assume you pick balls without replacement. Compute the probabilities P(X = k)

for all k values, 0, 1, . . . , 5. Which of these probabilities has the largest value (the

so called mode of the pmf).

b) Produce a bar chart of the pmf using the R command barplot, and produce a plot

of the pmf using the R command plot with the option type = ”p”.

c) Assume you pick balls with replacement. Compute the probabilities P(X = k) for

all k values, 0, 1, . . . , 5. Which of these probabilities has the largest value (i.e. state

the so-called mode of the pmf).

d) Compute the difference of the probabilities computed in part a) and c) (i.e. the

difference of the probabilities when picking without and with replacement). Which

of the probabilities is larger? Is there any pattern visible?

e) Produce a bar chart of the pmfs using the R command barplot. Your plot should

contain both pmfs, that of part a) and that of part c) (use e.g. the R command

cbind(y1,y2) ~ x within barplot and the option beside=TRUE). Produce as well

a plot of both pmfs in a single figure using the R commands plot and lines.

Problem 2: Redo the entire problem 1 with a bag containing 1000 red balls and 2000

blue balls when you pick again 5 balls at random. In particular, comment in detail on

your findings in part c) (i.e. on the difference between probabilities when picking balls

with or without replacement).
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b) Problem sheet 2 / week 3

Problem 3: We toss a fair coin repeatedly until we have seen in total 20 heads (and then

we stop tossing the coin). Denote by X the total number of coin tosses.

a) Plot the pmf of X as a bar chart using the R command barplot. Plot the pmf of

X using the R command plot.

b) Compute/state the expected number of coin tosses.

c) Compute the probability that you toss the coin more than 50 times or less than 30

times.

Problem 4: A library contains N = 10, 000 books. M = 100 of those books are on

Probability& Statistics, i.e., only a small proportion p = M/N = 0.01 = 1% of books is

on this topic. A student prepares for an open book exam by making a random selection

(with replacement/repetition) of n = 150 books from the library catalogue. Let X denote

the number of selected books on Probability& Statistics.

a) Plot the pmf of X as a bar chart using the R command barplot in the range [0, 10].

Plot the pmf of X in the range [0, 10] using the R command plot. State the mode

of the pmf and the expectation of X.

b) Plot the Poisson distribution with λ = np and the pmf of part a) in a single diagram

(using barplot or using plot). Summarise your findings.

Problem 5: The number of hits to a Web site follows a Poisson distribution; hits occur

at the rate of 1.4 per minute. Compute the probability that the number of hits between

7:30pm and 7:35pm is:

a) exactly seven.

b) fewer than seven.

c) at least seven.
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c) Problem sheet 3 / week 4

Problem 6: Two bus lines, line A and line B, service a station. The passenger waiting

times for both buses are independent and exponentially distributed. The passenger wait-

ing time (in units of minutes) for bus A obeys T1 ∼ Exp(0.2) and the passenger waiting

time for bus B obeys T2 ∼ Exp(0.25).

a) Compute the probability that you wait for bus A more than 3 minutes.

b) Compute the probability that you wait for bus B less than 4 minutes.

c) Using the results of problem 8 compute the probability that you wait for a bus

(either bus A or bus B) less than 2 minutes.

Problem 7: The reading speed of sixth-grade students is approximately normal, with a

mean speed of 125 words per minute and a standard deviation of 24 words per minute.

a) What is the probability that a randomly selected sixth-grade student reads less than

100 words per minute?

b) What is the probability that a randomly selected sixth-grade student reads more

than 140 words per minute?

c) What is the probability that a randomly selected sixth-grade student reads between

110 and 130 words per minute?

d) Would it be unusual for a sixth-grader to read more than 200 words per minute?

Why?

Problem 8: Denote by X1 and X2 two continuous random variables which are expo-

nentially distributed, X1 ∼ Exp(λ1) and X2 ∼ Exp(λ2). Assume X1 and X2 to be

independent.

a) Compute the probability P(X1 > a) (the so called complementary cdf).
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b) Compute the probability P(X2 > a) (the so called complementary cdf).

c) Denote by Z = min{X1, X2} the minimum of both variables. Express P(Z > a) as

a joint probability and compute P(Z > a) using the results of part a) and b).

d) Using the result of part c) compute the cdf of the random variable Z and hence

show that the pdf of Z is again an exponential distribution with parameter λ1 +λ2.
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d) Problem sheet 4 / week 5

Problem 9: Suppose X is a random variable which obeys the Poisson distribution X ∼

Poisson(λ).

a) Suppose that λ = 5. Compute/state the expectation E(X) and the standard devi-

ation σX of X. Plot the pmf of X and plot the normal approximation of the pmf

(i.e. a normal distribution with expectation E(X) and variance Var(X)) in a single

diagram. Chose the range of the plot sensibly.

b) Suppose that λ = 20. Compute/state the expectation E(X) and the standard

deviation σX of X. Plot the pmf of X and plot the normal approximation of the

pmf (i.e. a normal distribution with expectation E(X) and variance Var(X)) in a

single diagram. Chose the range of the plot sensibly.

c) Suppose that λ = 80. Compute/state the expectation E(X) and the standard

deviation σX of X. Plot the pmf of X and plot the normal approximation of the

pmf (i.e. a normal distribution with expectation E(X) and variance Var(X)) in a

single diagram. Chose the range of the plot sensibly. Summarise your findings.

Problem 10: A bag contains 500 gold coins and 1000 silver coins. You pick 100 coins at

random (without replacement). Let X denote the number of gold coins you pick.

a) Compute and plot the pmf of X. Your plot should contain as well the normal

approximation of the pmf, i.e., a normal distribution with mean E(X) and variance

Var(X).

b) Compute the difference between P (X = k) and the normal approximation of this

probability, i.e., the difference between P (X = k) and the integral∫ k+1/2

k−1/2

1√
2π
e−(t−µ)2/(2σ2)dt

for all k values. Plot the difference as a function of k. Estimate (or compute) the

maximum value of the error.
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Problem 11: A single bus line services a bus station with buses arriving/departing in

a random way. Denote by T the time interval between the arrival of two buses. Assume

that T obeys the geometric distribution with expected value E(T ) = 4.2 (time is mea-

sured in unit of minutes). Assume that the arrival of buses are independent events, i.e.

