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Question 1 [10 marks].

(a) Describe the problem of dimensionality reduction in unsupervised learning. [6]

(b) List two techniques for this problem. [4]

Write your solutions here
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Question 2 [29 marks]. As part of Karhunen-Loeve expansion of the covariance
matrix of a centered data set X with n = 100 observations in p = 5 variables, the
following matrix was computed.

Λ =


75.93 0 0 0 0

0 68.544 0 0 0
0 0 38.767 0 0
0 0 0 26.228 0
0 0 0 0 4.746


(a) Complete the following table and determine a number of components using an

80% threshold. [12]

Write your solutions here

Standard Proportion of Cumulative
deviation variance proportion

PC1
PC2
PC3
PC4
PC5
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(b) Using the matrix Λ above, determine if the data was scaled to compute the
covariance matrix and briefly explain why. [4]

(c) Write (do not derive) the formula that links Λ with D. Recall that Λ is the
eigenvalue matrix of the Karhunen-Loeve decomposition of the covariance
matrix Σ; and that D is the matrix of eigenvalues of the singular value
decomposition of matrix X. [6]

Write your solutions here
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(d) Use the formula you wrote to determine numerically the eigenvalues di of the
singular value decomposition of the data matrix X. [7]

Write your solutions here
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Question 3 [20 marks].

(a) Explain what is meant by single linkage in agglomerative clustering. [3]

(b) Consider the following distance matrix

1 2 3 4 5
1
2
3
4
5


0 7 4 11 10
7 0 11 10 11
4 11 0 15 14

11 10 15 0 1
10 11 14 1 0

 ,

where row and columns are indexed as usual by individuals.

(i) If agglomerative single linkage clustering were to be performed, which
individuals would be merged first and why? [4]

Write your solutions here
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(ii) Explain why in the first step the result is the same regardless of the linkage
used. [3]

(iii) Assume you are at a step in agglomerative clustering in which individuals
1,2,3 belong to one cluster and individuals 4,5 belong to another cluster.
Using single linkage, find the distance between these two clusters. [5]

Write your solutions here
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(iv) Using average linkage, give the distance between clusters in Question
(biii). [5]

Write your solutions here
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Question 4 [23 marks]. The following data are the results of a classification
analysis. The output includes the validation output Ytrue and the classifications
obtained with three trained classification algorithms termed Y1, Y2 and Y3.

## Ytrue Y1 Y2 Y3

## [1,] 1 1 0 1

## [2,] 0 0 1 0

## [3,] 1 1 0 0

## [4,] 0 0 1 1

## [5,] 0 1 1 0

## [6,] 0 0 1 1

## [7,] 0 0 0 0

## [8,] 0 0 1 0

## [9,] 0 0 0 0

## [10,] 1 1 0 0

## [11,] 1 1 0 1

## [12,] 1 1 0 0

(a) Complete the following confusion matrices. [9]

Write your solutions here
Predicted (Y1)
0 1

True (Ytrue) 0
1

Predicted (Y2)
0 1

True (Ytrue) 0
1

Predicted (Y3)
0 1

True (Ytrue) 0
1
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(b) Compute the False Positive Rate (FPR) and True Positive Rate (TPR) for each
confusion matrix, completing in the table below. [6]

(c) Plot your results in the ROC graph below and briefly comment on the
performance of classifiers. Which is the best classifier? [8]

Write your solutions here

Confusion matrix FPR TPR

Y1

Y2

Y3

0.0 0.4 0.8
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Question 5 [18 marks].

(a) The Lasso criterion is L = 1
2 ||Y− Xβ||22 + λ||β||1. Explain what the components

of the Lasso criterion are. [3]

(b) Explain what are the solutions to lasso as λ→ 0. Also as λ→ ∞. [2]

Write your solutions here
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(c) The following table contains output from a lasso fit to model with d = 3
variables and n = 20 observations. For each row in the table, compute s, the
proportion of shrinkage defined as s = s(λ) = ||β(λ)||1/ maxλ ||β(λ)||1 and
write its value in the correct position to complete the table. [6]

Write your solutions here

λ β1 β2 β3 s

0 0.12057 -0.31144 -0.07388

1.16364 0.01818 -0.23636 0

1.41935 0 -0.21774 0

5.6 0 0 0
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(d) Using your completed information, add the lasso paths to the following plot. In
your plot, label each path according to its corresponding variable. [7]

Write your solutions here

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

3
−

0.
1

0.
0

0.
1

||β(λ)||1/maxλ||β(λ)||1

β(
λ)
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Extra space for calculations
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End of Paper – An appendix of 2 pages follows.
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Matrices and their decompositions for data handling
Data set: X
Sample covariance matrix of a centered data set: Σ = 1

n−1 XTX.

Karhunen-Loeve decomposition of the covariance matrix: Σ = AΛAT.
The total (sample) variance is tr(Σ) = ∑

p
i=1 λi

Singular value decomposition of X: X = UDVT.

