III-1. Define the two sets as follows: $S=\left\{\left.\frac{a}{b} \right\rvert\, a, b \in \mathbb{Z}, \operatorname{gcd}(a, b)=1, b\right.$ is odd $\}$ and $T=$ $\left\{\left.\frac{a}{b} \right\rvert\, a, b \in \mathbb{Z}, \operatorname{gcd}(a, b)=1, b\right.$ is non-zero and even $\}$. Is S a ring? Is S a field? What about T ?

III-2. (a) What is the smallest subset of \mathbb{R} that is a field? (b) What is the smallest subset of \mathbb{R} containing $\sqrt{2}$ that is a field? (c) What is the smallest subset of \mathbb{R} containing $\sqrt{2}$ and $\sqrt{3}$ that is a field?

III-3. Prove the axioms $(R \times+)$ and $(R+x)$ for \mathbb{C} (thought of as a ring).
III-4. Let S be the set of all functions from \mathbb{Z} to \mathbb{Z}. Define addition on S by $(f+g)(x)=$ $f(x)+g(x)$ and multiplication by $(f \times g)(x)=f(g(x))$. Prove that S is not a ring, i.e. find a ring axiom that is not satisfied, by giving a counterexample.

III-5. Given an example of a ring R with an element a such that a is non-zero but $a^{2}=0$ in R.
III-6. Let R the subset $\left\{[2 a]_{6} \mid a \in \mathbb{Z}\right\}=\left\{[0]_{6},[2]_{6},[4]_{6}\right\}$ of \mathbb{Z}_{6}. Endow R with addition and multiplication that make \mathbb{Z}_{6} a ring. (a) Does R satisfy the identity law for multiplication, i.e. there exists an element e such that $a e=e a=a$ for every element a of R. Justify your answer. (b) Is R a ring? Is R a field?

III-7. Let n be a positive integer. Write a careful proof for the axiom $(\mathrm{R}+1)$ for \mathbb{Z}_{n}.
III-8. Let R be a ring. Prove carefully that $(-a) b=-(a b)=a(-b)$ for all elements a, b of R.
III-9. Let $f=[2]_{8} X+[3]_{8}$ and $g=[4]_{8} X^{2}+[6]_{8} X+[3]_{8}$ be elements of $\mathbb{Z}_{8}[X]$. Compute $f+g$ and $f g$.

III-10. Let F be a field and let f, g be non-zero polynomials in $F[X]$. (a) Is $\operatorname{deg}(f g)$ uniquely determined? If so, what is it? If not, what are the possible values it can take? (b) What about $\operatorname{deg}(f+g)$? (c) What if F is merely a ring?

III-11. Prove the axiom ($\mathrm{R} \times+$) for $R[X]$, where R is a ring.
III-12. Given an example of a finite ring R and a function $f: R \rightarrow R$ that is not a polynomial (function). Justify your answer.