that subsequent time intervals T1, T2, . . . are independent identically distributed random

variables. Denote by X the time interval such that exactly 20 buses arrive (i.e. the time

interval between the arrival of a bus and the arrival of the 20th bus).

a) Compute the expectation and the variance of X.

b) Using the normal approximation compute the probability that the arrival of 20 buses

takes more than 2 hours.

c) Is it reasonable to assume that 20 buses arrive within 5 minutes? Give a reason.
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e) Problem sheet 5 / week 6

Problem 12: The R datasets package contains the dataset eurodist which gives the

road distances (in km) between 21 cities in Europe. The data are taken from a table in

The Cambridge Encyclopaedia.

a) Compute the fivenum of intercity distances, e.g., using the R command summary.

b) Compute the measures for dispersion of the data set, i.e., compute the variance, the

standard deviation and the IQR.

c) Plot a frequency distribution of the data using the R command hist. Try different

groupings of the data.

d) Produce a boxplot and compare the diagram to your findings in part a).

e) Summarise your findings, e.g., comment on the average value of the data (in terms

of mean, median, mode), the dispersion (in terms of standard deviation and IQR). Is

the frequency distribution symmetric or skewed? Do the findings look reasonable?

Problem 13: The R datasets package contains the dataset morely which contains clas-

sical data of Michelson on measurements done in 1879 on the speed of light (the speed of

light is at about 300,000 km/sec). The data consists of five experiments, each consisting

of 20 consecutive ‘runs’. The response is the speed of light measurement, suitably coded

(in km/sec, with 299,000 subtracted).

a) Compute the fivenum of the data, e.g., using the R command summary.

b) Compute the measures for dispersion of the data set, i.e., compute the variance, the

standard deviation, and the IQR.

c) Plot a frequency distribution of the data using the R command hist. Try different

groupings of the data.

d) Produce a boxplot and compare the diagram to your findings in part a).
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e) Summarise your findings, e.g., comment on the average value of the data (in terms

of mean, median, mode), the dispersion (in terms of standard deviation and IQR). Is

the frequency distribution symmetric or skewed? Do the findings look reasonable?

Problem 14: The R datasets package contains the dataset state.x77 which contains

data related to the 50 states of the United States of America.

a) Familiarise yourself with the dataset by using, e.g., the R command View.

b) Plot a bar chart of the illiteracy (given in percent of the population, data from 1970)

using the R command barplot.

c) Plot a bar chart of the murder and non-negligent manslaughter rate (given per

100,000 population, data from 1976) using the R command barplot.

d) Produce a scatter plot of the illiteracy vs. the murder rate.

e) Compute the correlation coefficient between the illiteracy and the murder rate.

Comment on your findings.
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f) Problem sheet 6 / week 8

Problem 15: We want to estimate the unknown proportion p of registered Scottish

voters who agree that Scotland should be independent. Anne takes a random sample of

30 voters and records the number X who agree that Scotland should be independent.

Ben takes another random sample of 20 voters and records the number Y who agree that

Scotland should be independent. Assume that these two samples are independent of each

other.

a) Anne proposes to estimate p by the estimator A = X/30. Find the bias and the

mean square error of this estimator.

b) Ben proposes to estimate p by the estimator B = Y/20. Find the bias and the mean

square error of this estimator.

c) Craig proposes to estimate p by the estimator C = (X/30 +Y/20)/2. Find the bias

and the mean square error of this estimator.

d) Donald proposes to estimate p by the estimator D = (X + Y )/50. Find the bias

and the mean square error of this estimator.

e) Which estimator do you think is the best?

Problem 16: The S&P 500 is a collection of 500 stocks of publicly traded companies.

Using the data obtained from Yahoo! Finance, the monthly rates of return of the S&P

500 since 1950 are normally distributed. The mean rate of return is 0.7233% and the

standard deviation for the rate of return is 4.135% .

a) What is the probability that a randomly selected month has a positive rate of return?

b) Treating the next 6 months as a simple random sample, what is the probability that

the mean monthly rate of return will be positive?

c) Treating the next 12 months as a simple random sample, what is the probability

that the mean monthly rate of return will be positive?
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d) Treating the next 24 months as a simple random sample, what is the probability

that the mean monthly rate of return will be positive?

e) Use the results of parts b)-d) to describe the likelihood of earning a positive rate of

return on stocks as the investment time horizon increases.
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g) Problem sheet 7 / week 9

Problem 17: Consider two independent exponentially distributed random variables,

X1 ∼ Exp(2.5) and X2 ∼ Exp(4) (see problem 8).

a) Denote by Z = min{X1, X2} the minimum of the variables. Generate a sample

of size 10,000 (use e.g. the R command rexp(1,2.5) and rexp(1,4) to generate

single random values for the variables X1 and X2, use min to compute the value of

Z, and the command replicate to generate the sample of size 10,000).

b) Use your sample to plot a histogram for the pdf of Z with a sensible grouping. Your

diagram should include as well the exact analytic result of the pdf (see problem 8d).

c) Denote by U = min{X1, X2} the maximum of the variables. Generate a sample of

size 10,000 and plot a histogram for the pdf of U with a sensible grouping. Comment

on the shape of the pdf (or provide an exact analytic expression, if possible).

Problem 18: Consider the setup of problem 11. Denote by T̄ the sample mean of 19

consecutive waiting time intervals (i.e. 19T̄ is the time interval for the arrival of 20 buses).

a) Compute the expectation and the variance of T̄ .

b) Generate a sample of size 10,000 and plot the pdf of T̄ as a histogram with a sensible

grouping of data. Include in your plot the normal approximation of the sampling

distribution. Comment on the accuracy of the normal approximation.

Problem 19: The 2006 General Social Survey asked 26540 respondents “If ever married,

how old were you when you first married?”. The survey gave a sample mean of 22.15 yrs

with standard deviation 4.885 yrs.

a) Use this information to construct a 99% confidence interval for the mean age of first

marriage.

b) What does the confidence interval mean?
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h) Problem sheet 8 / week 10

Problem 20: In a survey of 3611 adult Americans 18 years and older conducted in July

2010 by SmartRevenue, it was found that 542 have used their smartphone to make a

purchase.

a) Obtain a point estimate for the population proportion of adult Americans 18 years

and older who have used their smartphone to make a purchase.

b) Verify that the requirements for constructing a confidence interval about p are sat-

isfied.

c) Construct a 95% confidence interval for the population proportion of adult Ameri-

cans who have used their smartphone for purchase.

d) Interpret the interval.