Object Size Notes

n - Number of observations

p - Number of variables

X n× p n > p

Σ p× p (i, j) element is the sample covariance between columns i, j of X

A p× p Eigenvectors ai are columns; ATA = AAT = I

Λ p× p Diagonal with eigenvalues λi of Σ

U n× p Eigenvectors ui are columns; UTU = I

D p× p Diagonal with singular eigenvalues di of X

V p× p Eigenvectors vi are columns; VTV = VVT = I

As in lectures, it is assumed that the rank of X is p so that XTX is invertible; that the
diagonal entries in either Λ or D are all distinct and positive numbers.
For a square full rank diagonal matrix W = diag(w1, . . . , wm), we have W = WT; that
WTW = WWT = W2 = diag(w2

1, . . . , w2
m) and W−1 = diag(1/w1, . . . , 1/wm).

Common distances dij between points xi and xj

Name Distance dij Equivalent notation

Manhattan ∑
p
l=1

∣∣xil − xjl
∣∣ ||xi − xj||1

Euclidean
√

∑
p
l=1

(
xil − xjl

)2 ||xi − xj||2 =
√
||xi − xj||22

Minkowski
(

∑
p
l=1

∣∣xil − xjl
∣∣m)1/m

||xi − xj||m

Mahalanobis
√(

xi· − xj·
)T

Σ−1
(
xi· − xj·

)
Absolute correlation

√
1−

∣∣ρij
∣∣

The Manhattan norm of a vector x is ||x||1 = ∑
p
i=1 |xi| (Manhattan distance between x

and the origin); and the Euclidean norm of x is ||x||2 =
√

∑
p
i=1 x2

i (Euclidean distance
between x and the origin).
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Classification

Name Comment

TP True positive

FP False positive

FN False negative

TN True negative

P = TP + FN Positives

N = FP + TN Negatives

TPR = TP
P True positive rate (Sensitivity or Recall)

FPR = FP
N False positive rate

FNR = FN
P False negative rate

TNR = TN
N True negative rate (Specificity)

TP
TP+FP Precision

2 Precision·Recall
Precision+Recall F1 score

TP+TN
P+N Accuracy

FP+FN
P+N Error rate

Penalised regression
Lasso criterion:

L =
1
2
||Y− Xβ||22 + λ||β||1

Ridge regression criterion:

R = ||Y− Xβ||22 + λ||β||22.

End of Appendix.
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Question 1 [10 marks].

(a) Describe the problem of dimensionality reduction in unsupervised learning. [6]

(b) List two techniques for this problem. [4]

Write your solutions here

(a) In the dimensionality reduction problem the data has a high number of dimen-
sions [2] and data needs to be mapped into low dimensions [2] while still preserv-
ing relevant information [2].

Total (a) [6]

(b) Examples of techniques for this problem are Principal Component Analysis [2],
Factor Analysis [2] and Multidimensional Scaling [2].

Only two examples are needed. Total (b) [4]

Total [10]

Seen in lectures, bookwork.
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Question 2 [29 marks]. As part of Karhunen-Loeve expansion of the covariance
matrix of a centered data set X with n = 100 observations in p = 5 variables, the
following matrix was computed.

Λ =


75.93 0 0 0 0

0 68.544 0 0 0
0 0 38.767 0 0
0 0 0 26.228 0
0 0 0 0 4.746


(a) Complete the following table and determine a number of components using an

80% threshold. [12]

Write your solutions here

Standard Proportion of Cumulative
deviation variance proportion

PC1 8.7138 0.3545 0.3545
PC2 8.2791 0.32 0.6744
PC3 6.2263 0.181 0.8554
PC4 5.1213 0.1224 0.9778
PC5 2.1785 0.0222 1

Looking at the column of ‘Cumulative proportion’ in the table above, we suggest
3 components which in this case explain 85.54% of the total variability.

Computations use eigenvalues, take square root; convert them to proportions then
to cumulative proportions. Each column [3] to total for Table [9].
Number of components [3].

Total (a) [12]

Seen in lectures, coursework.

c© Queen Mary University of London (2020)
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(b) Using the matrix Λ above, determine if the data was scaled to compute the
covariance matrix and briefly explain why. [4]

(c) Write (do not derive) the formula that links Λ with D. Recall that Λ is the
eigenvalue matrix of the Karhunen-Loeve decomposition of the covariance
matrix Σ; and that D is the matrix of eigenvalues of the singular value
decomposition of matrix X. [6]

Write your solutions here

(b) We simply compute the trace of this matrix, which is ∑5
i=1 λi = 214.215. As the

sum is not equal to p, then the data was not scaled.

Comment [2], brief explanation [2]

Total (b) [4]

(c) The formula that links eigenvalue matrices is

Λ =
1

n− 1
D2.

