LTCC: Measure Theoretic Probability

Alexander Gnedin

Queen Mary, University of London

website: google for LTCC - London Taught Course Centre (Queen Mary Courses)

- 1. Basics of Measure Theory
- 2. Random Variables, Independence, Integration
- 3. Conditioning, Martingales and Convergence
- 4. The Brownian Motion, Functional Convergence
- 5. The Invariance Principle

MTP, Lecture 1: Basics of Measure Theory

Introduction

• For ground set Ω how can we *measure* subsets $A \subset \Omega$?

If Ω is finite or countable (e.g. $\{1,\ldots,n\},\mathbb{N},\mathbb{Z}$), assign $\mu(\omega) \geq 0$ to each $ω ∈ Ω$, then let

$$
\mu(A):=\sum_{\omega\in A}\mu(\omega).
$$

for every $A \subset \Omega$. This defines on the power set $\mathcal{P}(\Omega)$ a function μ , which is σ -additive.

$$
\mu\left(\bigcup_{k=1}^{\infty} A_k\right) = \sum_{k=1}^{\infty} \mu(A_k), \text{ for (pairwise) disjoint } A_k
$$

nonnegative, $0 \leq \mu(A) \leq \infty$, and satisfies $\mu(\emptyset) = 0$.

• For uncountable spaces $\mathbb{R}, \mathbb{R}^n, \{0,1\}^{\infty}, \mathbb{R}^{\infty}, C([0,1])$ we want to consider also more involved measures that may assign positive measure to sets whose individual points receive measure zero.

Fundamental example: the Lebesgue measure on $\mathbb R$

 $\lambda(I) := b - a$ for interval $I = (a, b], -\infty < a < b < \infty$. For (pairwise) disjoint intervals I_1, I_2, \ldots let

$$
\lambda\left(\bigcup_{k=1}^{\infty}I_k\right):=\sum_{k=1}^{\infty}\lambda(I_k).
$$

For single point $\lambda(x) = \lambda({x}) = 0$, thus since $\mathbb Q$ is countable also

$$
\lambda(\mathbb{Q})=\sum_{x\in\mathbb{Q}}\lambda(x)=0,
$$

while $\lambda((a, b] \setminus \mathbb{O}) = b - a$.

However, the Cantor set also has Lebesgue measure 0 but cardinality continuum.

• But there is no good way to define λ for all subsets of R.

Example: the 'coin-tossing' space

 $\Omega = \{0,1\}^{\infty}$ models an infinite series of independent Bernoulli trials with probability p for outcome 1 and $1 - p$ for outcome 0. Then $\mathbb{P}(A) = (1-p)p$ for $A = {\omega = (\omega_1, \omega_2, ...) : \omega_1 = 0, \omega_0 = 1}$

To which $A \subset \Omega$ can we assign probability? For instance, what is the probability of

$$
A = \{\omega \in \Omega : \lim_{n \to \infty} \frac{\omega_1 + \cdots + \omega_n}{n} = p\}.
$$

σ-algebras

Definition A family of sets $\mathcal{F} \subset \mathcal{P}(\Omega)$ is called σ -algebra if (i) $\Omega \in \mathcal{F}$. (ii) $A \in \mathcal{F} \Rightarrow A^c \in \mathcal{F}$, (iii) $A_k \in \mathcal{F} \quad (k \in \mathbb{N})$ disjoint sets $\Rightarrow \bigcup_{k=1}^{\infty} A_k \in \mathcal{F}$.

Then $\emptyset \in \mathcal{F}$, and \mathcal{F} is closed under countable intersections.

Definition (Ω, \mathcal{F}) is called *measurable space*, and $A \in \mathcal{F}$ are called $(F-)$ measurable sets or events in the probability context.

