Mathematical Tools for Asset Management MTH6113

Introduction

Dr. Melania Nica

January 22, 2024

Administrative Issues

- Lecturer
- Dr. Melania Nica
- E-mail: m.nica@qmul.ac.uk
- Office: 226, Maths Building

Administrative Issues

- Textbooks
- Danthine JP, and Donaldson JB, Intermediate Financial Theory, 3rd edition, Academic Press, 2014
- Hillier D., Grinblatt M., and Titman S, Financial markets and corporate strategy, McGraw-Hill Higher Education, 2012
- Baxter M. and A. Rennie, Financial Calculus: An Introduction to Derivative Pricing, 1996
- Lecture Slides posted on QMPlus
- Weekly Problem Sets

Administrative Issues

- Two assessments
- Assessment 1, Week 6: 15% of the final mark
- Assessment 2, Week 10: 15\% of the final mark
- Exam: 70\% of the final mark

What is this course about?

- Mathematical Tools for Asset Management
- Financial Economics: Modelling of financial markets based on economic theory
- Choice theory
- Subsection:Asset Management
- Portfolio Theory and Asset Pricing Models
- Portfolio: collection of investments (assets) held by an individual or organisation
- What will we study?
- Economic (and econometric) models which aim to predict asset prices and returns
- Reference to past data, using time series analysis
- Stochastic models of security prices

Topics

- Review of Statistics
- The Basis of Economic Theory: Utility Theory
- Concepts and Optimisation
- Rationality
- Stochastic Dominance
- Portfolio Theory
- Understanding Risk and Measures of Risks
- Measures of investment risk
- Assessment of risk
- Mean-Variance Analysis

Topics

- Assets Pricing
- Capital Asset Pricing Model (CAPM)
- Factor Models and Arbitrage Pricing Theory (APT).
- Efficient Market Hypothesis
- Comparison and consequences of each form of the hypothesis
- Testing EMH : Random Walk Model of Asset Pricing
- Introduction to Stochastic Models of Asset Pricing
- Moving from discrete Random Walks to continuous: Brownian Motions
- Continuous-time log-normal model
- Alternative models
- Bounded Rationality and Behavioral Finance

Financial Mathematics is applied Mathematics:

- Mathematics is the TOOL to solve real-world problems

This has consequences:

- We will introduce and different financial concepts.
- We need to understand the reality of financial markets and apply economic reasoning!
- If we derive for instance an equation, it is not about the equation itself. The actual meaning lies within its financial interpretation!

Topics

The Market: Large amount of people trading (abstract and concrete) goods on an organised market (exchange), e.g. corn, currencies, stocks, options.

- Not all market participants are human. Most are algorithms!
- Each participant may have different ideas of the value.
- Yet the market price is where supply and demand meet:
- Prices are determined based on supply and demand.

Introduction to Portfolio Theory

Portfolio: collection of investments
Let's assume stock j part of my portfolio.
Portfolio weight for stock j is the fraction of a portfolio's wealth held in stock j

$$
w_{j}=\frac{\text { Money held in stock } j}{\text { Monetary value of the portfolio }}
$$

The sum of all portfolio weights is 1 .

Introduction to Portfolio Theory

Example: A portfolio consists of $£ 1$ million in Vodafone stock and $£ 3$ million in British Airways stock. What are the portfolio weights of the two stocks?

Answer: The portfolio has a total value of $£ 4$ million, hence the fractions of portfolio's wealth held in each stock are:

$$
\begin{aligned}
w_{\text {Vodafone }} & =\frac{1}{4}=25 \% \\
w_{B A} & =\frac{3}{4}=75 \%
\end{aligned}
$$

Introduction to Portfolio Theory

In the example: $w_{\text {Vodafone }}>0, w_{B A}>0$ means that I own positive amounts of both stocks

- I took a long position in the two stocks

To sell short an asset, the investor sells a security that she doesn't own (borrows it from someone who owns it)

- take a short position in a security

To close out the short position the investor buys the investment back and returns it to the original owner

- short selling is equivalent with placing a negative weight on a particular stock

Introduction to Portfolio Theory

A very simple example with short selling

A position with $£ 500,000$ in a stock and $£ 100,000$ borrowed from a bank has a total investment of $£ 400,000$

Stock's weight in the portfolio is $\frac{5}{4}=1.25$ while the bank investment has a weight of $-\frac{1}{4}=-0.25$