Formula [6]

Total(c) [6]

Both items seen in lectures.
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(d) Use the formula you wrote to determine numerically the eigenvalues di of the
singular value decomposition of the data matrix X. [7]

Write your solutions here

The previous formula Λ = 1
n−1 D2 links individual eigenvalues λi from K-L to

those di of svd as λi = d2
i /(n − 1) so that di =

√
(n− 1)λi [2]. We apply the

formula directly so that

d1 =
√
(100− 1)75.93 =

√
7517.07 = 86.701;

d2 =
√
(100− 1)68.544 =

√
6785.856 = 82.376;

d3 =
√
(100− 1)38.767 =

√
3837.933 = 61.951;

d4 =
√
(100− 1)26.228 =

√
2596.572 = 50.957 and

d5 =
√
(100− 1)4.746 =

√
469.854 = 21.676.

Allow full marks if formula was -implicitly- used correctly then each eigenvalue
[1] to total [5].

Total (d) [7]

Seen in lectures and coursework.
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Question 3 [20 marks].

(a) Explain what is meant by single linkage in agglomerative clustering. [3]

(b) Consider the following distance matrix

1 2 3 4 5
1
2
3
4
5


0 7 4 11 10
7 0 11 10 11
4 11 0 15 14

11 10 15 0 1
10 11 14 1 0

 ,

where row and columns are indexed as usual by individuals.

(i) If agglomerative single linkage clustering were to be performed, which
individuals would be merged first and why? [4]

Write your solutions here

(a) In single linkage, the distance between two clusters [1] is defined as the distance
between the two closest [2] elements of each cluster. This is the “nearest neighbor”
distance.

Total (a) [3]

(bi) At this point, the smallest distance between clusters in the table is 1 which is
that between clusters ‘4’ and ‘5’ and thus these two clusters are joined [4].

Total (bi) [4]

Seen in lectures and coursework.
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(ii) Explain why in the first step the result is the same regardless of the linkage
used. [3]

(iii) Assume you are at a step in agglomerative clustering in which individuals
1,2,3 belong to one cluster and individuals 4,5 belong to another cluster.
Using single linkage, find the distance between these two clusters. [5]

Write your solutions here

(bii) At the start, each individual is a cluster so the distance between clusters is
a single entry in the distance matrix [1]. The minimum, maximum and average
coincide in this case so there is no difference between linkages for this first step [2].

Total (bii) [3]

The distances involved are a subset of the distance matrix, indeed those in the
intersection between rows 1,2,3 and columns 4,5. These distances are 11, 10, 15,
10, 11, 14 [2]. The single linkage distance is the minimum of those distances so the
distance asked is 10 [3].

Allow full marks if correct figure.

Total (biii) [5]

Seen in lectures, coursework.

c© Queen Mary University of London (2020)
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(iv) Using average linkage, give the distance between clusters in Question
(biii). [5]

Write your solutions here

(biv) Here the set of relevant distances is the same as in the previous question: 11,
10, 15, 10, 11, 14 [2]. The average linkage uses the average of these values so the
distance asked is 11.8333 [3].

Allow full marks if correct figure.

Total (biv) [5]

Seen in lectures, coursework.
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Question 4 [23 marks]. The following data are the results of a classification
analysis. The output includes the validation output Ytrue and the classifications
obtained with three trained classification algorithms termed Y1, Y2 and Y3.

## Ytrue Y1 Y2 Y3

## [1,] 1 1 0 1

## [2,] 0 0 1 0

## [3,] 1 1 0 0

## [4,] 0 0 1 1

## [5,] 0 1 1 0

## [6,] 0 0 1 1

## [7,] 0 0 0 0

## [8,] 0 0 1 0

## [9,] 0 0 0 0

## [10,] 1 1 0 0

## [11,] 1 1 0 1

## [12,] 1 1 0 0

(a) Complete the following confusion matrices. [9]

Write your solutions here
Predicted (Y1)
0 1

True (Ytrue) 0 6 1
1 0 5

Predicted (Y2)
0 1

True (Ytrue) 0 2 5
1 5 0

Predicted (Y3)
0 1

True (Ytrue) 0 5 2
1 3 2

Each matrix [3] for Total (a) [9]
Seen in lectures, coursework.
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(b) Compute the False Positive Rate (FPR) and True Positive Rate (TPR) for each
confusion matrix, completing in the table below. [6]

(c) Plot your results in the ROC graph below and briefly comment on the
performance of classifiers. Which is the best classifier? [8]

Write your solutions here

Confusion matrix FPR TPR

Y1 0.14286 1

Y2 0.71429 0

Y3 0.28571 0.4

0.0 0.4 0.8

0.
0

0.
4

0.
8

FP Rate

T
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1

2

3

The best classifier is Y1, followed by Y3 whose performance is of a random classi-
fier. The classifier Y2 performs the worst.

In table, each entry [1] so Total (b) [6]

Each point in the plot [2] so for the plot [6]. Best classifier or meaningful comment
[2] thus Total (c) [8]

Seen in lectures and coursework.
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Question 5 [18 marks].

