MTP24, Lecture 2:

Random Variables, Independence, Integration and Conditioning

Alexander Gnedin

Queen Mary, University of London

Measurable functions

Definition Given two measurable spaces (Ω, \mathcal{F}) and $\left(\Omega^{\prime}, \mathcal{F}^{\prime}\right)$, a function $X: \Omega \rightarrow \Omega^{\prime}$ is said to be measurable if it satisfies

$$
\begin{equation*}
X^{-1}\left(B^{\prime}\right) \in \mathcal{F} \text { for all } B^{\prime} \in \mathcal{F}^{\prime} \tag{1}
\end{equation*}
$$

The σ-algebra $\sigma(X)$ induced (or generated) by X is comprised of the sets $X^{-1}\left(B^{\prime}\right)$.

- It is sufficient to require the condition (1) to hold for any system \mathcal{G}^{\prime} of generators (s.t. $\mathcal{F}^{\prime}=\sigma\left(\mathcal{G}^{\prime}\right)$).
- $\sigma(X)$ is the smallest σ-algebra in Ω necessary to make X measurable.
- When the target space is $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ we speak of a (real-valued) random variable. Then the measurability condition holds if $X^{-1}((-\infty, x])=\{\omega \in \Omega: X(\omega) \leq x\} \in \mathcal{F}$.

Product σ-algebras

Definition For a family $\left(X_{t}, t \in T\right)$ of measurable functions $X_{t}: \Omega \in \Omega^{\prime}$, we denote $\sigma\left(X_{t}, t \in T\right)$ the σ-algebra generated by the sets $X_{t}^{-1}\left(B^{\prime}\right)$, where $B^{\prime} \in \mathcal{F}^{\prime}, t \in T$.
Example Let $\Omega=\{0,1\}^{\infty}, X_{n}(\omega)=\omega_{n}$. Then $\sigma\left(X_{n}, n \in \mathbb{N}\right)$ coincides with the σ-algebra generated by the finite-dimensional cylinders $A\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)=\left\{\omega \in \Omega: \omega_{1}=\epsilon_{1}, \ldots, \omega_{n}=\epsilon_{m}\right\}$. This is also an example of product σ-algebra.

Definition For a family $\left(\left(\Omega_{t}, \mathcal{F}_{t}\right), t \in T\right)$ of measurable spaces, let $\Omega=\prod_{t \in T} \Omega_{t}$ (Cartesian product), and for $\omega \in \Omega$ let $X_{t}(\omega)$ be the t-th coordinate. The product σ-algebra

$$
\bigotimes_{t \in T} \mathcal{F}_{t}=\sigma\left(X_{t}, t \in T\right)
$$

is the σ-algebra generated by the family $\left(X_{t}, t \in T\right)$.

Pushforward of measures

Definition For $(\Omega, \mathcal{F}, \mu)$ measure space and measurable $X: \Omega \rightarrow \Omega^{\prime}$, where $\left(\Omega^{\prime}, \mathcal{F}^{\prime}\right)$ another measurable space, the measure on $\left(\Omega^{\prime}, \mathcal{F}^{\prime}\right)$

$$
\mu_{X}\left(B^{\prime}\right):=\mu\left(X^{-1}\left(B^{\prime}\right)\right), \quad B^{\prime} \in \mathcal{F}^{\prime}
$$

is called pushforward of μ (induced by X).
Example Distribution of a random variable X defined on $(\Omega, \mathcal{F}, \mathbb{P})$ is the induced probability measure $P(A)=\mathbb{P}[X \in A], A \in \mathcal{B}(\mathbb{R})$.
Definition $(\Omega, \mathcal{F}, \mu),\left(\Omega^{\prime}, \mathcal{F}, \mu^{\prime}\right)$ are isomorphic $\bmod 0$ if there exist nullsets $A \in \mathcal{F}, A^{\prime} \in \mathcal{F}^{\prime}$ and a bijection $f: \Omega \backslash A \rightarrow \Omega^{\prime} \backslash A^{\prime}$ such that f, f^{-1} are both measurable and preserve the measure.

- Many probability spaces are isomorphic mod 0 to the 'standard probability space' $([0,1], \mathcal{B}([0,1]), \lambda)$.