Introduction to Portfolio Theory

Another example with short selling

An investor takes a long position in British Airways valued at $£ 200,000$ and a short position in Vodafone valued at $£ 50,000$

Total value of portfolio is $£ 150,000$ and hence

$$
\begin{gathered}
w_{B A}=\frac{4}{3}=1.33>1 \\
w_{\text {Vodafone }}=-\frac{1}{3}=-0.333<0
\end{gathered}
$$

Introduction to Portfolio Theory

Return on a stock

- For one share only the return on that stock is:

$$
R_{t}=\frac{P_{t}-P_{t-1}}{P_{t-1}}
$$

- Note that $P_{t}=\left(1+R_{t}\right) P_{t-1}$ and hence

$$
\ln \left(1+R_{t}\right)=\ln \left(P_{t}\right)-\ln \left(P_{t-1}\right)
$$

if R_{t} is small:

$$
\ln \left(1+R_{t}\right) \simeq R_{t}=\ln \left(P_{t}\right)-\ln \left(P_{t-1}\right)
$$

- Why? Use Taylor series approximation!

Introduction to Portfolio Theory

One-dimensional Taylor series is an expansion of a real function $f(x)$ about a point $x=a$
$f(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2}(x-a)^{2}+\ldots+\frac{f^{\prime(n)}(a)}{n!}(x-a)^{n}$
Let

$$
f(x)=\ln (x+1)
$$

We want to find the Taylor series about $x=a=0$.

Introduction to Portfolio Theory

Hence:

$$
\begin{gathered}
f(0)=\ln (0+1)=\ln (1)=0 \\
f^{\prime}(x)=\frac{1}{x+1}
\end{gathered}
$$

hence

$$
\begin{aligned}
f^{\prime}(0) & =\frac{1}{0+1}=1 \\
f^{\prime \prime}(x) & =-\frac{1}{(x+1)^{2}}
\end{aligned}
$$

hence

$$
f^{\prime \prime}(0)=-\frac{1}{(0+1)^{2}}=-1
$$

Introduction to Portfolio Theory

And so on...
Putting together the series and ignoring the higher order terms we get:

$$
\begin{aligned}
& \ln (1+x) \cong \ln (1)+\frac{1}{1}(x-0) \\
& \ln (1+x) \cong x
\end{aligned}
$$

Introduction to Portfolio Theory

Computing the portfolio return for a two-stock portfolio
Return on an investment: profit divided by the amount invested.

- Example: A portfolio consists of $£ 1$ million in Vodafone stock and $£ 3$ million in British Airways stock. If Vodafone stock has an annual return of 10% and BA an annual return of 5% what is the annual return of the portfolio?

Answer

Method 1: The end of period value of Vodafone investment: $£ 1.1$ million and the end of period value of BA investment $£ 3.15$ million
The return of portfolio: $\frac{(1.1+3.15)-4}{4}=0.0625=6.25 \%$

Introduction to Portfolio Theory

Method 2
The return of portfolio

$$
w_{\text {Vodafone }} \times 0.1+w_{B A} \times 0.05=0.0625=6.25 \%
$$

I could generalize this to N assets

$$
R_{P}=\sum_{i=1}^{N} w_{i} r_{i}
$$

where R_{P} is the return of portfolio and r_{i} return of stock i.

Statistics - a Brief Revision

Random variable X - set of possible outcomes x_{i} from a random experiment

For example in finance the return on an asset is in general uncertain and hence a random variable.

- Discrete random variable
- X can take only a countable number of distinct values
- the probability distribution of a discrete random variable X is a list of probabilities associated with each of its possible values:

$$
\operatorname{Pr}\left[X=x_{i}\right]=p_{i} \text { for any } i
$$

where:

$$
\begin{gathered}
0 \leq \operatorname{Pr}\left[X=x_{i}\right] \leq 1 \\
\sum_{i} p_{i}=1
\end{gathered}
$$

Statistics - a Brief Revision

- Continuous random variable
- X can take any value and is characterised by a probability density function (pdf) $f(x)$, where:

$$
\operatorname{Pr}[a \leq X \leq b]=\int_{a}^{b} f(x) d x
$$

where:

$$
\begin{gathered}
f(x) \geq 0 \text { for all } x \\
\int_{-\infty}^{\infty} f(x) d x=1
\end{gathered}
$$