Problem 21: Consider the sample of marks in the 2019 Calculus I final exam given in

example 4.8 of the lecture notes.

a) Compute a point estimate for the population proportion of students scoring an A

grade.

b) Compute a 90% confidence interval for the population proportion.

c) Interpret the interval.

Problem 22: For the following two setups formulate the null and the alternative hy-

pothesis, explain what it would mean to make a type-I error, and explain what it would

mean to make a type-II error.

a) According to the national Association of Home Builders, the mean price of an ex-

isting single-family home in 2009 was $218,600. A real estate broker believes that

because of the recent credit crunch, the mean price has decreased since then.
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b) According to the CTIA-The Wireless Association, the mean monthly cell phone bill

was $41.47 in 2010. A researcher suspects that the mean monthly cell phone bill is

different today.
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i) Problem sheet 9 / week 11

Problem 23: In August 2003, 56% of employed adults in the United States reported

that basic mathematical skills were critical or very important to their job. The supervisor

of the job placement office at a year-4 college thinks this percentage has increased due

to the increased use of technology in the workplace. He takes a random sample of 480

employed adults and finds that 297 of them feel basic mathematical skills are critical or

very important to their job. Is this sufficient evidence to conclude that the percentage of

employed adults who feel basic mathematical skills are critical or very important to their

job has increased at the α = 0.05 level of significance?

Problem 24: Suppose you wish to find out the answer to the age-old question, “Do

Americans prefer Coke or Pepsi?” You conduct a blind taste test in which individuals

are randomly asked to drink one of the colas first, followed by the other cola, and then

asked to disclose which drink they prefer. Results of your taste test indicate that 53 of

100 individuals prefer Pepsi.

a) Conduct a hypothesis testH0: p = p0 versusH1 : p 6= p0 for p0 = 0.42, 0.43, 0.44, . . . , 0.64

at the α = 0.05 level of significance. For which values of p0 do you reject the null

hypothesis? What do each of the values of p0 represent?

b) Construct a 95% confidence interval for the proportion of individuals who prefer

Pepsi.

c) Suppose you changed the level of significance in conducting the hypothesis test to

α = 0.01. What would happen to the range of values of p0 for which the null

hypothesis is not rejected? Why does that make sense?
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j) Problem sheet 10 / week 12

Problem 25: A Fair Isaac Corporation (FICO) score is used by credit agencies (such as

mortgage companies and banks) to assess the creditworthiness of individuals. Its value

ranges from 300 to 850. An individual with FICO score over 750 is considered to be a

quality credit risk. According to Fair Isaac Corporation, the mean FICO score is 703.5. A

credit analyst wondered whether high-income individuals (incomes in excess of £100,000

per year) had higher credit scores. He obtained a random sample of 40 high-income

individuals and found the sample mean credit score to be 714.2 with a standard deviation

of 83.2. Conduct the appropriate test to determine if high-income individuals have higher

FICO scores at the α = 0.05 level of significance.

Problem 26: A math teacher claims that she has developed a review course that increases

the scores of students on the math portion of the SAT exam. Based on data from the

College Board, SAT scores are normally distributed with a mean 515. The teacher obtains

a random sample of 1800 students, puts them through the review class, and finds that

the mean SAT math score of the 1800 students is 519 with a standard deviation of 111.

a) Formulate the null and the alternative hypothesis.

b) Conduct the appropriate test and compute the P -value. Is a mean SAT math score

of 519 significantly higher than 515, say at the α = 0.1 level of significance.

c) Test the hypothesis with 400 students by computing the P -value. Assume the same

sample statistics. Is a sample mean of 519 significantly more than 515, say at the

α = 0.1 level of significance. What do you conclude about the impact of large

samples on the P -value?

Problem 27: The exponential probability density can be used to model waiting time in

line or the lifetime of electronic components. Its density function is skewed right. Suppose

the wait-time in a line can be modelled by the exponential distribution with expectation

5 minutes and 15 seconds.
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a) Simulate a random sample of size n = 100, i.e., simulate a random sample of 100

individuals with average wait-time of 5 minutes and 15 seconds.

b) Consider the null hypothesis H0 : µ = 5 versus the alternative H1 : µ 6= 5. Use your

sample and compute the P -value of the test. Interpret the P -value, i.e., is there any

evidence against the null hypothesis, based on your sample.
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k) R commands for figures

• Fig.1.1

> barplot(c(0.8,0.2) ~ c(0,1),xlab="k",ylab="P(X=k)",ylim=c(0,1),

cex.names=1.5, cex.axis=1.5, cex.lab=1.5)

> barplot(c(0.5,0.5) ~ c(0,1),xlab="k",ylab="P(X=k)",ylim=c(0,1),

cex.names=1.5, cex.axis=1.5, cex.lab=1.5)

> barplot(c(0.2,0.8) ~ c(0,1),xlab="k",ylab="P(X=k)",ylim=c(0,1),

cex.names=1.5, cex.axis=1.5, cex.lab=1.5)

• Fig.1.2

> barplot(dbinom(0:15,size=15,prob=0.2)~seq(0,15,1),xlab="k",

ylab="P(X=k)",ylim=c(0,0.25),cex.names=1.5, cex.axis=1.5,

cex.lab=1.5)

> barplot(dbinom(0:15,size=15,prob=0.5)~seq(0,15,1),xlab="k",

ylab="P(X=k)",ylim=c(0,0.25),cex.names=1.5, cex.axis=1.5,

cex.lab=1.5)

> barplot(dbinom(0:15,size=15,prob=0.5)~seq(0,15,1),xlab="k",

ylab="P(X=k)",ylim=c(0,0.25),cex.names=1.5, cex.axis=1.5,

cex.lab=1.5)

• Fig.1.3

> barplot(dgeom(0:15,prob=0.2)~seq(0,15,1),xlab="k",ylab="P(T=k)",

ylim=c(0,0.85),cex.names=1.5, cex.axis=1.5, cex.lab=1.5)

> barplot(dgeom(0:15,prob=0.5)~seq(0,15,1),xlab="k",ylab="P(T=k)",

ylim=c(0,0.85),cex.names=1.5, cex.axis=1.5, cex.lab=1.5)