(a) The Lasso criterion is L = 1
2 ||Y− Xβ||22 + λ||β||1. Explain what the components

of the Lasso criterion are. [3]

(b) Explain what are the solutions to lasso as λ→ 0. Also as λ→ ∞. [2]

Write your solutions here

(a) The criterion has the term ||Y− Xβ||22 which is the usual sum of squares of the
error from standard regression [1].
The term ||β||1 is the absolute size of coefficient vector [1] and the parameter λ is a
non-negative quantity that controls the amount of penalization [1].

Each item [1] to Total (a) [3]

(b) When λ→ 0, the solution of Lasso is the ordinary least squares estimator [1].
As λ → ∞, the solution of Lasso is β = 0, that is shrinkage of all coefficients to
zero [1].

Each item [1] to Total (b) [2]

Both items seen in lectures
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(c) The following table contains output from a lasso fit to model with d = 3
variables and n = 20 observations. For each row in the table, compute s, the
proportion of shrinkage defined as s = s(λ) = ||β(λ)||1/ maxλ ||β(λ)||1 and
write its value in the correct position to complete the table. [6]

Write your solutions here

λ β1 β2 β3 s

0 0.12057 -0.31144 -0.07388 1

1.16364 0.01818 -0.23636 0 0.50315

1.41935 0 -0.21774 0 0.4304

5.6 0 0 0 0

Computation of s involve the sums of absolute coefficients 0.5059, 0.25455, 0.21774,
0 which are then divided by the maximum 0.5059 to give the values in the table.

Each correct value of s [1] and if all correct add [2] to Total (c) [6].

Seen in lectures and coursework.
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(d) Using your completed information, add the lasso paths to the following plot. In
your plot, label each path according to its corresponding variable. [7]

Write your solutions here

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

3
−

0.
1

0.
0

0.
1

||β(λ)||1/maxλ||β(λ)||1

β(
λ)

1

2

3

Each correct path [2] and if all correct add [1] to Total (d) [7].

Seen in lectures and coursework.
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Extra space for calculations
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End of Paper – An appendix of 2 pages follows.
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Matrices and their decompositions for data handling
Data set: X
Sample covariance matrix of a centered data set: Σ = 1

n−1 XTX.

Karhunen-Loeve decomposition of the covariance matrix: Σ = AΛAT.
The total (sample) variance is tr(Σ) = ∑

p
i=1 λi

Singular value decomposition of X: X = UDVT.

Object Size Notes

n - Number of observations

p - Number of variables

X n× p n > p

Σ p× p (i, j) element is the sample covariance between columns i, j of X

A p× p Eigenvectors ai are columns; ATA = AAT = I

Λ p× p Diagonal with eigenvalues λi of Σ

U n× p Eigenvectors ui are columns; UTU = I

D p× p Diagonal with singular eigenvalues di of X

V p× p Eigenvectors vi are columns; VTV = VVT = I

As in lectures, it is assumed that the rank of X is p so that XTX is invertible; that the
diagonal entries in either Λ or D are all distinct and positive numbers.
For a square full rank diagonal matrix W = diag(w1, . . . , wm), we have W = WT; that
WTW = WWT = W2 = diag(w2

1, . . . , w2
m) and W−1 = diag(1/w1, . . . , 1/wm).

Common distances dij between points xi and xj

Name Distance dij Equivalent notation

Manhattan ∑
p
l=1

∣∣xil − xjl
∣∣ ||xi − xj||1

Euclidean
√

∑
p
l=1

(
xil − xjl

)2 ||xi − xj||2 =
√
||xi − xj||22

Minkowski
(

∑
p
l=1

∣∣xil − xjl
∣∣m)1/m

||xi − xj||m

Mahalanobis
√(

xi· − xj·
)T

Σ−1
(
xi· − xj·

)
Absolute correlation

√
1−

∣∣ρij
∣∣

The Manhattan norm of a vector x is ||x||1 = ∑
p
i=1 |xi| (Manhattan distance between x

and the origin); and the Euclidean norm of x is ||x||2 =
√

∑
p
i=1 x2

i (Euclidean distance
between x and the origin).
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Classification

Name Comment

TP True positive

FP False positive

FN False negative

TN True negative

P = TP + FN Positives

N = FP + TN Negatives

TPR = TP
P True positive rate (Sensitivity or Recall)

FPR = FP
N False positive rate

FNR = FN
P False negative rate

TNR = TN
N True negative rate (Specificity)

TP
TP+FP Precision

2 Precision·Recall
Precision+Recall F1 score

TP+TN
P+N Accuracy

FP+FN
P+N Error rate

Penalised regression
Lasso criterion:

L =
1
2
||Y− Xβ||22 + λ||β||1

Ridge regression criterion:

R = ||Y− Xβ||22 + λ||β||22.