Examples

- (i) $\{\emptyset, \Omega\}$ (trivial σ -algebra),
- (ii) $\mathcal{P}(\Omega)$ (the power set),
- (iii) for partition $\Omega = \cup_{k=1}^{\infty} A_k$ in disjoint nonempty subsets A_1, A_2, \ldots , the following system of union-sets is a σ -algebra:

$$
\bigcup_{k\in J}A_k, \quad J\subset\mathbb{N}
$$

(iv) for any family $\{\mathcal{F}_t,\;t\in \mathcal{T}\}$ of σ -algebras ($\mathcal T$ arbitrary set)

$$
\bigcap_{t\in\mathcal{T}}\mathcal{F}_t
$$

is a σ -algebra,

(v) but the union of σ -algebras $\mathcal{F}_1 \cup \mathcal{F}_2$ typically is not a σ -algebra.

Generators

Definition For $\mathcal{G} \subset \mathcal{P}(\Omega)$, the intersection of all *σ*-algebras (in Ω) containing G is called the σ -algebra generated by G, denoted $\sigma(G)$. This is the smallest σ -algebra containing \mathcal{G} .

If $\mathcal{F} = \sigma(\mathcal{G})$ we call $A \in \mathcal{G}$ generators of \mathcal{F} . A σ -algebra admitting a countable family of generators is called *separable*.

Example $\Omega = \{0, 1\}^{\infty}$, the 2^k cylinder sets

$$
A(\epsilon_1,\ldots,\epsilon_n)=\{\omega\in\Omega:\omega_1=\epsilon_1,\ldots,\omega_n=\epsilon_n\}.
$$

generate a finite σ -algebra \mathcal{F}_n . We have filtration $\mathcal{F}_1 \subset \mathcal{F}_2 \subset \cdots$ The set $A = {\omega : (\omega_1 + \cdots + \omega_n)/n}$ converges as $n \to \infty}$ is not in $\cup_n \mathcal{F}_n$ but $A \in \mathcal{F}$ for $\mathcal{F} = \sigma(\cup_n \mathcal{F}_n)$.

Borel σ -algebra

The σ -algebra of *Borel* sets in R, denoted $\mathcal{B}(\mathbb{R})$ is generated by any of the families of sets:

- (i) open sets,
- (ii) closed sets,
- (iii) intervals $(a, b]$, with $a, b \in \mathbb{R}$
- (iv) intervals (a, b] with a, $b \in \mathbb{O}$ ($\mathcal{B}(\mathbb{R})$ is separable!),
- (v) halflines $(-\infty, b]$, where $b \in \mathbb{R}$ (alternativley, $b \in \mathbb{Q}$)

For topological space X, the Borel σ -algebra $\mathcal{B}(\mathcal{X})$ is the σ -algebra generated by the family of open sets. Examples are $\mathbb{R}^n, \mathbb{R}^{\infty}, C([a, b]),$ etc.

Criteria for σ -algebra: monotone class

 \bullet Let A be an algebra (closed under finite unions), and monotone class: that is for $A_k \in \mathcal{A}$

$$
A_1 \subset A_2 \subset \cdots \Rightarrow \bigcup_{k=1}^{\infty} A_k \in \mathcal{A},
$$

$$
A_1 \supset A_2 \supset \cdots \Rightarrow \bigcup_{k=1}^{\infty} A_k \in \mathcal{A},
$$

then A is a σ -algebra.

Criteria for σ -algebra: $\pi - \lambda$ system

A family D of subsets in Ω is called a π -system, if closed under finite intersections, that is

$$
A_1, A_2 \in \mathcal{D} \Rightarrow A_1 \cap A_2 \in \mathcal{D}.
$$

A family D is called a λ -system if (i) $\Omega \in \mathcal{D}$, (ii) $A, B \in \mathcal{D}, A \subset B \Rightarrow B \setminus A \in \mathcal{D}$, (iii) $A_1 \subset A_2 \subset \cdots \Rightarrow \bigcup_{k=1}^{\infty} A_k \in \mathcal{D}$.

