LTCC: Measure Theoretic Probability

Alexander Gnedin

Queen Mary, University of London

website: google for LTCC - London Taught Course Centre (Queen Mary Courses)

- 1. Basics of Measure Theory
- 2. Random Variables, Independence, Integration
- 3. Conditioning, Martingales and Convergence
- 4. The Brownian Motion, Functional Convergence
- 5. The Invariance Principle

MTP, Lecture 1: Basics of Measure Theory

Introduction

• For ground set Ω how can we *measure* subsets $A \subset \Omega$?

If Ω is finite or countable (e.g. $\{1, \ldots, n\}, \mathbb{N}, \mathbb{Z}$), assign $\mu(\omega) \ge 0$ to each $\omega \in \Omega$, then let

$$\mu(A) := \sum_{\omega \in A} \mu(\omega).$$

for every $A \subset \Omega$. This defines on the power set $\mathcal{P}(\Omega)$ a function μ , which is σ -additive,

$$\mu\left(\bigcup_{k=1}^{\infty}A_k\right) = \sum_{k=1}^{\infty}\mu(A_k), \text{ for (pairwise) disjoint } A_k$$

nonnegative, $0 \le \mu(A) \le \infty$, and satisfies $\mu(\varnothing) = 0$.

• For uncountable spaces $\mathbb{R}, \mathbb{R}^n, \{0,1\}^{\infty}, \mathbb{R}^{\infty}, C([0,1])$ we want to consider also more involved measures that may assign positive measure to sets whose individual points receive measure zero.

Fundamental example: the Lebesgue measure on $\mathbb R$

 $\lambda(I) := b - a$ for interval $I = (a, b], -\infty < a < b < \infty$. For (pairwise) disjoint intervals I_1, I_2, \ldots let

$$\lambda\left(\bigcup_{k=1}^{\infty}I_k\right):=\sum_{k=1}^{\infty}\lambda(I_k).$$

For single point $\lambda(x) = \lambda(\{x\}) = 0$, thus since \mathbb{Q} is countable also

$$\lambda(\mathbb{Q}) = \sum_{x \in \mathbb{Q}} \lambda(x) = 0,$$

while $\lambda((a, b] \setminus \mathbb{Q}) = b - a$.

However, the Cantor set also has Lebesgue measure 0 but cardinality continuum.

• But there is no good way to define λ for *all* subsets of \mathbb{R} .

Example: the 'coin-tossing' space

 $\Omega = \{0,1\}^{\infty}$ models an infinite series of independent Bernoulli trials with probability p for outcome 1 and 1 - p for outcome 0. Then $\mathbb{P}(A) = (1-p)p$ for $A = \{\omega = (\omega_1, \omega_2, \ldots) : \omega_1 = 0, \omega_0 = 1\}$

To which $A \subset \Omega$ can we assign probability? For instance, what is the probability of

$$A = \{ \omega \in \Omega : \lim_{n \to \infty} \frac{\omega_1 + \dots + \omega_n}{n} = p \}.$$

σ -algebras

Definition A family of sets F ⊂ P(Ω) is called σ-algebra if
(i) Ω ∈ F,
(ii) A ∈ F ⇒ A^c ∈ F,
(iii) A_k ∈ F (k ∈ N) disjoint sets ⇒ U[∞]_{k=1} A_k ∈ F.

Then $\emptyset \in \mathcal{F}$, and \mathcal{F} is closed under countable intersections.

Definition (Ω, \mathcal{F}) is called *measurable space*, and $A \in \mathcal{F}$ are called $(\mathcal{F}$ -)*measurable sets* or *events* in the probability context.

Examples

- (i) $\{\emptyset, \Omega\}$ (trivial σ -algebra),
- (ii) $\mathcal{P}(\Omega)$ (the power set),
- (iii) for partition $\Omega = \bigcup_{k=1}^{\infty} A_k$ in disjoint nonempty subsets A_1, A_2, \ldots , the following system of union-sets is a σ -algebra:

$$\bigcup_{k\in J}A_k, \quad J\subset\mathbb{N}$$

(iv) for any family $\{\mathcal{F}_t, t \in T\}$ of σ -algebras (T arbitrary set)

$$\bigcap_{t\in T}\mathcal{F}_t$$

is a σ -algebra,

(v) but the union of σ -algebras $\mathcal{F}_1 \cup \mathcal{F}_2$ typically is not a σ -algebra.

Generators

Definition For $\mathcal{G} \subset \mathcal{P}(\Omega)$, the intersection of all σ -algebras (in Ω) containing \mathcal{G} is called the σ -algebra *generated* by \mathcal{G} , denoted $\sigma(\mathcal{G})$. This is the smallest σ -algebra containing \mathcal{G} .

If $\mathcal{F} = \sigma(\mathcal{G})$ we call $A \in \mathcal{G}$ generators of \mathcal{F} . A σ -algebra admitting a countable family of generators is called *separable*.