> barplot(dgeom(0:15,prob=0.8)~seq(0,15,1),xlab="k",ylab="P(T=k)",

ylim=c(0,0.85),cex.names=1.5, cex.axis=1.5, cex.lab=1.5)

• Fig.1.4

> barplot(dhyper(0:15,4,20-4,15)~seq(0,15,1),xlab="k",ylab="P(X=k)",
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ylim=c(0,0.85),cex.names=1.5, cex.axis=1.5, cex.lab=1.5)

> barplot(dhyper(0:15,8,40-8,15)~seq(0,15,1),xlab="k",ylab="P(X=k)",

ylim=c(0,0.85),cex.names=1.5, cex.axis=1.5, cex.lab=1.5)

> barplot(dhyper(0:15,16,80-16,15)~seq(0,15,1),xlab="k",ylab="P(X=k)",

ylim=c(0,0.85),cex.names=1.5, cex.axis=1.5, cex.lab=1.5)

• Fig.1.5

> barplot(dnbinom(0:17, size=3, prob=0.3) ~ seq(0,17,1),xlab="k",

ylab="P(T=k)",ylim=c(0,0.4),cex.names=1.5, cex.axis=1.5,

cex.lab=1.5)

> barplot(dnbinom(0:17, size=3, prob=0.5) ~ seq(0,17,1),xlab="k",

ylab="P(T=k)",ylim=c(0,0.4),cex.names=1.5, cex.axis=1.5,

cex.lab=1.5)

> barplot(dnbinom(0:17, size=3, prob=0.7) ~ seq(0,17,1),xlab="k",

ylab="P(T=k)",ylim=c(0,0.4),cex.names=1.5, cex.axis=1.5,

cex.lab=1.5)

• Fig.1.6

> barplot(dunif(-4:5,min=-2.5,max=3.5) ~ seq(-4,5,1),xlab="k",

ylab="P(X=k)",ylim=c(0,0.3),cex.names=1.5, cex.axis=1.5,

cex.lab=1.5)

• Fig.1.7

> barplot(dpois(0:10,0.5) ~ seq(0,10,1),xlab="k",ylab="P(X=k)",

ylim=c(0,0.8),cex.names=1.5, cex.axis=1.5, cex.lab=1.5)

> barplot(dpois(0:10,2) ~ seq(0,10,1),xlab="k",ylab="P(X=k)",

ylim=c(0,0.8),cex.names=1.5, cex.axis=1.5, cex.lab=1.5)

> barplot(dpois(0:10,4) ~ seq(0,10,1),xlab="k",ylab="P(X=k)",

ylim=c(0,0.8),cex.names=1.5, cex.axis=1.5, cex.lab=1.5)

• Fig.1.8
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> barplot(dunif(0:7,min=0.5,max=6.5) ~ seq(0,7,1),xlab="k",

ylab="P(X=k)",ylim=c(0,0.3),cex.names=1.5, cex.axis=1.5,

cex.lab=1.5)

> plot(c(0,0.99,1,1.99,2,2.99,3,3.99,4,4.99,5,5.99,6,7),

punif(c(0,0,1,1,2,2,3,3,4,4,5,5,6,7),0,6),xlab="k",

ylab=expression(P(X<=k)),xlim=c(0,7),ylim=c(0,1),t="l",

cex.axis=1.5, cex.lab=1.5)

• Fig.1.9

> barplot(dhyper(0:15,16,80-16,15)~seq(0,15,1),xlab="k",ylab="P(X=k)",

ylim=c(0,0.85),cex.names=1.5, cex.axis=1.5, cex.lab=1.5)

> plot(seq(0,15,0.02),phyper(seq(0,15,0.02),16,80-16,15),xlab="k",

ylab=expression(P(X<=k)),xlim=c(0,15),ylim=c(0,1),t="l",

cex.axis=1.5, cex.lab=1.5)

• Fig.2.1

> par(mgp=c(2.5,1,0))

> plot(seq(2,6,0.01),dunif(seq(2,6,0.01),3,5),type="l",xlab="x",

ylab=expression(f[X](x)),xlim=c(2,6),ylim=c(0,0.6),cex.axis=1.5,

cex.lab=1.5)

> polygon(c(4,4,4.5,4.5,4),c(0,0.5,0.5,0,0), col="grey")

• Fig.2.2

> par(mgp=c(2.5,1,0))

> plot(seq(2,6,0.01),punif(seq(2,6,0.01),3,5),type="l",xlab="x",

ylab=expression(F[X](x)),xlim=c(2,6),ylim=c(0,1),cex.axis=1.5,

cex.lab=1.5)

• Fig.2.3

> par(mgp=c(2.5,1,0))

> plot(seq(-1,7,0.01),dexp(seq(-1,7,0.01),0.7),type="l",xlab="x",

ylab=expression(f[X](x)),xlim=c(0,7),ylim=c(0,5),cex.axis=1.5,
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cex.lab=1.5)

> plot(seq(-1,7,0.01),dexp(seq(-1,7,0.01),2),type="l",xlab="x",

ylab=expression(f[X](x)),xlim=c(0,7),ylim=c(0,5),cex.axis=1.5,

cex.lab=1.5)

> plot(seq(-1,7,0.01),dexp(seq(-1,7,0.01),4),type="l",xlab="x",

ylab=expression(f[X](x)),xlim=c(0,7),ylim=c(0,5),cex.axis=1.5,

cex.lab=1.5)

• Fig.2.4

> par(mgp=c(2.5,1,0))

> plot(seq(-1,7,0.01),pexp(seq(-1,7,0.01),0.7),type="l",xlab="x",

ylab=expression(F[X](x)),xlim=c(0,7),ylim=c(0,1),cex.axis=1.5,

cex.lab=1.5)

> plot(seq(-1,7,0.01),pexp(seq(-1,7,0.01),2),type="l",xlab="x",

ylab=expression(F[X](x)),xlim=c(0,7),ylim=c(0,1),cex.axis=1.5,

cex.lab=1.5)

> plot(seq(-1,7,0.01),pexp(seq(-1,7,0.01),4),type="l",xlab="x",

ylab=expression(F[X](x)),xlim=c(0,7),ylim=c(0,1),cex.axis=1.5,

cex.lab=1.5)

• Fig.2.5

> par(mgp=c(2.5,1,0))

