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Introduction
• For ground set Ω how can we measure subsets A ⊂ Ω ?

If Ω is finite or countable (e.g. {1, . . . , n},N,Z), assign µ(ω) ≥ 0
to each ω ∈ Ω, then let

µ(A) :=
∑
ω∈A

µ(ω).

for every A ⊂ Ω. This defines on the power set P(Ω) a function µ,
which is σ-additive,

µ

( ∞⋃
k=1

Ak

)
=

∞∑
k=1

µ(Ak), for (pairwise) disjoint Ak

nonnegative, 0 ≤ µ(A) ≤ ∞, and satisfies µ(∅) = 0.

• For uncountable spaces R,Rn, {0, 1}∞,R∞,C ([0, 1]) we want to
consider also more involved measures that may assign positive
measure to sets whose individual points receive measure zero.



Fundamental example: the Lebesgue measure on R

λ(I ) := b − a for interval I = (a, b],−∞ < a < b < ∞.
For (pairwise) disjoint intervals I1, I2, . . . let

λ

( ∞⋃
k=1

Ik

)
:=

∞∑
k=1

λ(Ik).

For single point λ(x) = λ({x}) = 0, thus since Q is countable also

λ(Q) =
∑
x∈Q

λ(x) = 0,

while λ((a, b] \Q) = b − a.

However, the Cantor set also has Lebesgue measure 0 but
cardinality continuum.

• But there is no good way to define λ for all subsets of R.



Example: the ‘coin-tossing’ space

Ω = {0, 1}∞ models an infinite series of independent Bernoulli
trials with probability p for outcome 1 and 1− p for outcome 0.
Then P(A) = (1− p)p for A = {ω = (ω1, ω2, . . .) : ω1 = 0, ω0 = 1}

To which A ⊂ Ω can we assign probability? For instance, what is
the probability of

A = {ω ∈ Ω : lim
n→∞

ω1 + · · ·+ ωn

n
= p}.



σ-algebras

Definition A family of sets F ⊂ P(Ω) is called σ-algebra if

(i) Ω ∈ F ,

(ii) A ∈ F ⇒ Ac ∈ F ,

(iii) Ak ∈ F (k ∈ N) disjoint sets ⇒
⋃∞

k=1 Ak ∈ F .

Then ∅ ∈ F , and F is closed under countable intersections.

Definition (Ω,F) is called measurable space, and A ∈ F are
called (F-)measurable sets or events in the probability context.



Examples

(i) {∅,Ω} (trivial σ-algebra),

(ii) P(Ω) (the power set),

(iii) for partition Ω = ∪∞
k=1Ak in disjoint nonempty subsets

A1,A2, . . ., the following system of union-sets is a σ-algebra:⋃
k∈J

Ak , J ⊂ N

(iv) for any family {Ft , t ∈ T} of σ-algebras (T arbitrary set)⋂
t∈T

Ft

is a σ-algebra,

(v) but the union of σ-algebras F1 ∪ F2 typically is not a
σ-algebra.



Generators

Definition For G ⊂ P(Ω), the intersection of all σ-algebras (in Ω)
containing G is called the σ-algebra generated by G, denoted σ(G).
This is the smallest σ-algebra containing G.

If F = σ(G) we call A ∈ G generators of F . A σ-algebra admitting
a countable family of generators is called separable.

Example Ω = {0, 1}∞, the 2k cylinder sets

A(ϵ1, . . . , ϵn) = {ω ∈ Ω : ω1 = ϵ1, . . . , ωn = ϵn}.

generate a finite σ-algebra Fn. We have filtration F1 ⊂ F2 ⊂ · · ·
The set A = {ω : (ω1 + · · ·+ ωn)/n converges as n → ∞} is not
in ∪nFn but A ∈ F for F = σ(∪nFn).



Borel σ-algebra

The σ-algebra of Borel sets in R, denoted B(R) is generated by
any of the families of sets:

(i) open sets,

(ii) closed sets,

(iii) intervals (a, b], with a, b ∈ R
(iv) intervals (a, b] with a, b ∈ Q (B(R) is separable!),
(v) halflines (−∞, b], where b ∈ R (alternativley, b ∈ Q)

For topological space X , the Borel σ-algebra B(X ) is the σ-algebra
generated by the family of open sets. Examples are
Rn,R∞,C ([a, b]), etc.



Criteria for σ-algebra: monotone class

• Let A be an algebra (closed under finite unions), and monotone
class: that is for Ak ∈ A

A1 ⊂ A2 ⊂ · · · ⇒
∞⋃
k=1

Ak ∈ A,

A1 ⊃ A2 ⊃ · · · ⇒
∞⋃
k=1

Ak ∈ A,

then A is a σ-algebra.



Criteria for σ-algebra: π − λ system

A family D of subsets in Ω is called a π-system, if closed under
finite intersections, that is

A1,A2 ∈ D ⇒ A1 ∩ A2 ∈ D.

A family D is called a λ-system if

(i) Ω ∈ D,

(ii) A,B ∈ D,A ⊂ B ⇒ B \ A ∈ D,

(iii) A1 ⊂ A2 ⊂ · · · ,An ∈ D ⇒
⋃∞

n=1 Ak ∈ D.

[Alternative conditions defining λ-system: (i), (ii’) closed under
taking complement set and (iii’) closed under disjoint countable
unions.]

Dynkin’s Theorem: a π-λ-system is a σ-algebra.