Product of measures

Definition Let $\left(\Omega_{1}, \mathcal{F}_{1}, \mu_{1}\right),\left(\Omega_{2}, \mathcal{F}_{2}, \mu_{2}\right)$ be σ-finite measure spaces. The product measure space $\left(\Omega_{1} \times \Omega_{2}, \mathcal{F}_{1} \otimes \mathcal{F}_{2}, \mu_{1} \times \mu_{2}\right)$ carries the product measure uniquely defined by extending the formula for 'rectangles'

$$
\mu_{1} \times \mu_{2}\left(B_{1} \times B_{2}\right)=\mu_{1}\left(B_{1}\right) \mu_{2}\left(B_{2}\right), \quad B_{1} \in \mathcal{F}_{1}, B_{2} \in \mathcal{F}_{2}
$$

to $\mathcal{F}_{1} \otimes \mathcal{F}_{2}$.
Definition Let $\left(P_{t}, t \in T\right)$ be probability measures on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. There exists a unique priobability measure P on the infinite product space $\left(\mathbb{R}^{T}, \mathcal{B}\left(R^{T}\right)\right)$ with marginal measures that define the joint distribution of coordinates $\left(X_{t_{1}}, \ldots, X_{t_{n}}\right)$ for $\left\{t_{1}, \ldots, t_{n}\right\} \subset T$ by the product formula

$$
P_{t_{1}, \ldots, t_{n}}\left(B_{1} \times \cdots \times B_{n}\right)=P_{t_{1}}\left(B_{1}\right) \cdots P_{t_{n}}\left(B_{n}\right)
$$

where $B_{i} \in \mathcal{B}(\mathbb{R}), n \in \mathbb{N}$.

Independence

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.

Definition

(i) Events $\left(A_{t}, t \in T\right)$ are independent if

$$
\mathbb{P}\left(A_{t_{1}} \cap \cdots \cap A_{t_{n}}\right)=\mathbb{P}\left(A_{t_{1}}\right) \cdots \mathbb{P}\left(A_{t_{n}}\right)
$$

for any $\left\{t_{1}, \ldots, t_{n}\right\} \subset T, n \in \mathbb{N}$.
(ii) σ-algebras $\left(\mathcal{F}_{t}, t \in T\right), \mathcal{F}_{t} \subset \mathcal{F}$, are independent if any finite collection of events $A_{t_{1}} \in \mathcal{F}_{1}, \ldots, A_{t_{n}} \in \mathcal{F}_{n}, n \in \mathbb{N}$, is independent.
(iii) Random variables $\left(X_{t}, t \in T\right)$ are independent if the generated σ-algebras $\sigma\left(X_{t}\right)$ are independent.

Zero-one laws and tail events

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. For a series of events $A_{n} \in \mathcal{F}, n \in \mathbb{N}$,

$$
\left\{A_{n} \text { i.o. }\right\}:=\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_{k} .
$$

Borel-Cantelli Lemma

(\rightarrow) If $\sum_{n=1}^{\infty} \mathbb{P}\left(A_{n}\right)<\infty$ then $\mathbb{P}\left(A_{n}\right.$ i.o. $)=0$.
(\leftarrow) If $\sum_{n=1}^{\infty} \mathbb{P}\left(A_{n}\right)=\infty$ and A_{1}, A_{2}, \ldots are independent then $\mathbb{P}\left(A_{n}\right.$ i.o. $)=1$.

Example (the problem of records) Let X_{1}, X_{2}, \ldots be i.i.d. with continuous c.d.f., $A_{n}=\left\{X_{n}=\max \left(X_{1}, \ldots, X_{n}\right)\right\}$ the event ' X_{n} is a record'.
By symmetry (exchangeability of X_{n} 's) $\mathbb{P}\left(A_{n}\right)=1 / n$ and the events A_{n} are independent. Hence there are infinitely many records almost surely.

Definition Let \mathcal{F}_{n} be σ-algebras $\mathcal{F}_{n} \subset \mathcal{F}$. The tail σ-algebra is defined as

$$
\mathcal{T}=\bigcap_{n=1}^{\infty} \sigma\left(\bigcup_{k=n}^{\infty} \mathcal{F}_{k}\right) .
$$

Each $A \in \mathcal{T}$ is a tail event.
Example Let X_{1}, X_{2}, \ldots be random variables, $\mathcal{F}_{n}=\sigma\left(X_{n}\right)$. Tail events:
(i) $\left\{X_{n}>2024\right.$ i.o. $\}$,
(ii) $\left\{\frac{x_{1}+\cdots+X_{n}}{n} \rightarrow 0\right.$ as $\left.n \rightarrow \infty\right\}$,
(iii) $\left\{\sum_{n=1}^{\infty} X_{n}\right.$ converges $\}$,

Not tail events:
(a) $\left\{X_{n}>X_{1}\right.$ i.o. $\}$,
(b) $\left\{\sum_{n=1}^{\infty} X_{n}=27\right\}$.

