MTP24, Lecture 1: Basics of Measure Theory

Alexander Gnedin

Queen Mary, University of London

https://qmplus.qmul.ac.uk/course/view.php?id=16298

Introduction

- For ground set Ω how can we measure subsets $A \subset \Omega$?

If Ω is finite or countable (e.g. $\{1, \ldots, n\}, \mathbb{N}, \mathbb{Z}$), assign $\mu(\omega) \geq 0$ to each $\omega \in \Omega$, then let

$$
\mu(A):=\sum_{\omega \in A} \mu(\omega) .
$$

for every $A \subset \Omega$. This defines on the power set $\mathcal{P}(\Omega)$ a function μ, which is σ-additive,

$$
\mu\left(\bigcup_{k=1}^{\infty} A_{k}\right)=\sum_{k=1}^{\infty} \mu\left(A_{k}\right), \text { for (pairwise) disjoint } A_{k}
$$

nonnegative, $0 \leq \mu(A) \leq \infty$, and satisfies $\mu(\varnothing)=0$.

- For uncountable spaces $\mathbb{R}, \mathbb{R}^{n},\{0,1\}^{\infty}, \mathbb{R}^{\infty}, C([0,1])$ we want to consider also more involved measures that may assign positive measure to sets whose individual points receive measure zero.

Fundamental example: the Lebesgue measure on \mathbb{R}

$\lambda(I):=b-a$ for interval $I=(a, b],-\infty<a<b<\infty$.
For (pairwise) disjoint intervals I_{1}, I_{2}, \ldots let

$$
\lambda\left(\bigcup_{k=1}^{\infty} I_{k}\right):=\sum_{k=1}^{\infty} \lambda\left(I_{k}\right)
$$

For single point $\lambda(x)=\lambda(\{x\})=0$, thus since \mathbb{Q} is countable also

$$
\lambda(\mathbb{Q})=\sum_{x \in \mathbb{Q}} \lambda(x)=0
$$

while $\lambda((a, b] \backslash \mathbb{Q})=b-a$.
However, the Cantor set also has Lebesgue measure 0 but cardinality continuum.

- But there is no good way to define λ for all subsets of \mathbb{R}.

Example: the 'coin-tossing' space

$\Omega=\{0,1\}^{\infty}$ models an infinite series of independent Bernoulli trials with probability p for outcome 1 and $1-p$ for outcome 0 . Then $\mathbb{P}(A)=(1-p) p$ for $A=\left\{\omega=\left(\omega_{1}, \omega_{2}, \ldots\right): \omega_{1}=0, \omega_{0}=1\right\}$

To which $A \subset \Omega$ can we assign probability? For instance, what is the probability of

$$
A=\left\{\omega \in \Omega: \lim _{n \rightarrow \infty} \frac{\omega_{1}+\cdots+\omega_{n}}{n}=p\right\}
$$

σ-algebras

Definition A family of sets $\mathcal{F} \subset \mathcal{P}(\Omega)$ is called σ-algebra if
(i) $\Omega \in \mathcal{F}$,
(ii) $A \in \mathcal{F} \Rightarrow A^{c} \in \mathcal{F}$,
(iii) $A_{k} \in \mathcal{F}(k \in \mathbb{N})$ disjoint sets $\Rightarrow \bigcup_{k=1}^{\infty} A_{k} \in \mathcal{F}$.

Then $\varnothing \in \mathcal{F}$, and \mathcal{F} is closed under countable intersections.
Definition (Ω, \mathcal{F}) is called measurable space, and $A \in \mathcal{F}$ are called $(\mathcal{F}$ - $)$ measurable sets or events in the probability context.

Examples

(i) $\{\varnothing, \Omega\}$ (trivial σ-algebra),
(ii) $\mathcal{P}(\Omega)$ (the power set),
(iii) for partition $\Omega=\cup_{k=1}^{\infty} A_{k}$ in disjoint nonempty subsets A_{1}, A_{2}, \ldots, the following system of union-sets is a σ-algebra:

$$
\bigcup_{k \in J} A_{k}, \quad J \subset \mathbb{N}
$$

(iv) for any family $\left\{\mathcal{F}_{t}, t \in T\right\}$ of σ-algebras (T arbitrary set)

$$
\bigcap_{t \in T} \mathcal{F}_{t}
$$

is a σ-algebra,
(v) but the union of σ-algebras $\mathcal{F}_{1} \cup \mathcal{F}_{2}$ typically is not a σ-algebra.