Example $\Omega = \{0,1\}^{\infty}$, the 2^k cylinder sets

$$A(\epsilon_1,\ldots,\epsilon_n)=\{\omega\in\Omega:\omega_1=\epsilon_1,\ldots,\omega_n=\epsilon_n\}.$$

generate a finite σ -algebra \mathcal{F}_n . We have filtration $\mathcal{F}_1 \subset \mathcal{F}_2 \subset \cdots$ The set $A = \{\omega : (\omega_1 + \cdots + \omega_n)/n \text{ converges as } n \to \infty\}$ is not in $\cup_n \mathcal{F}_n$ but $A \in \mathcal{F}$ for $\mathcal{F} = \sigma(\cup_n \mathcal{F}_n)$.

Borel σ -algebra

The σ -algebra of *Borel* sets in \mathbb{R} , denoted $\mathcal{B}(\mathbb{R})$ is generated by any of the families of sets:

- (i) open sets,
- (ii) closed sets,
- (iii) intervals (a, b], with $a, b \in \mathbb{R}$
- (iv) intervals (a, b] with $a, b \in \mathbb{Q}$ ($\mathcal{B}(\mathbb{R})$ is separable!),
- (v) halflines $(-\infty, b]$, where $b \in \mathbb{R}$ (alternativley, $b \in \mathbb{Q}$)

For topological space \mathcal{X} , the Borel σ -algebra $\mathcal{B}(\mathcal{X})$ is the σ -algebra generated by the family of open sets. Examples are $\mathbb{R}^n, \mathbb{R}^\infty, C([a, b])$, etc.

Criteria for σ -algebra: monotone class

• Let A be an algebra (closed under *finite* unions), and *monotone* class: that is for $A_k \in A$

$$A_1 \subset A_2 \subset \cdots \Rightarrow \bigcup_{k=1}^{\infty} A_k \in \mathcal{A},$$
$$A_1 \supset A_2 \supset \cdots \Rightarrow \bigcup_{k=1}^{\infty} A_k \in \mathcal{A},$$

then \mathcal{A} is a σ -algebra.

Criteria for σ -algebra: $\pi - \lambda$ system

A family \mathcal{D} of subsets in Ω is called a π -system, if closed under finite intersections, that is

$$A_1, A_2 \in \mathcal{D} \Rightarrow A_1 \cap A_2 \in \mathcal{D}.$$

A family \mathcal{D} is called a λ -system if (i) $\Omega \in \mathcal{D}$, (ii) $A, B \in \mathcal{D}, A \subset B \Rightarrow B \setminus A \in \mathcal{D}$, (iii) $A_1 \subset A_2 \subset \cdots \Rightarrow \bigcup_{k=1}^{\infty} A_k \in \mathcal{D}$.

Dynkin's Theorem: a π - λ -system is a σ -algebra.

Definition of a measure

Definition A *measure* on a mesurable space (Ω, \mathcal{F}) is a nonnegative function $\mu : \mathcal{F} \to [0, \infty]$ such that

(i) $\mu(\emptyset) = 0$, (iii) for disjoint A_1, A_2, \dots , with $A_n \in \mathcal{F}$,

$$\mu\left(\bigcup_{n=1}^{\infty}A_n\right)=\sum_{n=1}^{\infty}\mu(A_n).$$

If $\mu(\Omega) < \infty$ the measure is called *finite*. If $\Omega = \bigcup_{k=1}^{\infty} \Omega_k$ where $\mu(\Omega_k) < \infty$, the measure is σ -finite. If $\mu(\Omega) = 1$ we speak of a *probability measure* and may use notation \mathbb{P} .

Criteria for σ -additivity.

(i) Subadditivity: for A_1, A_2, \ldots , with $A_n \in \mathcal{F}$,

$$\mu\left(\bigcup_{n=1}^{\infty}A_n\right)\leq\sum_{n=1}^{\infty}\mu(A_n).$$

- (iii) Monotonicity (increasing tower): $A_1 \subset A_2 \subset \cdots \Rightarrow \mu(\bigcup_{n=1}^{\infty} A_n) = \lim_{n \to \infty} \mu(A_n).$
- (iv) Monotonicity (decreasing tower): $A_1 \supset A_2 \supset \cdots \Rightarrow \mu(\bigcap_{n=1}^{\infty} A_n) = \lim_{n \to \infty} \mu(A_n).$
- (v) Continuity at 'zero': $A_1 \supset A_2 \supset \cdots, \bigcap_{n=1}^{\infty} A_n = \emptyset \Rightarrow \lim_{n \to \infty} \mu(A_n) = 0.$

Theorem Let (Ω, \mathcal{F}) be a measurable space, where $\mathcal{F} = \sigma(\mathcal{D})$ for a π -system \mathcal{D} . Suppose $\Omega = \bigcup_k \Omega_k$, where $\Omega_k \in \mathcal{D}$. If two measures μ and ν coincide on \mathcal{D} and $\nu(\Omega_k) = \mu(\Omega_k) < \infty$ then $\mu(A) = \nu(A)$ for all $A \in \mathcal{F}$.

Idea of proof: the collection of A's with $\mu(A) = \nu(A)$ is a λ -system, so Dynkin's theorem applies.