End of Appendix.
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Complete all rough work in the answer book and cross through any work that is not
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Question 1 [29 marks].
A data set consists of measurements of amounts of chemical compounds found in
material samples of a mineral processing facility. Seven measurements were available
for each sample of a total of n = 200 samples. The units of the measurements are
milligrammes.
From a Principal Component Analysis of these data, the following are the PC
loadings.

## PC1 PC2 PC3 PC4 PC5 PC6 PC7

## Na 0.48335 -0.00822 0.11289 -0.22665 0.36347 -0.09448 -0.74910

## Au 0.37907 0.07811 -0.86478 0.31936 -0.01328 0.01060 0.00901

## NO3 0.46602 -0.00584 0.04666 -0.45909 -0.75041 0.00548 0.08190

## Al 0.00564 -0.70429 -0.06960 -0.00191 0.01109 -0.69995 0.09513

## Cu 0.48040 -0.00519 0.12123 -0.24015 0.52372 0.09342 0.64328

## Mg 0.41794 -0.03411 0.46375 0.76035 -0.17366 -0.00960 0.02684

## Zn 0.00311 -0.70469 -0.05134 0.00872 -0.00604 0.70156 -0.09205

The corresponding eigenvalues of the Karhunen-Loeve decomposition of the
covariance matrix of these data are 4.11178, 1.98865, 0.49036, 0.29693, 0.07676,
0.02234, 0.01318.

(a) Each of the data columns was centered around its mean and standardised to
have unit variance. From the output you have been given, briefly explain how
we can confirm that the data was indeed standardized by column. [4]

Write your solutions here
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(b) Complete the following table. [15]

Write your solutions here

Standard Proportion of Cumulative
deviation variance proportion

PC1
PC2
PC3
PC4
PC5
PC6
PC7

c© Queen Mary University of London (2020)
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(c) Using the table you just computed, suggest a number of components so that at
least 80% of the total variability is explained. [4]

(d) Interpret the components you suggested. [6]

Write your solutions here
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Question 2 [24 marks].

(a) Explain what is meant by single linkage in agglomerative clustering. [3]

(b) Consider the following data matrix

X =


2 −1 −3 3
1 1 1 3
3 −4 −3 −1
−4 3 −2 −3
−4 3 −3 2

 ,

(i) Using Manhattan distance, complete the missing entries in the distance
matrix below. [4]

Write your solutions here

b(i):


0 8 17 11

0 15 12
8 15 0 17 17

17 17 0
11 12 17 0

 ,

c© Queen Mary University of London (2020)
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(ii) Perform agglomerative cluster for these data using the distance matrix
above and single linkage. As part of your procedure, compute and show
updated distance matrices at every step of the clustering procedure. [12]

Write your solutions here
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Write your solutions here
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(iii) Complete the dendrogram in the plot given below. [5]

Write your solutions here

0
5

10
15
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Question 3 [28 marks]. The following data are the validation results of a
classification analysis. The output below includes the validation output Ytrue and
the classifications obtained with four classification algorithms termed Y1, Y2, Y3 and
Y4.

## Ytrue Y1 Y2 Y3 Y4

## [1,] 1 1 0 1 0

## [2,] 0 0 0 0 0

## [3,] 0 0 1 0 1

## [4,] 1 1 0 1 0

## [5,] 0 0 1 0 1

## [6,] 0 0 1 1 1

## [7,] 0 0 1 0 1

## [8,] 1 1 0 1 1

## [9,] 0 1 1 0 0

## [10,] 0 0 1 1 0

(a) Complete the following confusion matrices. [14]

Write your solutions here

Predicted (Y1)
0 1

True (Ytrue) 0
1

Predicted (Y2)
0 1

True (Ytrue) 0
1

Predicted (Y3)
0 1

True (Ytrue) 0
1

Predicted (Y3)
0 1

True (Ytrue) 0
1
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(b) Compute the False Positive Rate (FPR) and True Positive Rate (TPR) for each
confusion matrix, completing in the table below. [6]

(c) Plot your results in the ROC graph below and briefly comment on the
performance of classifiers. Which is the best classifier? [8]

Write your solutions here

Confusion matrix FPR TPR

Y1

Y2

Y3

Y4

0.0 0.4 0.8

0.
0

0.
4

0.
8

FP Rate

T
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Question 4 [19 marks].

(a) The following table contains output from a lasso fit to model with d = 5
variables and n = 40 observations. For each row in the table, compute s, the
proportion of shrinkage defined as s = s(λ) = ||β(λ)||1/ maxλ ||β(λ)||1 and
write its value in the correct position to complete the table. [8]

Write your solutions here

λ β1 β2 β3 β4 β5 s

0 0.08267 -0.0257 -0.12478 -0.0834 -0.07588

1.10315 0.04204 0 -0.10618 -0.05665 -0.05547

2.29358 0 0 -0.08636 -0.0304 -0.02125

3.14574 0 0 -0.07455 -0.00839 0

3.54098 0 0 -0.06557 0 0

6 0 0 0 0 0
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(b) Using your completed information, add the lasso paths to the following plot. In
your plot, label each path according to its corresponding variable. [11]

Write your solutions here

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

10
0.