Dynkin's Theorem: a π - λ -system is a σ -algebra.

Definition of a measure

Definition A *measure* on a mesurable space (Ω, \mathcal{F}) is a nonnegative function $\mu : \mathcal{F} \to [0, \infty]$ such that

 (i) $\mu(\emptyset) = 0$, (iii) for disjoint A_1, A_2, \ldots , with $A_n \in \mathcal{F}$,

$$
\mu\left(\bigcup_{n=1}^{\infty}A_n\right)=\sum_{n=1}^{\infty}\mu(A_n).
$$

If $\mu(\Omega)<\infty$ the measure is called *finite*. If $\Omega=\cup_{k=1}^\infty \Omega_k$ where $\mu(\Omega_k) < \infty$, the measure is σ -finite. If $\mu(\Omega) = 1$ we speak of a *probability measure* and may use notation P.

Criteria for σ -additivity.

(i) Subadditivity: for A_1, A_2, \ldots , with $A_n \in \mathcal{F}$,

$$
\mu\left(\bigcup_{n=1}^{\infty}A_n\right)\leq \sum_{n=1}^{\infty}\mu(A_n).
$$

- (iii) Monotonicity (increasing tower): $A_1 \subset A_2 \subset \cdots \Rightarrow$ $\mu\left(\bigcup_{n=1}^{\infty} A_n\right) = \lim_{n\to\infty} \mu(A_n).$
- (iv) Monotonicity (decreasing tower): $A_1 \supset A_2 \supset \cdots \Rightarrow$ $\mu\left(\bigcap_{n=1}^{\infty}A_n\right)=\lim_{n\to\infty}\mu(A_n).$
- (v) Continuity at 'zero': $A_1 \supset A_2 \supset \cdots, \bigcap_{n=1}^{\infty} A_n = \emptyset \Rightarrow \lim_{n \to \infty} \mu(A_n) = 0.$

Theorem Let (Ω, \mathcal{F}) be a measurable space, where $\mathcal{F} = \sigma(\mathcal{D})$ for a π -system D. Suppose $\Omega = \cup_k \Omega_k$, where $\Omega_k \in \mathcal{D}$. If two measures μ and ν coincide on $\mathcal D$ and $\nu(\Omega_k) = \mu(\Omega_k) < \infty$ then $\mu(A) = \nu(A)$ for all $A \in \mathcal{F}$.

Idea of proof: the collection of A's with $\mu(A) = \nu(A)$ is a λ -system, so Dynkin's theorem applies.

Construction by extension

A σ -additive μ_0 on algebra (or other set family) is called pre-measure. For instance, the intervals $I = (a, b] \subset \mathbb{R}$ comprise an algebra, and if $I = \bigcup_{n=1}^{\infty} I_n$ then $\lambda(I) = \sum_{n=1}^{\infty} \lambda(I_n)$.

Caratheodory Theorem: Suppose μ_0 is a pre-measure on (Ω, \mathcal{A}) , where A algebra. Then there exists a measure μ on $(\Omega, \sigma(\mathcal{A}))$ such that

$$
\mu(A)=\mu_0(A), \quad A\in\mathcal{A}.
$$

Such measure μ_0 is unique if

$$
\Omega=\bigcup_{k=1}^\infty \Omega_k, \Omega_k\in \mathcal{A}, \Omega_1\subset \Omega_2\subset \cdots
$$

and $\mu_0(\Omega_k) < \infty, k \in \mathbb{N}$.

Examples of extension

- Lebesgue measure on $\mathcal{B}(\mathbb{R})$ is the extension from the algebra of intervals of the function 'interval length'.
- For c.d.f. F on $\mathbb R$ there is a unique probability measure with $\mu((-\infty, x]) = F(x), \quad x \in \mathbb{R}$. The measure may have no atoms, but have no density function (example: Cantor ladder).
- Lebesgue measure on $\mathcal{B}(\mathbb{R}^n)$ is the extension from the algebra of *n*-dimensional intervals $(a_1, b_1] \times \cdots \times (a_n, b_n]$. The intervals $(-\infty, b_1] \times \cdots \times (-\infty, b_n]$ comprise a π -system.