Generators

Definition For $\mathcal{G} \subset \mathcal{P}(\Omega)$, the intersection of all σ-algebras (in Ω) containing \mathcal{G} is called the σ-algebra generated by \mathcal{G}, denoted $\sigma(\mathcal{G})$. This is the smallest σ-algebra containing \mathcal{G}.
If $\mathcal{F}=\sigma(\mathcal{G})$ we call $A \in \mathcal{G}$ generators of \mathcal{F}. A σ-algebra admitting a countable family of generators is called separable.
Example $\Omega=\{0,1\}^{\infty}$, the 2^{k} cylinder sets

$$
A\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)=\left\{\omega \in \Omega: \omega_{1}=\epsilon_{1}, \ldots, \omega_{n}=\epsilon_{n}\right\}
$$

generate a finite σ-algebra \mathcal{F}_{n}. We have filtration $\mathcal{F}_{1} \subset \mathcal{F}_{2} \subset \cdots$ The set $A=\left\{\omega:\left(\omega_{1}+\cdots+\omega_{n}\right) / n\right.$ converges as $\left.n \rightarrow \infty\right\}$ is not in $\cup_{n} \mathcal{F}_{n}$ but $A \in \mathcal{F}$ for $\mathcal{F}=\sigma\left(\cup_{n} \mathcal{F}_{n}\right)$.

Borel σ-algebra

The σ-algebra of Borel sets in \mathbb{R}, denoted $\mathcal{B}(\mathbb{R})$ is generated by any of the families of sets:
(i) open sets,
(ii) closed sets,
(iii) intervals $(a, b]$, with $a, b \in \mathbb{R}$
(iv) intervals $(a, b]$ with $a, b \in \mathbb{Q}(\mathcal{B}(\mathbb{R})$ is separable! $)$,
(v) halflines $(-\infty, b]$, where $b \in \mathbb{R}$ (alternativley, $b \in \mathbb{Q}$)

For topological space \mathcal{X}, the Borel σ-algebra $\mathcal{B}(\mathcal{X})$ is the σ-algebra generated by the family of open sets. Examples are $\mathbb{R}^{n}, \mathbb{R}^{\infty}, C([a, b])$, etc.

Criteria for σ-algebra: monotone class

- Let \mathcal{A} be an algebra (closed under finite unions), and monotone class: that is for $A_{k} \in \mathcal{A}$

$$
\begin{aligned}
& A_{1} \subset A_{2} \subset \cdots \Rightarrow \bigcup_{k=1}^{\infty} A_{k} \in \mathcal{A} \\
& A_{1} \supset A_{2} \supset \cdots \Rightarrow \bigcup_{k=1}^{\infty} A_{k} \in \mathcal{A}
\end{aligned}
$$

then \mathcal{A} is a σ-algebra.

Criteria for σ-algebra: $\pi-\lambda$ system

A family \mathcal{D} of subsets in Ω is called a π-system, if closed under finite intersections, that is

$$
A_{1}, A_{2} \in \mathcal{D} \Rightarrow A_{1} \cap A_{2} \in \mathcal{D}
$$

A family \mathcal{D} is called a λ-system if
(i) $\Omega \in \mathcal{D}$,
(ii) $A, B \in \mathcal{D}, A \subset B \Rightarrow B \backslash A \in \mathcal{D}$,
(iii) $A_{1} \subset A_{2} \subset \cdots, A_{n} \in \mathcal{D} \Rightarrow \bigcup_{n=1}^{\infty} A_{k} \in \mathcal{D}$.
[Alternative conditions defining λ-system: (i), (ii') closed under taking complement set and (iii') closed under disjoint countable unions.]
Dynkin's Theorem: a π - λ-system is a σ-algebra.