Construction by extension

A σ -additive μ_0 on algebra (or other set family) is called *pre-measure*. For instance, the intervals $I = (a, b] \subset \mathbb{R}$ comprise an algebra, and if $I = \bigcup_{n=1}^{\infty} I_n$ then $\lambda(I) = \sum_{n=1}^{\infty} \lambda(I_n)$.

Caratheodory Theorem: Suppose μ_0 is a pre-measure on (Ω, \mathcal{A}) , where \mathcal{A} algebra. Then there exists a measure μ on $(\Omega, \sigma(\mathcal{A})$ such that

$$\mu(A) = \mu_0(A), \quad A \in \mathcal{A}.$$

Such measure μ_0 is unique if

$$\Omega = \bigcup_{k=1}^{\infty} \Omega_k, \Omega_k \in \mathcal{A}, \Omega_1 \subset \Omega_2 \subset \cdots$$

and $\mu_0(\Omega_k) < \infty, k \in \mathbb{N}$.

Examples of extension

- Lebesgue measure on $\mathcal{B}(\mathbb{R})$ is the extension from the algebra of intervals of the function 'interval length'.
- For c.d.f. F on \mathbb{R} there is a unique probability measure with $\mu((-\infty, x]) = F(x), x \in \mathbb{R}$. The measure may have no atoms, but have no density function (example: Cantor ladder).
- Lebesgue measure on $\mathcal{B}(\mathbb{R}^n)$ is the extension from the algebra of *n*-dimensional intervals $(a_1, b_1] \times \cdots \times (a_n, b_n]$. The intervals $(-\infty, b_1] \times \cdots \times (-\infty, b_n]$ comprise a π -system.

• Bernoulli(*p*) measure on $\{0, 1\}$ is the extension from the algebra 'finite-dimensional' cylinders $A(\epsilon_1, \ldots, \epsilon_k)$. The event 'frequency of '1's is *p* becomes probability 1 (strong Law of Large Numbers).

In the case p = 1/2 the function

$$\omega\mapsto \sum_{k=1}^{\infty}\frac{\omega_k}{2^k}$$

establishes a measure-theoretic isomorphism between $\{0,1\}^{\infty}$ with Bernoulli(1/2) and [0,1] with λ . In the case $p \neq 1/2$ the pushforward of Bernoulli(p) measure is *singular* relative to λ , that is supported by a Borel set of zero Lebesgue measure.

Space \mathbb{R}^{∞}

The Borel σ -algebra $\mathcal{B}(\mathbb{R}^{\infty})$ is generated by finite-dimensional cylinders

$$C(B^n) := \{x \in \mathbb{R}^\infty : (x_1, \ldots, x_n) \in B^n\}, \quad B^n \in \mathcal{B}(\mathbb{R}^n), \ n \in \mathbb{N},$$

where for B^n 's we can also take *n*-dim intervals or smaller family $B^n = (-\infty, b_1] \times \cdots \times (-\infty, b_n], b_i \in \mathbb{R}$ (or $b_i \in \mathbb{Q}$).

Probability measures P_n on $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n)), n \in \mathbb{N}$ are called *consistent* if

$$P_{n+1}(B^n \times \mathbb{R}) = P_n(B^n), \quad B^n \in \mathcal{B}(\mathbb{R}^n).$$

Kolmogorov's Extension Theorem: Suppose P_n are consistent probability measures on $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$. Then there exists a unique probability measure \mathbb{P} on $(\mathbb{R}^\infty, \mathcal{B}(\mathbb{R}^\infty))$ such that

$$\mathbb{P}(\mathcal{C}(\mathcal{B}^n)) = \mathcal{P}_n(\mathcal{B}^n), \quad \mathcal{B}^n \in \mathcal{B}(\mathbb{R}^n), \quad n \in \mathbb{N}.$$

Lebesgue measurable sets

Definition A family of sets $S \subset \mathcal{P}(\Omega)$ is a *semiring* is S is closed under finite intersections and

$$A, B \in \mathcal{S} \Rightarrow A \setminus B = C_1 \cup \cdots \cup C_n,$$

for some *n* and disjoint $C_k \in S$. For pre-measure μ on S define *exterior measure*

$$\mu^*(A) = \inf \sum_{n=1}^{\infty} \mu(A_n)$$

where $A \subset \bigcup_n A_n$, and $A_n \in S$ disjoint. Clearly, $\mu^*(A) = \mu(A)$ for $A \in S$. Set $A \subset \Omega$ is called *Lebesgue-measurable* if for every $\epsilon > 0$ there exists $B \in S$ such that

 $\mu^*(A\Delta B) < \epsilon.$

Denote this family $L(S, \mu)$.

Lebesgue's Theorem: The family $L(S, \mu)$ is a σ -algebra and μ^* is a measure on $L(S, \mu)$.

Example For $S = \mathcal{B}(\mathbb{R})$ the σ -algebra of Lebesgue-measurable sets is

$$L(\mathcal{B}(\mathbb{R}),\lambda) = \sigma(\mathcal{B}(\mathbb{R}) \cup \mathcal{N}),$$

where \mathcal{N} is the family of sets $A \subset B$, where B Borel set with $\lambda(B)$. This sort of measure extension is called *measure completion*.