> plot(seq(-1,12,0.01),dexp(seq(-1,12,0.01),0.4),type="l",xlab="x",

ylab=expression(f[X](x)),xlim=c(0,12),ylim=c(0,0.5),cex.axis=1.5,

cex.lab=1.5)

> xp<-c(5,seq(5,12,0.01),12,5)

> yp<-c(0,dexp(seq(5,12,0.01),0.4),0,0)

> polygon(xp,yp,col="grey")

• Fig.2.6

> mu<-0.5

> sd<-1.5
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> x<-seq(-4,5,length=100)

> y<-dnorm(x,mu,sd)

> par(mgp=c(2.5,1,0))

> plot(x, y, type="l",xlab="x",ylab=expression(f[X](x)),xlim=c(-4,5),

ylim=c(0,0.3),cex.axis=1.5, cex.lab=1.5)

> lines(c(mu,mu),c(0,0.3),type="l",lty="solid")

> lines(c(mu-sd,mu-sd),c(0.05,0.25),type="l",lty="dashed")

> lines(c(mu+sd,mu+sd),c(0.05,0.25),type="l",lty="dashed")

• Fig.2.7

> mu<-1.0; sd<-0.5; x<-seq(-5,4,length=100); y<-dnorm(x,mu,sd)

> plot(x, y, type="l",xlab="x",ylab=expression(f[X](x)),xlim=c(-5,4),

ylim=c(0,1.0),cex.axis=1.5, cex.lab=1.5)

> lines(c(mu,mu),c(0,1.0),type="l",lty="solid")

> lines(c(mu-sd,mu-sd),c(0.1,0.7),type="l",lty="dashed")

> lines(c(mu+sd,mu+sd),c(0.1,0.7),type="l",lty="dashed")

> mu<--0.5; sd<-0.5; x<-seq(-5,4,length=100); y<-dnorm(x,mu,sd)

> plot(x, y, type="l",xlab="x",ylab=expression(f[X](x)),xlim=c(-5,4),

ylim=c(0,1.0),cex.axis=1.5, cex.lab=1.5)

> lines(c(mu,mu),c(0,1.0),type="l",lty="solid")

> lines(c(mu-sd,mu-sd),c(0.1,0.7),type="l",lty="dashed")

> lines(c(mu+sd,mu+sd),c(0.1,0.7),type="l",lty="dashed")

> mu<--0.5; sd<-1.5; x<-seq(-5,4,length=100); y<-dnorm(x,mu,sd)

> plot(x, y, type="l",xlab="x",ylab=expression(f[X](x)),xlim=c(-5,4),

ylim=c(0,1.0),cex.axis=1.5, cex.lab=1.5)

> lines(c(mu,mu),c(0,1.0),type="l",lty="solid")

> lines(c(mu-sd,mu-sd),c(0.1,0.7),type="l",lty="dashed")

> lines(c(mu+sd,mu+sd),c(0.1,0.7),type="l",lty="dashed")

• Fig.2.8

> plot(seq(-4,4,0.02),pnorm(seq(-4,4,0.02)),type="l",xlab="z",

ylab=expression(Phi(z)),xlim=c(-4,4),ylim=c(0,1.0),cex.axis=1.5,

cex.lab=1.5)
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• Fig.2.9

> a<-1.0

> x<-seq(-4,4,length=100)

> y<-dnorm(x)

> x2<-seq(a,4,length=100)

> x1<-c(a,x2,4,a)

> y1<-c(0,dnorm(x2),0,0)

> par(mgp=c(2.5,1,0))

> plot(x, y, type="l",xlab="z",ylab=expression(f[Z](z)),xlim=c(-4,4),

ylim=c(0,0.5),cex.axis=1.5, cex.lab=1.5)

> polygon(x1,y1, col="grey")

> polygon(-x1,y1, col="grey")

• Fig.2.10

> a<-2.0

> x<-seq(-4,4,length=100)

> y<-dnorm(x)

> x2<-seq(a,4,length=100)

> x1<-c(a,x2,4,a)

> y1<-c(0,dnorm(x2),0,0)

> par(mgp=c(2.5,1,0))

> plot(x, y, type="l",xlab="z",ylab=expression(f[Z](z)),xlim=c(-4,4),

ylim=c(0,0.5),cex.axis=1.5, cex.lab=1.5)

> polygon(x1,y1, col="grey")

> polygon(-x1,y1, col="grey")

• Fig.2.11

> a<-1.4

> x<-seq(-4,4,length=100)

> y<-dnorm(x)

> x2<-seq(a,4,length=100)

> x1<-c(a,x2,4,a)
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> y1<-c(0,dnorm(x2),0,0)

> par(mgp=c(2.5,1,0))

> plot(x, y, type="l",xlab="z",ylab=expression(f[Z](z)),xlim=c(-4,4),

ylim=c(0,0.5),cex.axis=1.5, cex.lab=1.5)

> polygon(x1,y1, col="grey")

> plot(x, y, type="l",xlab="z",ylab=expression(f[Z](z)),xlim=c(-4,4),

ylim=c(0,0.5),cex.axis=1.5, cex.lab=1.5)

> polygon(-x1,y1, col="grey")

• Fig.3.1

> n<-50

> p<-0.3

> mu<-n*p

> sigma<-sqrt(n*p*(1-p))

> par(mgp=c(2.5,1,0))

> plot(0:n,dbinom(0:n,n,p),,xlab=" ",ylab=" ",xlim=c(0,50),

ylim=c(0,0.15),cex.axis=1.5, cex.lab=1.5)

> x<-seq(0,n,0.1)

> lines(x,dnorm(x,mu,sigma))

> plot(0:n,dbinom(0:n,n,p),,xlab=" ",ylab=" ",xlim=c(5,25),

ylim=c(0,0.15),cex.axis=1.5, cex.lab=1.5)

> lines(x,dnorm(x,mu,sigma))

• Fig.4.1

> x<-c(124,37,23,8,4,11)

> grade<-c("A","B","C","D","E","F")

> barplot(x,names.arg=grade)

• Fig.4.2

> x<-c(26, 35, 23, 32, 35, 33, 39, 32, 25, 38, 34)

> hist(x,breaks=seq(22.5,39.5,1))

• Fig.4.3
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> barplot(c(10,20,40,70,40,20,10),

names.arg=c("A","B","C","D","E","F","G"))