Statistics - a Brief Revision

Cumulative Distribution Function

- For any X the cumulative distribution function (cdf) is:

$$
\begin{gathered}
F(L)=\sum_{x \leq L} f(x)=\operatorname{Pr}(x \leq L) \text { discrete case } \\
F(L)=\int_{-\infty}^{L} f(x) d x=\operatorname{Pr}(x \leq L) \text { continuous case }
\end{gathered}
$$

where:

$$
\begin{gathered}
0 \leq F(L) \leq 1 \\
\text { if } m>n \text { then } F(m)>F(n) \\
F(+\infty)=1 \text { and } F(-\infty)=0
\end{gathered}
$$

Statistics - a Brief Revision

Expectations of a Random Variable

Mean or Expected Value of a Random Variable

$$
\begin{gathered}
E(X) \equiv \mu=\sum_{i} p_{i} x_{i} \text { if } X \text { is discrete } \\
E(X) \equiv \mu=\int_{-\infty}^{\infty} x f(x) d x \text { if } X \text { is continuous }
\end{gathered}
$$

Important Results:

$$
\begin{aligned}
E(a X) & =a E(X) \text { where } a \text { is a constant } \\
E(X+Y) & =E(X)+E(Y)
\end{aligned}
$$

How you relate this to the expected return on a portfolio?

Statistics - a Brief Revision

Variance of a Random Variable

$$
\begin{gathered}
\operatorname{Var}(X) \equiv \sigma^{2}=\sum_{i}\left(x_{i}-\mu\right)^{2} p_{i} \text { if } X \text { is discrete } \\
\operatorname{Var}(X) \equiv \sigma^{2}=\int_{-\infty}^{\infty}(x-\mu)^{2} f(x) d x \text { if } X \text { is continuous }
\end{gathered}
$$

Standard deviation of a Random Variable

$$
\operatorname{Std}(X) \equiv \sigma=\sqrt{\operatorname{Var}(X)}
$$

Statistics - a Brief Revision

Some Important Results

$$
\begin{gathered}
\operatorname{Var}(X) \equiv \sigma^{2}=E\left(X^{2}\right)-\mu^{2} \text { or } \\
E\left(X^{2}\right)=\sigma^{2}+\mu^{2}
\end{gathered}
$$

$\operatorname{Var}(a)=0$ where a is a constant

$$
\begin{aligned}
& \operatorname{Var}(a X)=a^{2} \operatorname{Var}(X) \\
& \operatorname{Var}(a+X)=\operatorname{Var}(X)
\end{aligned}
$$

Statistics - a Brief Revision

Joint Distributions

The joint density function of two random variables X and Y denoted $f(x, y)$ is:

$$
\begin{aligned}
& \operatorname{Pr}[a \leq x \leq b, c \leq y \leq d]=\sum_{a}^{b} \sum_{c}^{d} f(x, y) \text { if } X \text { and } Y \text { are discrete } \\
& \operatorname{Pr}[a \leq x \leq b, c \leq y \leq d]=\int_{a}^{b} \int_{c}^{d} f(x, y) d x d y \text { if } X \text { and } Y \text { are contin }
\end{aligned}
$$

The cumulative distribution function is

$$
F(m, n)=\operatorname{Pr}(X \leq m, Y \leq n)
$$

Statistics - a Brief Revision

Some important results

$$
\begin{gathered}
E[X Y]=\sum_{a}^{b} \sum_{c}^{d} x y f(x, y) \text { if } X \text { and } Y \text { are discrete } \\
E[X Y]=\int_{a}^{b} \int_{c}^{d} x y f(x, y) d x d y \text { if } X \text { and } Y \text { are continuous }
\end{gathered}
$$

Statistics - a Brief Revision

Independence

If X and Y are full independent we can say that: $F(y \mid x)=F_{Y}(y)$
Reminder:

$$
f(y \mid x)=\frac{f_{X, Y}(x, y)}{f_{X}(x)}
$$

Hence,

$$
f_{X, Y}(x, y)=f_{X}(x) f(y \mid x)
$$

If X and Y independent

$$
f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)
$$

Statistics - a Brief Revision

Mean Independence: $E(X \mid Y)=E(X)$ and $E(Y \mid X)=E(Y)$ which implies $E(X Y)=E(X) E(Y) \equiv \mu_{x} \mu_{y}$