Kolmogorov's 0-1 Law Suppose $\mathcal{F}_{n}, n \in \mathbb{N}$ are independent σ-algebras. Then their tail σ-algebra \mathcal{T} is trivial, meaning that $\mathbb{P}(A)=0$ or 1 for every $A \in \mathcal{T}$.

Example Suppose $X_{n} \sim \mathcal{N}\left(m_{n}, \sigma_{n}^{2}\right), n \in \mathbb{N}$, are independent normal r.v. Does the series $\sum_{n=1}^{\infty} X_{n}$ converge?
Kolmogorov Three-Series Theorem Let X_{1}, X_{2}, \ldots be independent random variables. The series $\sum_{n} X_{n}$ converges a.s. (almost surely) if and only if for some $c>0$
(i) $\sum_{n} \mathbb{P}\left[\left|X_{n}\right|>c\right]<\infty$,
(ii) $\sum_{n} \mathbb{E}\left[X_{n} \mathbf{1}\left(\left|X_{n}\right| \leq c\right)\right]<\infty$,
(iii) $\sum_{n} \operatorname{Var}\left[X_{n} \mathbf{1}\left(\left|X_{n}\right| \leq c\right)\right]<\infty$,

- If (i), (ii), (iii) hold for some $c>0$ then also for all $c>0$.
- For normal r.v.'s the convergence holds iff both series $\sum_{n} m_{n}$ and $\sum_{n} \sigma_{n}^{2}$ converge.

Lebesgue integral and expectation

$(\Omega, \mathcal{F}, \mu)$ measure space, $X=X(\omega)$ measurable function with values in $(\overline{\mathbb{R}}, \mathcal{B}(\overline{\mathbb{R}})), \quad \overline{\mathbb{R}}=\mathbb{R} \cup\{-\infty, \infty\}$. Suppose first $X \geq 0$, and let

$$
X_{n}=\sum_{k=0}^{n 2^{n}-1} \frac{k}{2^{n}} \mathbf{1}\left[\frac{k}{2^{n}} \leq X<\frac{k+1}{2^{n}}\right]+n \mathbf{1}[X \geq n],
$$

so $X_{n} \uparrow X$ a.s. Then set

$$
\begin{array}{r}
\int_{\Omega} X_{n}(\omega) \mu(\mathrm{d} \omega):=\sum_{k=0}^{n 2^{n}-1} \frac{k}{2^{n}} \mu\left\{\omega: \frac{k}{2^{n}} \leq X(\omega)<\frac{k+1}{2^{n}}\right\}+ \\
n \mu\{\omega: X(\omega) \geq n\},
\end{array}
$$

and define the Lebesgue intergal as the (monotone) limit

$$
\int_{\Omega} X(\omega) \mu(\mathrm{d} \omega):=\lim _{n \rightarrow \infty} \int_{\Omega} X_{n}(\omega) \mu(\mathrm{d} \omega) .
$$

For the general X, split $X=X_{+}-X_{-}$with $X_{ \pm}:=\max (\pm X, 0)$, and define

$$
\int_{\Omega} X(\omega) \mu(\mathrm{d} \omega):=\int_{\Omega} X_{+}(\omega) \mu(\mathrm{d} \omega)-\int_{\Omega} X_{-}(\omega) \mu(\mathrm{d} \omega)
$$

provided at least one of the integrals in the r.h.s. is finite.
Example The Dirichlet function $f(x)=\mathbf{1}_{\mathbb{R} \backslash \mathbb{Q}}(x)$ has Lebesgue integral 0 (w.r.t. λ), but is not Riemann-integrable.

- For r.v. X on probability space $(\Omega, \mathcal{F}, \mathbb{P})$ the expectation is denoted

$$
\mathbb{E}[X]:=\int_{\Omega} X(\omega) \mathbb{P}(\mathrm{d} \omega) .
$$

This can be computed as the Lebesgue-Stiltjes integral

$$
\mathbb{E}[X]:=\int_{\mathbb{R}} x \mathrm{~d} F_{X}(x)
$$

where $F_{X}(x):=\mathbb{P}[X \leq x]$ is the c.d.f. of X.