> barplot(c(20,40,60,80,40,20,10),

names.arg=c("A","B","C","D","E","F","G"))

> barplot(c(10,20,40,80,60,40,20),

names.arg=c("A","B","C","D","E","F","G"))

> barplot(c(5,10,20,40,70,40,20),

names.arg=c("A","B","C","D","E","F","G"))

> barplot(c(10,20,70,40,80,50,20),

names.arg=c("A","B","C","D","E","F","G"))

• Fig.4.4

> x<-c(26, 35, 23, 32, 35, 33, 39, 32, 25, 38, 34)

> hist(x,breaks=seq(22.5,39.5,1),freq=FALSE)

> lines(c(26,26),c(0.02,0.15))

> lines(c(33,33),c(0.02,0.15))

> lines(c(35,35),c(0.02,0.15))

• Fig.4.5

> x<-c(26, 35, 23, 32, 35, 33, 39, 32, 25, 38, 34)

> boxplot(x)

• Fig.4.6

> x<-c(62,84,18,64,88,69,66,69,73,84,95,82,68,91,65,

100,83,95,91,82,44,83,45,82,93,74,73,91,14)

> y<-c(84,73,47,74,64,86,88,76,76,79,98,85,72,81,93,

91,90,89,95,77,91,75,62,90,61,77,69,65,49)

> plot(x,y,xlab="Calc I",ylab="Int. Prob.")

• Fig.5.1

> x<-rhyper(200,30,20,15)

> hist(x,freq=FALSE,breaks=seq(-0.5,15.5,1))
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> lines(0:15,dhyper(0:15,30,20,15,type="p")

> x<-rhyper(5000,30,20,15)

> hist(x,freq=FALSE,breaks=seq(-0.5,15.5,1))

> lines(0:15,dhyper(0:15,30,20,15,type="p")

• Fig.5.2

> x<-rexp(500,0.4)

> hist=(x,freq=FALSE,breaks=seq(0,25,0.5)

> lines(seq(0,25,0.1),dexp(seq(0,25,0.1),0.4),type="l")

• Fig.5.3

> xbar<-replicate(1000,mean(rpois(n=50,lambda=4)))

> hist(xbar,freq=FALSE,seq(3,5,0.1))

> lines(seq(3,5,0.02),dnorm(seq(3,5,0.02),mean=4,sd=sqrt(2/25)))

• Fig.7.1

> a<-1.4

> x<-seq(-4,4,length=100); y<-dnorm(x)

> x2<-seq(a,4,length=100); x1<-c(a,x2,4,a); y1<-c(0,dnorm(x2),0,0)

> par(mgp=c(2.5,1,0))

> plot(x, y, type="l",xlab="z",ylab=expression(f[Z](z)),xlim=c(-4,4),

ylim=c(0,0.5),cex.axis=1.5, cex.lab=1.5)

> polygon(x1,y1, col="grey")

> polygon(-x1,y1, col="grey")

> a<-1.2

> x2<-seq(a,4,length=100); x1<-c(a,x2,4,a); y1<-c(0,dnorm(x2),0,0)

> plot(x, y, type="l",xlab="z",ylab=expression(f[Z](z)),xlim=c(-4,4),

ylim=c(0,0.5),cex.axis=1.5, cex.lab=1.5)

> polygon(x1,y1, col="grey")

> plot(x, y, type="l",xlab="z",ylab=expression(f[Z](z)),xlim=c(-4,4),

ylim=c(0,0.5),cex.axis=1.5, cex.lab=1.5)

> polygon(-x1,y1, col="grey")
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l) What is Statistics?

A large part of Statistics deals with so called statistical inference, i.e., to determine

properties and parameters of a (large) population from (small) samples. The methods

used and sometimes the accuracy of the estimate may depend on how one interprets

probabilities. There are two main strands of Statisticians. So called frequentists consider

probabilities to be relative frequencies, i.e., one repeats an experiment a large number of

times and the probability of an event is the number of occurrences of the event divided

by the number of repetitions (in the limit of an infinite number of repetitions). Within a

so called Bayesian view probabilities are an intrinsic (abstract) property of an event, and

the values of probabilities can even come from belief or logical support.

We will illustrate these issues by the German tank problem (see example 0.1). In abstract

terms we pick a sample of sizem, {x1, x2, . . . , xm}, from the set of integers (the population)

{1, 2, . . . , N}. The task is to estimate the unknown population size N from the sample.

For instance, if we have the sample {23, 2, 97, 128} (m = 4) what can we say about N

(certainly N ≥ 128)? For convenience (and with a slight abuse) of notation we denote

by xm the largest value in our sample, the maximum of the set. The interpretation of

probabilities will have an impact on how to approach the problem to estimate N .

Since we want to estimate the parameter N we could resort to the approaches outlined in

sections 5-7. The sample X1, X2, . . . , Xm may be considered as a collection of independent

random variables, if we assume N to be large (compared to m), the so called independence

condition. Since X` are uniformly distributed we have (see section 1b)) E(X`) = (N+1)/2

and Var(X`) = (N2−1)/12. Using the sample mean X̄ it follows that E(X̄) = (N + 1)/2.

Hence Y = 2X̄ − 1 is an unbiased estimator for the population size since E(Y ) = N .

The mean square error of this estimator is then simply given by MSEY = Var(Y ) =

4Var(X̄) = (N2 − 1)/(3m). Intuitively it should be possible to come up with a better

estimator. For instance, the sample mean does not even guarantee that the estimate

exceeds the maximum of the sample, e.g., for the sample {23, 2, 97, 128} the sample mean

is x̄ = 62.5 and the estimate gives Y = 124 which is of course too small. Certainly the

maximum of the sample, Xm, would give a better estimate. In addition, it may be that

the independence and the normality condition (which require N and m to be large) are
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not met in applications. Hence, we are going to deal with a couple of issues. How to

perform parameter estimates and hypothesis testing in small populations, how to deal

with different statistics, and to explore the impact of a frequentist or Bayesian view on

the inference problem.

Population size estimate (frequentist view): The parameter N is considered as an

unknown but otherwise fixed numerical value. Consider a given sample of size m

{x1, x2, . . . , xm} = {x1, . . . , xm−1} ∪ {xm}

where for convenience xm denotes the maximal value. We will use the statistics Xm to

estimate the parameter N . Key to the analysis is the sampling distribution, i.e., the pmf

P(Xm = `). We cannot rely on our analysis of section 5 as we are dealing with a different

statistics and we cannot assume N or m to be large. Hence the pmf has to be computed

from scratch.