• Bernoulli(p) measure on $\{0,1\}$ is the extension from the algebra 'finite-dimensional' cylinders $A(\epsilon_1,\ldots,\epsilon_k)$. The event 'frequency of '1's is p becomes probability 1 (strong Law of Large Numbers).

In the case $p = 1/2$ the function

$$
\omega \mapsto \sum_{k=1}^{\infty} \frac{\omega_k}{2^k}
$$

establishes a measure-theoretic isomorphism between ${0,1}^{\infty}$ with Bernoulli(1/2) and [0, 1] with λ . In the case $p \neq 1/2$ the pushforward of Bernoulli(p) measure is singular relative to λ , that is supported by a Borel set of zero Lebesgue measure.

Space \mathbb{R}^{∞}

The Borel σ -algebra $\mathcal{B}(\mathbb{R}^{\infty})$ is generated by finite-dimensional cylinders

$$
C(B^n):=\{x\in\mathbb{R}^\infty:(x_1,\ldots,x_n)\in B^n\},\quad B^n\in\mathcal{B}(\mathbb{R}^n),\ n\in\mathbb{N},
$$

where for B^{n} 's we can also take n-dim intervals or smaller family $B^n = (-\infty, b_1] \times \cdots \times (-\infty, b_n], b_i \in \mathbb{R}$ (or $b_i \in \mathbb{Q}$).

Probability measures P_n on $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$, $n \in \mathbb{N}$ are called consistent if

$$
P_{n+1}(B^n\times\mathbb{R})=P_n(B^n),\quad B^n\in\mathcal{B}(\mathbb{R}^n).
$$

Kolmogorov's Extension Theorem: Suppose P_n are consistent probability measures on $(\mathbb{R}^n,\mathcal{B}(\mathbb{R}^n))$. Then there exists a unique probability measure P on $(\mathbb{R}^{\infty}, \mathcal{B}(\mathbb{R}^{\infty}))$ such that

$$
\mathbb{P}(C(B^n))=P_n(B^n),\quad B^n\in\mathcal{B}(\mathbb{R}^n),\quad n\in\mathbb{N}.
$$

Lebesgue measurable sets

Definition A family of sets $S \subset \mathcal{P}(\Omega)$ is a semiring is S is closed under finite intersections and

$$
A, B \in S \Rightarrow A \setminus B = C_1 \cup \cdots \cup C_n,
$$

for some *n* and disjoint $C_k \in S$. For pre-measure μ on $\mathcal S$ define exterior measure

$$
\mu^*(A) = \inf \sum_{n=1}^{\infty} \mu(A_n)
$$

where $A \subset \cup_n A_n$, and $A_n \in S$ disjoint. Clearly, $\mu^*(A) = \mu(A)$ for $A \in \mathcal{S}$.

Set $A \subset \Omega$ is called Lebesgue-measurable if for every $\epsilon > 0$ there exists $B \in \mathcal{S}$ such that

 $\mu^*(A\Delta B) < \epsilon$.

Denote this family $L(S, \mu)$.

Lebesgue's Theorem: The family $L(S, \mu)$ is a σ -algebra and μ^* is a measure on $L(S, \mu)$.

Example For $S = \mathcal{B}(\mathbb{R})$ the σ -algebra of Lebesgue-measurable sets is

$$
L(\mathcal{B}(\mathbb{R}),\lambda)=\sigma(\mathcal{B}(\mathbb{R})\cup \mathcal{N}),
$$

where $\mathcal N$ is the family of sets $A \subset B$, where B Borel set with $\lambda(B)$. This sort of measure extension is called measure completion.