00

||β(λ)||1/maxλ||β(λ)||1

β(
λ)
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Extra space for calculations
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End of Paper – An appendix of 2 pages follows.
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Matrices and their decompositions for data handling
Data set: X
Sample covariance matrix of a centered data set: Σ = 1

n−1 XTX.

Karhunen-Loeve decomposition of the covariance matrix: Σ = AΛAT.
The total (sample) variance is tr(Σ) = ∑

p
i=1 λi

Singular value decomposition of X: X = UDVT.

Object Size Notes

n - Number of observations

p - Number of variables

X n× p n > p

Σ p× p (i, j) element is the sample covariance between columns i, j of X

A p× p Eigenvectors ai are columns; ATA = AAT = I

Λ p× p Diagonal with eigenvalues λi of Σ

U n× p Eigenvectors ui are columns; UTU = I

D p× p Diagonal with singular eigenvalues di of X

V p× p Eigenvectors vi are columns; VTV = VVT = I

As in lectures, it is assumed that the rank of X is p so that XTX is invertible; that the
diagonal entries in either Λ or D are all distinct and positive numbers.
For a square full rank diagonal matrix W = diag(w1, . . . , wm), we have W = WT; that
WTW = WWT = W2 = diag(w2

1, . . . , w2
m) and W−1 = diag(1/w1, . . . , 1/wm).

Common distances dij between points xi and xj

Name Distance dij Equivalent notation

Manhattan ∑
p
l=1

∣∣xil − xjl
∣∣ ||xi − xj||1

Euclidean
√

∑
p
l=1

(
xil − xjl

)2 ||xi − xj||2 =
√
||xi − xj||22

Minkowski
(

∑
p
l=1

∣∣xil − xjl
∣∣m)1/m

||xi − xj||m

Mahalanobis
√(

xi· − xj·
)T

Σ−1
(
xi· − xj·

)
Absolute correlation

√
1−

∣∣ρij
∣∣

The Manhattan norm of a vector x is ||x||1 = ∑
p
i=1 |xi| (Manhattan distance between x

and the origin); and the Euclidean norm of x is ||x||2 =
√

∑
p
i=1 x2

i (Euclidean distance
between x and the origin).
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Classification

Name Comment

TP True positive

FP False positive

FN False negative

TN True negative

P = TP + FN Positives

N = FP + TN Negatives

TPR = TP
P True positive rate (Sensitivity or Recall)

FPR = FP
N False positive rate

FNR = FN
P False negative rate

TNR = TN
N True negative rate (Specificity)

TP
TP+FP Precision

2 Precision·Recall
Precision+Recall F1 score

TP+TN
P+N Accuracy

FP+FN
P+N Error rate

Penalised regression
Lasso criterion:

L =
1
2
||Y− Xβ||22 + λ||β||1

Ridge regression criterion:

R = ||Y− Xβ||22 + λ||β||22.

End of Appendix.
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Question 1 [29 marks].
A data set consists of measurements of amounts of chemical compounds found in
material samples of a mineral processing facility. Seven measurements were available
for each sample of a total of n = 200 samples. The units of the measurements are
milligrammes.
From a Principal Component Analysis of these data, the following are the PC
loadings.

## PC1 PC2 PC3 PC4 PC5 PC6 PC7

## Na 0.48335 -0.00822 0.11289 -0.22665 0.36347 -0.09448 -0.74910

## Au 0.37907 0.07811 -0.86478 0.31936 -0.01328 0.01060 0.00901

## NO3 0.46602 -0.00584 0.04666 -0.45909 -0.75041 0.00548 0.08190

## Al 0.00564 -0.70429 -0.06960 -0.00191 0.01109 -0.69995 0.09513

## Cu 0.48040 -0.00519 0.12123 -0.24015 0.52372 0.09342 0.64328

## Mg 0.41794 -0.03411 0.46375 0.76035 -0.17366 -0.00960 0.02684

## Zn 0.00311 -0.70469 -0.05134 0.00872 -0.00604 0.70156 -0.09205

The corresponding eigenvalues of the Karhunen-Loeve decomposition of the
covariance matrix of these data are 4.11178, 1.98865, 0.49036, 0.29693, 0.07676,
0.02234, 0.01318.

(a) Each of the data columns was centered around its mean and standardised to
have unit variance. From the output you have been given, briefly explain how
we can confirm that the data was indeed standardized by column. [4]

Write your solutions here

To determine if analysis was carried out standardising columns, we need to look
at the total sum of eigenvalues [2]. This sum is

4.11178+1.98865+0.49036+0.29693+0.07676+0.02234+0.01318= 7

As this total equals p, then the analysis was indeed performed in standardised
columns [2].