Our sample space contains
(
N
m

)
samples (the number of m element subsets chosen from N

elements). The event Xm = ` contains sets with m−1 elements chosen from {1, . . . , `−1},

hence the event has size
(
`−1
m−1

)
. Thus the pmf reads

P(Xm = `) =

(
`−1
m−1

)(
N
m

) , (m ≤ ` ≤ N) N fixed .

Expectation and variance can be computed as an elaborate exercise in binomial coefficients

(see the end of the paragraph) and result in

E(Xm) =
m(N + 1)

m+ 1
, Var(Xm) =

m(N + 1)(N −m)

(m+ 2)(m+ 1)2
.

The expectation tells us that

Y =
m+ 1

m
Xm − 1

is an unbiased estimator for N (as E(Y ) = N) with mean square error

MSEY = Var(Y ) =

(
m+ 1

m

)2

Var(Xm) =
(N + 1)(N −m)

m(m+ 2)
.

This mean square error is substantially smaller than the mean square error based on the

sample mean. Hence the estimate of this paragraph gives better values.
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Let us conclude with the explicit calculation of expectation and variance. Using the identity(
k

m

)
=

(
k + 1

m+ 1

)
−
(

k

m+ 1

)
we conclude that

N∑
k=m

(
k

m

)
=

N∑
k=m

((
k + 1

m+ 1

)
−
(

k

m+ 1

))
=

(
N + 1

m+ 1

)
which shows that the pmf P(Xm = `) is normalised. For the expectation observe that(

`

m

)
=

`

m

(
`− 1

m− 1

)
so that

E(Xm) =

∑N
`=m `

(
`−1
m−1

)(
N
m

) =
m
∑N
`=m

(
`
m

)(
N
m

) =
m
(
N+1
m+1

)(
N
m

) =
m

m+ 1
(N + 1) .

To compute the variance consider the identity(
`+ 1

m+ 1

)
=

`(`+ 1)

m(m+ 1)

(
`− 1

m− 1

)
and evaluate the factorial moment

E(Xm(Xm + 1)) =

∑N
`=m `(`+ 1)

(
`−1
m−1

)(
N
m

) =
m(m+ 1)

∑N
`=m

(
`+1
m+1

)(
N
m

)
=

m(m+ 1)
(
N+2
m+2

)(
N
m

) =
m

m+ 2
(N + 1)(N + 2) .

The variance then follows by a straightforward (but slightly lengthy) calculation

Var(Xm) = E(Xm(Xm + 1))− E(Xm)− (E(Xm))
2

=
m

m+ 2

(N + 1)(N −m)

(m+ 1)2
.

Population size estimate (Bayesian view): Consider N to be a random variable

with pmf P (N = n) (a so called “prior pmf”). Assume that the maximal value in our

sample has value Xm = `. We are interested in the conditional pmf P (N = n|Xm = `)

(the so called “posterior pmf”) as this pmf tells us something about the population size

taking the knowledge from the sample into account. The posterior can be written in terms

of the prior using Bayes theorem

P (N = n|Xm = `) =
P(Xm = `|N = n)P(N = n)

P(Xm = `)
=

P(Xm = `|N = n)P(N = n)∑∞
ν=1 P(Xm = `|N = ν)P(N = ν)

.

The remaining condition probability P(Xm = `|N = n) has been already worked out in

the previous paragraph (as the condition N = n fixes N)

P(Xm = `|N = n) =


( `−1
m−1)
(n
m)

if m ≤ ` ≤ n

0 if ` < m or ` > n
.
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We still need an expression for the prior and that expression is “pulled from the air” (e.g.

an educated guess, or something similar). If the Bayesian approach is meaningful the

computed posterior pmf will not depend substantially on the chosen prior. In the present

case we assume that N is uniformly distributed among a large set of numbers 1 ≤ N ≤ Ω

(to express the lack of knowledge about N), i.e. we chose the prior

P(N) =

 1/Ω if 1 ≤ n ≤ Ω

0 if n > Ω
.

Other sensible priors will give similar final results, but with the current prior all compu-

tations can be done analytically. The posterior pmf then reads

P (N = n|Xm = `) =
P(Xm = `|N = n)∑Ω
ν=` P(Xm = `|N = ν)

=

(
n
m

)−1∑Ω
ν=`

(
ν
m

)−1 .

The remaining sum in the denominator can be evaluated again as an elaborate exercise

in binomial coefficients (see the end of the paragraph). In fact, as the series in the

denominator converges, all sufficiently large values of Ω will result in the same expression

indicating that the impact of the prior is minimal

P (N = n|Xm = `) =
m− 1

`

(
`
m

)(
n
m

) .
To estimate the population size we can take e.g. the (conditional) expectation, while the

variance will give an indication of the mean square error (the explicit calculation will be

given at the end of this paragraph)

E(N |Xm = `) =
m− 1

m− 2
(`− 1), Var(N |Xm = `) =

(m− 1)(`− 1)(`−m− 1)

(m− 3)(m− 2)2
.

The estimate and the mean square error differ slightly from the frequentist approach but

they are of the same order, e.g. for the sample {23, 2, 97, 128} the frequentist approach

gives the estimate 159 while the Bayesian estimate reads 190.5.

We conclude with the explicit calculation of the conditional pmf and the related expectation and variance.

From the identity

1(
n
m

) − 1(
n+1
m

) =
m!(n−m)!

n!
− m!(n+ 1−m)!

(n+ 1)!
=

m!

(n+ 1)!
(n−m)!(n+ 1− (n+ 1−m))

=
m

m+ 1

(m+ 1)!(n−m)!

(n+ 1)!
=

m

m+ 1

1(
n+1
m+1

)
we obtain (

n

m

)−1

=
m

m− 1

((
n− 1

m− 1

)−1

−
(

n

m− 1

)−1
)
.
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Hence the denominator of the posterior pmf evaluates as

Ω∑
ν=`

(
ν

m

)−1

=
m

m− 1

Ω∑
ν=`

((
ν − 1

m− 1

)−1

−
(

ν

m− 1

)−1
)

=
m

m− 1

((
`− 1

m− 1

)−1

−
(

Ω− 1

m− 1

)−1
)
.