Constructing a non-product measure

Definition Given a product space $\left(\Omega_{1} \times \Omega_{2}, \mathcal{F}_{1} \otimes \mathcal{F}_{2}\right)$, call a function $K\left(\omega_{1}, B_{2}\right):\left(\Omega_{1}, \mathcal{F}_{2}\right) \rightarrow([0,1], \mathcal{B}([0,1]))$ a transition function (aka Markov kernel) if
(i) $K\left(\omega_{1}, \cdot\right)$ is a probability measure on $\left(\Omega_{2}, \mathcal{F}_{2}\right)$ for each $\omega_{1} \in \Omega_{1}$,
(ii) $K\left(\cdot, B_{2}\right)$ is a measurable function for each $B_{2} \in \mathcal{F}_{2}$.

Theorem For probability measure P_{1} on $\left(\Omega_{1}, \mathcal{F}_{1}\right)$, the formula

$$
P\left(B_{1} \times B_{2}\right)=\int_{B_{1}} K\left(\omega_{1}, B_{2}\right) P_{1}\left(\mathrm{~d} \omega_{1}\right)
$$

defines a unique probability measure on $\left(\Omega_{1} \times \Omega_{2}, \mathcal{F}_{1} \otimes \mathcal{F}_{2}\right)$.

Exchanging \mathbb{E} and lim

Let $X_{1}, X_{2}, \ldots, X, Y$ be (real) random variables on some $(\Omega, \mathcal{F}, \mathbb{P})$.
Monotone Convergence If $X_{n} \uparrow X$ a.s. and $X_{n} \geq Y$ for some Y with $\mathbb{E}[Y]>-\infty$ the $\mathbb{E}\left[X_{n}\right] \uparrow \mathbb{E}[X]$ as $n \rightarrow \infty$.
Fatou Lemma If $X_{n} \geq Y, \mathbb{E}[Y]>-\infty$ then

$$
\mathbb{E}\left[\liminf _{n \rightarrow \infty} X_{n}\right] \leq \liminf _{n \rightarrow \infty} \mathbb{E}\left[X_{n}\right]
$$

Dominated Convergence If $\left|X_{n}\right| \leq Y$, where $\mathbb{E}[Y]<\infty$ then $X_{n} \rightarrow X$ a.s. implies
(i) $\mathbb{E}[X]<\infty$,
(ii) $\mathbb{E}\left[X_{n}\right] \rightarrow \mathbb{E}[X]$ as $n \rightarrow \infty$,
(iii) $\mathbb{E}\left|X_{n}-X\right| \rightarrow 0$ as $n \rightarrow \infty$.

Absolute continuity

Definition Given measures μ, ν on (Ω, \mathcal{F}), we say that μ dominates ν (written $\mu \gg \nu$) if for $A \in \mathcal{F}$

$$
\mu(A)=0 \Rightarrow \nu(A)=0
$$

Then it is also said that ν is absolutely continuous w.r.t. μ. The measure are equivalent, written $\mu \sim \nu$, if $\mu \gg \nu$ and $\nu \gg \mu$.
The discrete case $\mu=\sum_{k} p_{k} \delta_{\omega_{k}}, \nu=\sum_{k} q_{k} \delta_{\omega_{k}}$, where $p_{k}>0, q_{k} \geq 0$.

$$
\begin{aligned}
\int_{\Omega} f(\omega) \nu(\mathrm{d} \omega) & = \\
\sum_{k} f\left(\omega_{k}\right) q_{k}=\sum_{k} f\left(\omega_{k}\right) p_{k}\left(\frac{q_{k}}{p_{k}}\right) & = \\
\int_{\Omega} f(\omega) \xi(\omega) \mu(\mathrm{d} \omega) & \text { }
\end{aligned}
$$

where $\xi(\omega)=\sum_{k}\left(\frac{q_{k}}{p_{k}}\right) \mathbf{1}\left[\omega=\omega_{k}\right]$.

Radon-Nykodým Theorem If $\mu \gg \nu$ and μ is σ-finite, then there exists measurable $\xi: \Omega \rightarrow \mathbb{R}_{+}$such that

$$
\int_{\Omega} f(\omega) \nu(\mathrm{d} \omega)=\int_{\Omega} f(\omega) \xi(\omega) \mu(\mathrm{d} \omega)
$$

for all measurable $f: \Omega \rightarrow \mathbb{R}$. Such function ξ is unique up to a set of μ-measure zero.

- Such ξ is called the Radon-Nykodým derivative, denoted $\xi=\frac{\mathrm{d} \nu}{\mathrm{d} \mu}$.
- For probability distributions on \mathbb{R} the absolute continuity means existence of the density function f such that the c.d.f. satisfies

$$
F(x)=\int_{-\infty}^{x} f(y) \mathrm{d} y
$$

So f is the RN derivative w.r.t. λ.