Definition of a measure

Definition A measure on a mesurable space (Ω, \mathcal{F}) is a nonnegative function $\mu: \mathcal{F} \rightarrow[0, \infty]$ such that
(i) $\mu(\varnothing)=0$,
(iii) for disjoint A_{1}, A_{2}, \ldots, with $A_{n} \in \mathcal{F}$,

$$
\mu\left(\bigcup_{n=1}^{\infty} A_{n}\right)=\sum_{n=1}^{\infty} \mu\left(A_{n}\right)
$$

If $\mu(\Omega)<\infty$ the measure is called finite. If $\Omega=\cup_{k=1}^{\infty} \Omega_{k}$ where $\mu\left(\Omega_{k}\right)<\infty$, the measure is σ-finite.
If $\mu(\Omega)=1$ we speak of a probability measure and may use notation \mathbb{P}.

Criteria for σ-additivity.

(i) Subadditivity: for A_{1}, A_{2}, \ldots, with $A_{n} \in \mathcal{F}$,

$$
\mu\left(\bigcup_{n=1}^{\infty} A_{n}\right) \leq \sum_{n=1}^{\infty} \mu\left(A_{n}\right)
$$

(iii) Monotonicity (increasing tower): $A_{1} \subset A_{2} \subset \cdots \Rightarrow$ $\mu\left(\bigcup_{n=1}^{\infty} A_{n}\right)=\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)$.
(iv) Monotonicity (decreasing tower): $A_{1} \supset A_{2} \supset \cdots \Rightarrow$ $\mu\left(\bigcap_{n=1}^{\infty} A_{n}\right)=\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)$.
(v) Continuity at 'zero':

$$
A_{1} \supset A_{2} \supset \cdots, \bigcap_{n=1}^{\infty} A_{n}=\varnothing \Rightarrow \lim _{n \rightarrow \infty} \mu\left(A_{n}\right)=0
$$

Uniqueness of measures

Theorem Let (Ω, \mathcal{F}) be a measurable space, where $\mathcal{F}=\sigma(\mathcal{D})$ for a π-system \mathcal{D}. Suppose $\Omega=\cup_{k} \Omega_{k}$, where $\Omega_{k} \in \mathcal{D}$. If two measures μ and ν coincide on \mathcal{D} and $\nu\left(\Omega_{k}\right)=\mu\left(\Omega_{k}\right)<\infty$ then $\mu(A)=\nu(A)$ for all $A \in \mathcal{F}$.
Idea of proof: the collection of A 's with $\mu(A)=\nu(A)$ is a λ-system, so Dynkin's theorem applies.

Construction by extension

A σ-additive μ_{0} on algebra (or other set family) is called pre-measure. For instance, the intervals $I=(a, b] \subset \mathbb{R}$ comprise an algebra, and if $I=\cup_{n=1}^{\infty} I_{n}$ then $\lambda(I)=\sum_{n=1}^{\infty} \lambda\left(I_{n}\right)$.

Caratheodory Theorem: Suppose μ_{0} is a pre-measure on (Ω, \mathcal{A}), where \mathcal{A} algebra. Then there exists a measure μ on $(\Omega, \sigma(\mathcal{A})$ such that

$$
\mu(A)=\mu_{0}(A), \quad A \in \mathcal{A}
$$

Such measure μ_{0} is unique if for some $\Omega_{k} \in \mathcal{A}$

$$
\Omega=\bigcup_{k=1}^{\infty} \Omega_{k}, \quad \Omega_{1} \subset \Omega_{2} \subset \cdots
$$

and $\mu_{0}\left(\Omega_{k}\right)<\infty, k \in \mathbb{N}$.

Examples of extension

- Lebesgue measure on $\mathcal{B}(\mathbb{R})$ is the extension from the algebra of intervals of the function 'interval length'.
- For c.d.f. F on \mathbb{R} there is a unique probability measure with $\mu((-\infty, x])=F(x), \quad x \in \mathbb{R}$. The measure may have no atoms, but have no density function (example: Cantor ladder).
- Lebesgue measure on $\mathcal{B}\left(\mathbb{R}^{n}\right)$ is the extension from the algebra of n-dimensional intervals $\left(a_{1}, b_{1}\right] \times \cdots \times\left(a_{n}, b_{n}\right]$. The intervals $\left(-\infty, b_{1}\right] \times \cdots \times\left(-\infty, b_{n}\right]$ comprise a π-system.
- Bernoulli (p) measure on $\{0,1\}$ is the extension from the algebra 'finite-dimensional' cylinders $A\left(\epsilon_{1}, \ldots, \epsilon_{k}\right)$. The event 'frequency of ' 1 's is p becomes probability 1 (strong Law of Large Numbers). In the case $p=1 / 2$ the function

$$
\omega \mapsto \sum_{k=1}^{\infty} \frac{\omega_{k}}{2^{k}}
$$

establishes a measure-theoretic isomorphism between $\{0,1\}^{\infty}$ with Bernoulli $(1 / 2)$ and $[0,1]$ with λ. In the case $p \neq 1 / 2$ the pushforward of Bernoulli (p) measure is singular relative to λ, that is supported by a Borel set of zero Lebesgue measure.