The series converges, i.e., the limit Ω → ∞ exists as the last term vanishes in this limit. That means

the posterior pmf does not depend much on the prior for sufficiently large values of Ω. In that limit the

posterior pmf reads

P (N = n|Xm = `) =

(
n
m

)−1

m
m−1

(
`−1
m−1

)−1 =
m− 1

`

(
`
m

)(
n
m

) .
The computation of the (conditional) expectation follows the lines of the previous identities

E(N |Xm = `) =
m− 1

`

(
`

m

) ∞∑
n=`

n(
n
m

) =
m− 1

`

(
`

m

) ∞∑
n=`

m(
n−1
m−1

)
=

m− 1

`

(
`

m

)
m
m− 1

m− 2

(
`− 2

m− 2

)−1

=
m− 1

m− 2
(`− 1) .

To evaluate the variance one first computes the factorial moment

E(N(N − 1)|Xm = `) =
m− 1

`

(
`

m

) ∞∑
n=`

n(n− 1)(
n
m

) =
m− 1

`

(
`

m

) ∞∑
n=`

m(m− 1)(
n−2
m−2

)
=

m− 1

`

(
`

m

)
m(m− 1)

m− 2

m− 3

(
`− 3

m− 3

)−1

=
m− 1

m− 3
(`− 1)(`− 2) .

The variance then follows as

Var(N |Xm = `) = E(N(N−1)|Xm = `)+E(N |Xm = `)−(E(N |Xm = `))
2

=
(m− 1)(`− 1)(`−m+ 1)

(m− 3)(m− 2)2
.

Hypothesis test design: We can formulate the German tank problem as a hypothesis

test. Want to test the null hypothesis that the population has a given size N0 (say N0 =

150), H0 : N = N0. It could be quite severe if we underestimate N while overestimation

may not be such a big issue (at least if you think about tanks in a battle). Hence it may

be sensible to test the null hypothesis against the alternative H1 : N > N0. We will base

our test on the statistic Xm, i.e. on the largest value in our sample of size m. To find

evidence against H0 (and in favour of H1) we use the criterion Xm > δ (large values for

Xm are evidence that the actual population size N exceeds N0) where the integer value δ

is the threshold we need to determine.

If we take δ to be N0, i.e. the test criterion Xm > N0 (to reject H0) then any sample which

is rejected certainly comes from a population with N > N0. Hence this threshold avoids
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any type-I errors. The significance level (assuming H0 to be valid) α = P(Xm > N0) = 0

vanishes. However this test may produce massive type-II errors, as samples coming from a

population which violate H0 (in favour of H1), i.e. coming from a population with N > N0

may pass the test (if the maximal value of the sample does not exceed N0). Hence the

test has no real power. To design a test with more power, i.e., with smaller probability

for type-II errors, requires small values of δ. But if the threshold δ is too small then the

test Xm > δ will reject many samples even if H0 is valid (i.e. the type-I error increases).

Hence the design of the test consists in balancing type-I and type-II errors.

Significance level: Assume that the null hypothesis H0 : N = N0 is valid. We test

against the alternative H1 : N > N0 with the criterion Xm > δ. The sampling distribution

of the test statistics, i.e., the pmf of Xm is given by (see above)

P(Xm = `) =

(
`−1
m−1

)(
N0

m

) , (m ≤ ` ≤ N0) .

The significance level of the test Xm > δ is defined by

α = P(Xm > δ) =

N0∑
`=δ+1

P(Xm = `) =

∑N0

`=δ+1

(
`−1
m−1

)(
N0

m

) =

∑N0

`=δ+1

((
`
m

)
−
(
`−1
m

))(
N0

m

)
=

(
N0

m

)
−
(
δ
m

)(
N0

m

) = 1−
(
δ
m

)(
N0

m

) .
As usual we obtain a relation between the significance level α and the threshold δ (the

sample size m is given by the test design, and N0 is given by the null hypothesis). The

formula cannot be solved easily for δ but the dependence can e.g. be conveniently given

in a table (say for m = 4 and N0 = 150):

δ 140 141 142 143 144 145 146 147 148 149 150

α 0.243 0.221 0.199 0.176 0.152 0.128 0.103 0.078 0.053 0.027 0

The significance level is a decreasing function of the threshold. For instance, the test

Xm > δ (for a sample of size m = 4) with δ = 146 would reject the null hypothesis

N = 150 (in favour of N > 150) with significance level 10.3% .

Power: To discuss the power of the test we need to specify the alternative hypothesis.

Assume the test should be able to distinguish between N = N0 (the null hypothesis) and
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H1 : N = N1 (say for instance N1 = 1.5N0 if the test should be able to detect an excess

of 50%). Assume H1 to be valid, i.e. N = N1. The sampling distribution of the statistics

Xm reads

P(Xm = `) =

(
`−1
m−1

)(
N1

m

) , (m ≤ ` ≤ N1) .

The probability of a type-II error (i.e. the probability that the test Xm > δ does not

reject the null hypothesis, even though the null hypothesis is not valid) is

β = P(Xm ≤ δ) = 1− P(Xm > δ) = 1−

(
1−

(
δ
m

)(
N1

m

)) =

(
δ
m

)(
N1

m

)
if we use the result for the cumulative distribution function of the previous paragraph.

The power of the test is given by 1 − β. Again the threshold δ determines the power

and the dependence can be easily illustrated in a table (say for m = 4, N0 = 150 and

N1 = 1.5N0 = 225):

δ 140 141 142 143 144 145 146 147 148 149 150

β 0.147 0.152 0.156 0.161 0.165 0.170 0.175 0.180 0.186 0.190 0.195

1− β 0.853 0.848 0.844 0.839 0.835 0.830 0.825 0.820 0.814 0.810 0.805

The power is a decreasing function of the threshold, i.e. the test becomes less powerful

if the threshold becomes larger. Comparing both tables (the probability of type-I errors,

α, and the probability of type-II errors, β) the threshold δ = 144 seems to be a good

compromise to minimise both types of errors. So with the sample {23, 2, 97, 128} the test

Xm > δ = 144 does not reject the null hypothesis N = N0 = 150 at level of significance

15.2%. If one aims at better test results (i.e. smaller type-I and smaller type-II errors)

one needs samples of larger size.