Definition of a measure

Definition A measure on a mesurable space (Ω,F) is a
nonnegative function µ : F → [0,∞] such that

(i) µ(∅) = 0,

(iii) for disjoint A1,A2, . . . , with An ∈ F ,

µ

( ∞⋃
n=1

An

)
=

∞∑
n=1

µ(An).

If µ(Ω) < ∞ the measure is called finite. If Ω = ∪∞
k=1Ωk where

µ(Ωk) < ∞, the measure is σ-finite.
If µ(Ω) = 1 we speak of a probability measure and may use
notation P.



Criteria for σ-additivity.

(i) Subadditivity: for A1,A2, . . . , with An ∈ F ,

µ

( ∞⋃
n=1

An

)
≤

∞∑
n=1

µ(An).

(iii) Monotonicity (increasing tower): A1 ⊂ A2 ⊂ · · · ⇒
µ (
⋃∞

n=1 An) = limn→∞ µ(An).

(iv) Monotonicity (decreasing tower): A1 ⊃ A2 ⊃ · · · ⇒
µ (
⋂∞

n=1 An) = limn→∞ µ(An).

(v) Continuity at ‘zero’:
A1 ⊃ A2 ⊃ · · · ,

⋂∞
n=1 An = ∅ ⇒ limn→∞ µ(An) = 0.



Uniqueness of measures

Theorem Let (Ω,F) be a measurable space, where F = σ(D) for
a π-system D. Suppose Ω = ∪kΩk , where Ωk ∈ D. If two
measures µ and ν coincide on D and ν(Ωk) = µ(Ωk) < ∞ then
µ(A) = ν(A) for all A ∈ F .

Idea of proof: the collection of A’s with µ(A) = ν(A) is a
λ-system, so Dynkin’s theorem applies.



Construction by extension

A σ-additive µ0 on algebra (or other set family) is called
pre-measure. For instance, the intervals I = (a, b] ⊂ R comprise an
algebra, and if I = ∪∞

n=1In then λ(I ) =
∑∞

n=1 λ(In).

Caratheodory Theorem: Suppose µ0 is a pre-measure on (Ω,A),
where A algebra. Then there exists a measure µ on (Ω, σ(A) such
that

µ(A) = µ0(A), A ∈ A.

Such measure µ0 is unique if for some Ωk ∈ A

Ω =
∞⋃
k=1

Ωk , Ω1 ⊂ Ω2 ⊂ · · ·

and µ0(Ωk) < ∞, k ∈ N.



Examples of extension

• Lebesgue measure on B(R) is the extension from the algebra of
intervals of the function ‘interval length’.

• For c.d.f. F on R there is a unique probability measure with
µ((−∞, x ]) = F (x), x ∈ R. The measure may have no atoms,
but have no density function (example: Cantor ladder).

• Lebesgue measure on B(Rn) is the extension from the algebra of
n-dimensional intervals (a1, b1]× · · · × (an, bn]. The intervals
(−∞, b1]× · · · × (−∞, bn] comprise a π-system.



• Bernoulli(p) measure on {0, 1} is the extension from the algebra
‘finite-dimensional’ cylinders A(ϵ1, . . . , ϵk). The event ‘frequency
of ‘1’s is p becomes probability 1 (strong Law of Large Numbers).

In the case p = 1/2 the function

ω 7→
∞∑
k=1

ωk

2k

establishes a measure-theoretic isomorphism between {0, 1}∞ with
Bernoulli(1/2) and [0, 1] with λ. In the case p ̸= 1/2 the
pushforward of Bernoulli(p) measure is singular relative to λ, that
is supported by a Borel set of zero Lebesgue measure.



Space R∞

The Borel σ-algebra B(R∞) is generated by finite-dimensional
cylinders

C (Bn) := {x ∈ R∞ : (x1, . . . , xn) ∈ Bn}, Bn ∈ B(Rn), n ∈ N,

where for Bn’s we can also take n-dim intervals or smaller family
Bn = (−∞, b1]× · · · × (−∞, bn], bi ∈ R (or bi ∈ Q).

Probability measures Pn on (Rn,B(Rn)), n ∈ N are called
consistent if

Pn+1(B
n × R) = Pn(B

n), Bn ∈ B(Rn).

Kolmogorov’s Extension Theorem: Suppose Pn are consistent
probability measures on (Rn,B(Rn)). Then there exists a unique
probability measure P on (R∞,B(R∞)) such that

P(C (Bn)) = Pn(B
n), Bn ∈ B(Rn), n ∈ N.



Lebesgue measurable sets

Definition A family of sets S ⊂ P(Ω) is a semiring is S is closed
under finite intersections and

A,B ∈ S ⇒ A \ B = C1 ∪ · · · ∪ Cn,

for some n and disjoint Ck ∈ S.
For pre-measure µ on S define exterior measure

µ∗(A) = inf
∞∑
n=1

µ(An)

where A ⊂ ∪nAn, and An ∈ S disjoint.
Clearly, µ∗(A) = µ(A) for A ∈ S.



Set A ⊂ Ω is called Lebesgue-measurable if for every ϵ > 0 there
exists B ∈ S such that

µ∗(A∆B) < ϵ.

Denote this family L(S, µ).

Lebesgue’s Theorem: The family L(S, µ) is a σ-algebra and µ∗ is
a measure on L(S, µ).

Example For S = B(R) the σ-algebra of Lebesgue-measurable sets
is

L(B(R), λ) = σ(B(R) ∪N ),

where N is the family of nullsets A, such that A ⊂ B for some B
Borel set with λ(B) = 0.
This sort of measure extension by including all nullsets in the
system of generators is called measure completion.