Covariance is defined as:
$\operatorname{Cov}(X, Y) \equiv \sigma_{X Y}=E\left[\left(X-\mu_{x}\right)\left(Y-\mu_{y}\right)\right]=E(X Y)-\mu_{x} \mu_{y}$
If X and Y independent then $E(X Y)=E(X) E(Y)$ and:

$$
\operatorname{Cov}(X, Y) \equiv \sigma_{X Y}=E(X Y)-\mu_{x} \mu_{y}=0
$$

The correlation coefficient of X and Y is:

$$
\operatorname{Corr}(X, Y) \equiv \rho_{X Y}=\frac{\sigma_{X Y}}{\sigma_{X} \sigma_{Y}}
$$

Statistics - a Brief Revision

Zero Covariance does not imply independence!
Example with two random variables, X and $Y=X^{2}$ $X \sim U(-1,1)$ with pdf: $f(x)=\frac{1}{1-(-1)}=\frac{1}{2}$.

$$
\begin{gathered}
E(X)=\int_{-1}^{1} x f(x) d x=\int_{-1}^{1} \frac{x}{2} d x=\left[\frac{x^{2}}{4}\right]_{-1}^{1}=\frac{1}{4}-\frac{1}{4}=0 \\
E\left(X^{2}\right)=\int_{-1}^{1} x^{2} f(x) d x=\int_{-1}^{1} \frac{x^{2}}{2} d x=\left[\frac{x^{3}}{6}\right]_{-1}^{1}=\frac{1}{6}+\frac{1}{6}=\frac{1}{3}
\end{gathered}
$$

$$
E\left(X^{r}\right)=\int_{-1}^{1} x^{r} f(x) d x=\int_{-1}^{1} \frac{x^{r}}{2} d x=\frac{1}{2} \frac{1}{r+1}\left[x^{r+1}\right]_{-1}^{1}
$$

Statistics - a Brief Revision

Hence,
$E\left(X^{3}\right)=\int_{-1}^{1} x^{3} f(x) d x=\int_{-1}^{1} \frac{x^{3}}{2} d x=\frac{1}{2} \frac{1}{4}\left[x^{4}\right]_{-1}^{1}=\frac{1}{8}\left[1^{4}-(-1)^{4}\right]=0$

$$
E(X Y)=E\left(X^{3}\right)
$$

$\operatorname{cov}(X, Y)=E(X Y)-E(X) E(Y)=E\left(X^{3}\right)-E(X) E\left(X^{2}\right)=0-0$
Hence, $\operatorname{cov}(X, Y)=0$, but X and Y not independent.

Statistics - a Brief Revision

Some important results

$$
\operatorname{Var}(a X+b Y)=a^{2} \operatorname{Var}(X)+b^{2} \operatorname{Var}(Y)+2 a b \operatorname{Cov}(X, Y)
$$

If X and Y are uncorrelated:

$$
\begin{aligned}
& \operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y) \\
& \operatorname{Var}(X-Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)
\end{aligned}
$$

How you relate this to the variance of returns on a portfolio?

Time Value of Money - Interest Rates

Discrete compounding:

If A is invested for n years at rate R.
The rate is compounded once per year (per annum): at the end of the period: $A(1+R)^{n}$

The rate is compounded m times per per year (per annum): at the end of the period: $A\left(1+\frac{R}{m}\right)^{m n}$

Time Value of Money - Interest Rates

Continuos compounding: $m \rightarrow \infty$
If A is invested for n years at rate R
At the end of the period grows at: $A \exp (R n)$
Conversion formulae:
R_{c} : rate of interest with continuos compounding
R_{m} : the equivalent rate of interest with compounding m times per year

$$
A \exp \left(R_{c} n\right)=A\left(1+\frac{R_{m}}{m}\right)^{m n}
$$

Time Value of Money - Interest Rates

$$
\begin{aligned}
\exp \left(R_{c} n\right) & =\left(1+\frac{R_{m}}{m}\right)^{m n} \\
\ln \left(\exp \left(R_{c} n\right)\right) & =\ln \left(1+\frac{R_{m}}{m}\right)^{m n} \\
R_{c} n & =m n \ln \left(1+\frac{R_{m}}{m}\right) \\
R_{c} & =m \ln \left(1+\frac{R_{m}}{m}\right)
\end{aligned}
$$

Time Value of Money - Interest Rates

$$
\begin{aligned}
\exp \left(\frac{R_{c}}{m}\right) & =\exp \left(\ln \left(1+\frac{R_{m}}{m}\right)\right) \\
\exp \left(\frac{R_{c}}{m}\right) & =1+\frac{R_{m}}{m} \\
R_{m} & =m\left(\exp \left(R_{c} / m\right)-1\right)
\end{aligned}
$$

