
MTH6105 – Algorithmic Graph Theory Spring 2024

Problem Sheet 2 F. Fischer

You are expected to attempt all exercises before the seminar and to actively
participate in the seminar itself.

1. In the graph shown below, find (a) a shortest v1−v8-path, (b) a longest v1−v8-path,
(c) a shortest cycle, and (d) a longest cycle. Explain in each case why the path or
cycle you have found has minimum or maximum length.
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Note: We have not yet discussed any algorithms for finding shortest and longest
paths and cycles. You may therefore have to look for them by trial and error, and
explain at the end why you are done.

Solution: As the graph is simple, we can write a walk as a sequence of vertices
rather than an alternating sequence of vertices and edges. The length of the walk is
then equal to the length of the sequence of vertices minus one. Note that the walks
described below are not unique, but that their lengths of course are.

(a) A shortest path v1−v8-path is v1v6v8, which has length 2. There cannot be a
shorter path, as v1 and v8 are not adjacent.

(b) A longest v1−v8-path is v1v6v9v7v2v3v4v5v10v8, which has length 9. There can-
not be a longer path, as a path may not visit any vertex more than once.

(c) A shortest cycle is v1v2v3v4v5v1, which has length 5. We can check that there
are no shorter cycles by enumerating all paths of length at most 3 and checking
that the first and last vertex on the path are not adjacent.

(d) A longest cycle is v1v2v3v4v5v10v7v9v6v1, which has length 9. Assume for contra-
diction that there was a cycle of length 10, and label the vertices u1, u2, . . . , u10

along the cycle. In addition to the 10 edges that form the cycle there must
then be 5 more edges between vertices that are not next to each other on the
cycle. Each vertex in the graph has degree 3 and must therefore be an end-
point of exactly one of these 5 edges. We already know that there are no cycles
of length 4 or less, so none of the 5 edges can be between vertices that have
distance less than 4 along the cycle, i.e., between ui and ui+k for some k < 4
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and 1 ≤ i ≤ 10 − k. It also cannot be that the 5 edges are between all pairs
of vertices that have distance 5 along the cycle, i.e., between ui and ui+5 for
all 1 ≤ i ≤ 5. There thus has to be an edge between two vertices that have
distance 4 along the cycle, which without loss of generality we may assume to
be the edge u1u5. It is now easy to check that the addition of another edge
with endpoint u6 would create a cycle of length at most 4, which we know is a
contradiction.

Bonus question: What if instead of a shortest or longest cycle we seek a shortest
or longest closed trail?

2. (a) Show that any digraph that contains a closed directed walk of length at least
one contains a directed cycle.

(b) What is the analogous statement for graphs? Give a proof or a counterexample
for this statement.

Solution:

(a) Let W = v0e1v1 . . . emv0 be a closed directed walk in D that has length at
least one and, subject to this condition, is as short as possible. Assume for
contradiction that W is not a directed cycle. Then vi = vj for some 0 ≤ i <
j < m. Let W ′ = v0e1v1 . . . eiviej+1vj+1 . . . emv0. Then W ′ is a closed directed
walk in D. It contains the arc em and therefore has length at least one, and
it is shorter than W . This contradicts the assumption that W has minimum
length. Hence W must be a directed cycle.

(b) The analogous statement for graphs, that the existence of a closed walk of
length at least one implies the existence of a cycle, is not true. Let G be the
simple graph with V (G) = {u, v} and E(G) = {uv}. Then uvu is a closed walk
in G, but there is no cycle. Note that the proof from Part a fails for graphs
because in graphs there can be a closed walk, like the closed walk uvu above,
that repeats an edge but does not repeat a vertex apart from the first one.

3. Find all unlabeled trees with six vertices. You may want to start by considering the
sequence d1, d2, . . . , d6 of degrees of the vertices in such a tree, and using what you
know about this sequence.

Solution: We know that for any tree G, |E(G)| = |V (G)| − 1, and for any graph
G,

∑
v∈V (G) dG(v) = 2|E(G)|. Thus

∑6
i=1 di = 2(6 − 1) = 10. We also know that

for all i ∈ [6], 1 ≤ di ≤ 5. If we list degrees in non-decreasing order, the following
sequences are thus possible:

(5, 1, 1, 1, 1, 1) (4, 2, 1, 1, 1, 1) (3, 3, 1, 1, 1, 1) (3, 2, 2, 1, 1, 1) (2, 2, 2, 2, 1, 1)

We can now see by inspection that there are two distinct unlabeled trees for the
fourth sequence, where the vertex with degree 3 respectively has one or two neighbors
with degree 1. For all other sequences there is a unique unlabeled tree. We obtain
the following six trees:
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