Total (a) [4]

Seen in lectures and lab.
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(b) Complete the following table. [15]

Write your solutions here

Standard Proportion of Cumulative
deviation variance proportion

PC1 2.0278 0.5874 0.5874
PC2 1.4102 0.2841 0.8715
PC3 0.7003 0.0701 0.9415
PC4 0.5449 0.0424 0.984
PC5 0.277 0.011 0.9949
PC6 0.1495 0.0032 0.9981
PC7 0.1148 0.0019 1

Square roots of eigenvalues give standard deviations; the proportion scales eigen-
values to percentages, from which the cumulative column is computed. Each col-
umn [5] to Total (b) [15]

Seen in lectures and lab.
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(c) Using the table you just computed, suggest a number of components so that at
least 80% of the total variability is explained. [4]

(d) Interpret the components you suggested. [6]

Write your solutions here

(c) Looking at the column of ‘Cumulative proportion’ in the said Table, we suggest
2 components which in this case explain 87.15% of the total variability [4].

Total (c) [4]

(d) The following interpretation is generated by seeing the coefficients of PC load-
ings as weigthed averages or contrasts: PC1 is a weighted average of variables
Na,Au,NO3,Cu,Mg; PC2 is a contrast between variables Au and Al,Zn; PC3 is a
contrast between variables Na,Cu,Mg and Au,Al,Zn..

Each sensible interpretation [3] to Total (d) [6]

Seen in lectures and coursework.
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Question 2 [24 marks].

(a) Explain what is meant by single linkage in agglomerative clustering. [3]

(b) Consider the following data matrix

X =


2 −1 −3 3
1 1 1 3
3 −4 −3 −1
−4 3 −2 −3
−4 3 −3 2

 ,

(i) Using Manhattan distance, complete the missing entries in the distance
matrix below. [4]

Write your solutions here

(a) In single linkage, the distance between two clusters is defined as the distance
between the two closest elements of each cluster [3]. This is the “nearest neighbor”
distance.

Total (a) [3]

b(i):


0 7 8 17 11

7 0 15 16 12
8 15 0 17 17

17 16 17 0 6
11 12 17 6 0

 ,

Distances are computed with the usual Manhattan distance, e.g.
d12 = 1 + 2 + 4 + 0 = 7;
d24 = 5 + 2 + 3 + 6 = 16
d45 = 0 + 0 + 1 + 5 = 6

Each distance [1] all fine add [1] to Total (bi) [4]

Both items seen in lectures.
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(ii) Perform agglomerative cluster for these data using the distance matrix
above and single linkage. As part of your procedure, compute and show
updated distance matrices at every step of the clustering procedure. [12]

Write your solutions here

(bii) The initial step clusters individuals ‘4’ and ‘5’ at the distance 6. The updated
distance matrix is

1 2 3 45
1 0 7 8 11
2 7 0 15 12
3 8 15 0 17

45 11 12 17 0

The next step merges clusters ‘1’ and ‘2’ at the distance 7. The updated table of
distances at this stage is the following.

12 3 45
12 0 8 11
3 8 0 17

45 11 17 0

The procedure continues by finding the minimum distance between clusters in the
newly updated distance table. This minimum value is 8 at which point the clusters
‘12’ and ‘3’ are merged. This is the updated table of distances at this stage.

123 45
123 0 11
45 11 0

The last step of this agglomerative clustering process is the trivial merging of the
clusters ‘123’ and ‘45’ at the distance 11.

Each updated step with table worth [4] marks to Total (bii) [12]

Seen in lectures and coursework.
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Write your solutions here
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(iii) Complete the dendrogram in the plot given below. [5]

Write your solutions here

0
5

10
15

1 2 3 4 5

Correct diagram one mark per branch to Total (biii) [5]

Seen in lectures and coursework.
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Question 3 [28 marks]. The following data are the validation results of a
classification analysis. The output below includes the validation output Ytrue and
the classifications obtained with four classification algorithms termed Y1, Y2, Y3 and
Y4.

## Ytrue Y1 Y2 Y3 Y4

## [1,] 1 1 0 1 0

## [2,] 0 0 0 0 0

## [3,] 0 0 1 0 1

## [4,] 1 1 0 1 0

## [5,] 0 0 1 0 1

## [6,] 0 0 1 1 1

## [7,] 0 0 1 0 1

## [8,] 1 1 0 1 1

## [9,] 0 1 1 0 0

## [10,] 0 0 1 1 0

(a) Complete the following confusion matrices. [14]

Write your solutions here
Predicted (Y1)
0 1

True (Ytrue) 0 6 1
1 0 3

Predicted (Y2)
0 1

True (Ytrue) 0 1 6
1 3 0

Predicted (Y3)
0 1

True (Ytrue) 0 5 2
1 0 3

Predicted (Y3)
0 1

True (Ytrue) 0 3 4
1 2 1

Each matrix [3] if all fine extra [2] to Total (a) [14].