Space \mathbb{R}^{∞}

The Borel σ-algebra $\mathcal{B}\left(\mathbb{R}^{\infty}\right)$ is generated by finite-dimensional cylinders

$$
C\left(B^{n}\right):=\left\{x \in \mathbb{R}^{\infty}:\left(x_{1}, \ldots, x_{n}\right) \in B^{n}\right\}, \quad B^{n} \in \mathcal{B}\left(\mathbb{R}^{n}\right), n \in \mathbb{N}
$$

where for B^{n} 's we can also take n-dim intervals or smaller family $B^{n}=\left(-\infty, b_{1}\right] \times \cdots \times\left(-\infty, b_{n}\right], b_{i} \in \mathbb{R}\left(\right.$ or $\left.b_{i} \in \mathbb{Q}\right)$.

Probability measures P_{n} on $\left(\mathbb{R}^{n}, \mathcal{B}\left(\mathbb{R}^{n}\right)\right), n \in \mathbb{N}$ are called consistent if

$$
P_{n+1}\left(B^{n} \times \mathbb{R}\right)=P_{n}\left(B^{n}\right), \quad B^{n} \in \mathcal{B}\left(\mathbb{R}^{n}\right)
$$

Kolmogorov's Extension Theorem: Suppose P_{n} are consistent probability measures on $\left(\mathbb{R}^{n}, \mathcal{B}\left(\mathbb{R}^{n}\right)\right)$. Then there exists a unique probability measure \mathbb{P} on $\left(\mathbb{R}^{\infty}, \mathcal{B}\left(\mathbb{R}^{\infty}\right)\right)$ such that

$$
\mathbb{P}\left(C\left(B^{n}\right)\right)=P_{n}\left(B^{n}\right), \quad B^{n} \in \mathcal{B}\left(\mathbb{R}^{n}\right), \quad n \in \mathbb{N}
$$

Lebesgue measurable sets

Definition A family of sets $\mathcal{S} \subset \mathcal{P}(\Omega)$ is a semiring is \mathcal{S} is closed under finite intersections and

$$
A, B \in \mathcal{S} \Rightarrow A \backslash B=C_{1} \cup \cdots \cup C_{n},
$$

for some n and disjoint $C_{k} \in \mathcal{S}$.
For pre-measure μ on \mathcal{S} define exterior measure

$$
\mu^{*}(A)=\inf \sum_{n=1}^{\infty} \mu\left(A_{n}\right)
$$

where $A \subset \cup_{n} A_{n}$, and $A_{n} \in \mathcal{S}$ disjoint.
Clearly, $\mu^{*}(A)=\mu(A)$ for $A \in \mathcal{S}$.

Set $A \subset \Omega$ is called Lebesgue-measurable if for every $\epsilon>0$ there exists $B \in \mathcal{S}$ such that

$$
\mu^{*}(A \Delta B)<\epsilon .
$$

Denote this family $L(\mathcal{S}, \mu)$.
Lebesgue's Theorem: The family $L(\mathcal{S}, \mu)$ is a σ-algebra and μ^{*} is a measure on $L(\mathcal{S}, \mu)$.
Example For $\mathcal{S}=\mathcal{B}(\mathbb{R})$ the σ-algebra of Lebesgue-measurable sets is

$$
L(\mathcal{B}(\mathbb{R}), \lambda)=\sigma(\mathcal{B}(\mathbb{R}) \cup \mathcal{N})
$$

where \mathcal{N} is the family of nullsets A, such that $A \subset B$ for some B Borel set with $\lambda(B)=0$.
This sort of measure extension by including all nullsets in the system of generators is called measure completion.