Seen in lectures and coursework.
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(b) Compute the False Positive Rate (FPR) and True Positive Rate (TPR) for each
confusion matrix, completing in the table below. [6]

(c) Plot your results in the ROC graph below and briefly comment on the
performance of classifiers. Which is the best classifier? [8]

Write your solutions here

Confusion matrix FPR TPR

Y1 0.14286 1

Y2 0.85714 0

Y3 0.28571 1

Y4 0.57143 0.33333

0.0 0.4 0.8

0.
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1

2

3

4

The best classifier is Y1, followed by Y3 then Y4 whose performance is similar to a
random classifier. The classifier Y2 performs the worst.

Each column of the Table [3] so Total (b) [6].

Plot correctly done [6]. Best classifier and/or meaningful comment [2] thus Total
(c) [8].

Seen in lectures and coursework.
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Question 4 [19 marks].

(a) The following table contains output from a lasso fit to model with d = 5
variables and n = 40 observations. For each row in the table, compute s, the
proportion of shrinkage defined as s = s(λ) = ||β(λ)||1/ maxλ ||β(λ)||1 and
write its value in the correct position to complete the table. [8]

Write your solutions here
λ β1 β2 β3 β4 β5 s

0 0.08267 -0.0257 -0.12478 -0.0834 -0.07588 1

1.10315 0.04204 0 -0.10618 -0.05665 -0.05547 0.66341

2.29358 0 0 -0.08636 -0.0304 -0.02125 0.35169

3.14574 0 0 -0.07455 -0.00839 0 0.21135

3.54098 0 0 -0.06557 0 0 0.1671

6 0 0 0 0 0 0

Computation of s involve the sums of absolute coefficients 0.39243, 0.26034,
0.13801, 0.08294, 0.06557, 0 which are then divided by the maximum 0.39243 to
give the values in the table.

Each correct value of s [1] and if all correct add [2] to Total (c) [8]

Seen in lectures and coursework.
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(b) Using your completed information, add the lasso paths to the following plot. In
your plot, label each path according to its corresponding variable. [11]

Write your solutions here

0.0 0.2 0.4 0.6 0.8 1.0
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00

||β(λ)||1/maxλ||β(λ)||1

β(
λ)

1

2

3

45

Each correct path [2] and if all correct add [1] to Total (d) [11]

Seen in lectures and coursework.
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Extra space for calculations
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End of Paper – An appendix of 2 pages follows.
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Matrices and their decompositions for data handling
Data set: X
Sample covariance matrix of a centered data set: Σ = 1

n−1 XTX.

Karhunen-Loeve decomposition of the covariance matrix: Σ = AΛAT.
The total (sample) variance is tr(Σ) = ∑

p
i=1 λi

Singular value decomposition of X: X = UDVT.

Object Size Notes

n - Number of observations

p - Number of variables

X n× p n > p

Σ p× p (i, j) element is the sample covariance between columns i, j of X

A p× p Eigenvectors ai are columns; ATA = AAT = I

Λ p× p Diagonal with eigenvalues λi of Σ

U n× p Eigenvectors ui are columns; UTU = I

D p× p Diagonal with singular eigenvalues di of X

V p× p Eigenvectors vi are columns; VTV = VVT = I

As in lectures, it is assumed that the rank of X is p so that XTX is invertible; that the
diagonal entries in either Λ or D are all distinct and positive numbers.
For a square full rank diagonal matrix W = diag(w1, . . . , wm), we have W = WT; that
WTW = WWT = W2 = diag(w2

1, . . . , w2
m) and W−1 = diag(1/w1, . . . , 1/wm).

Common distances dij between points xi and xj

Name Distance dij Equivalent notation

Manhattan ∑
p
l=1

∣∣xil − xjl
∣∣ ||xi − xj||1

Euclidean
√

∑
p
l=1

(
xil − xjl

)2 ||xi − xj||2 =
√
||xi − xj||22

Minkowski
(

∑
p
l=1

∣∣xil − xjl
∣∣m)1/m

||xi − xj||m

Mahalanobis
√(

xi· − xj·
)T

Σ−1
(
xi· − xj·

)
Absolute correlation

√
1−

∣∣ρij
∣∣

The Manhattan norm of a vector x is ||x||1 = ∑
p
i=1 |xi| (Manhattan distance between x

and the origin); and the Euclidean norm of x is ||x||2 =
√

∑
p
i=1 x2

i (Euclidean distance
between x and the origin).
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Classification

Name Comment

TP True positive

FP False positive

FN False negative

TN True negative

P = TP + FN Positives

N = FP + TN Negatives

TPR = TP
P True positive rate (Sensitivity or Recall)

FPR = FP
N False positive rate

FNR = FN
P False negative rate

TNR = TN
N True negative rate (Specificity)

TP
TP+FP Precision

2 Precision·Recall
Precision+Recall F1 score

TP+TN
P+N Accuracy

FP+FN
P+N Error rate

Penalised regression
Lasso criterion:

L =
1
2
||Y− Xβ||22 + λ||β||1

Ridge regression criterion:

R = ||Y− Xβ||22 + λ||β||22.

End of Appendix.
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