MTP24, Lecture 1: Basics of Measure Theory

Alexander Gnedin

Queen Mary, University of London

https://qmplus.qmul.ac.uk/course/view.php?id=16298

Introduction

• For ground set Ω how can we *measure* subsets $A \subset \Omega$?

If Ω is finite or countable (e.g. $\{1,\ldots,n\},\mathbb{N},\mathbb{Z}$), assign $\mu(\omega)\geq 0$ to each $\omega\in\Omega$, then let

$$\mu(A) := \sum_{\omega \in A} \mu(\omega).$$

for every $A \subset \Omega$. This defines on the power set $\mathcal{P}(\Omega)$ a function μ , which is σ -additive,

$$\mu\left(\bigcup_{k=1}^{\infty} A_k\right) = \sum_{k=1}^{\infty} \mu(A_k)$$
, for (pairwise) disjoint A_k

nonnegative, $0 \le \mu(A) \le \infty$, and satisfies $\mu(\emptyset) = 0$.

• For uncountable spaces $\mathbb{R}, \mathbb{R}^n, \{0,1\}^\infty, \mathbb{R}^\infty, C([0,1])$ we want to consider also more involved measures that may assign positive measure to sets whose individual points receive measure zero.

Fundamental example: the Lebesgue measure on $\mathbb R$

 $\lambda(I) := b - a$ for interval $I = (a, b], -\infty < a < b < \infty$. For (pairwise) disjoint intervals I_1, I_2, \ldots let

$$\lambda\left(\bigcup_{k=1}^{\infty}I_{k}\right):=\sum_{k=1}^{\infty}\lambda(I_{k}).$$

For single point $\lambda(x) = \lambda(\{x\}) = 0$, thus since \mathbb{Q} is countable also

$$\lambda(\mathbb{Q}) = \sum_{x \in \mathbb{Q}} \lambda(x) = 0,$$

while $\lambda((a, b] \setminus \mathbb{Q}) = b - a$.

However, the Cantor set also has Lebesgue measure 0 but cardinality continuum.

• But there is no good way to define λ for *all* subsets of \mathbb{R} .

Example: the 'coin-tossing' space

 $\Omega=\{0,1\}^\infty$ models an infinite series of independent Bernoulli trials with probability p for outcome 1 and 1-p for outcome 0. Then $\mathbb{P}(A)=(1-p)p$ for $A=\{\omega=(\omega_1,\omega_2,\dots):\omega_1=0,\omega_0=1\}$

To which $A \subset \Omega$ can we assign probability? For instance, what is the probability of

$$A = \{ \omega \in \Omega : \lim_{n \to \infty} \frac{\omega_1 + \dots + \omega_n}{n} = p \}.$$

 σ -algebras

Definition A family of sets $\mathcal{F} \subset \mathcal{P}(\Omega)$ is called σ -algebra if

- (i) $\Omega \in \mathcal{F}$,
- (ii) $A \in \mathcal{F} \Rightarrow A^c \in \mathcal{F}$,
- (iii) $A_k \in \mathcal{F}$ $(k \in \mathbb{N})$ disjoint sets $\Rightarrow \bigcup_{k=1}^{\infty} A_k \in \mathcal{F}$.

Then $\varnothing \in \mathcal{F}$, and \mathcal{F} is closed under countable intersections.

Definition (Ω, \mathcal{F}) is called *measurable space*, and $A \in \mathcal{F}$ are called $(\mathcal{F}$ -)*measurable sets* or *events* in the probability context.

Examples

- (i) $\{\emptyset, \Omega\}$ (trivial σ -algebra),
- (ii) $\mathcal{P}(\Omega)$ (the power set),
- (iii) for partition $\Omega = \bigcup_{k=1}^{\infty} A_k$ in disjoint nonempty subsets A_1, A_2, \ldots , the following system of union-sets is a σ -algebra:

$$\bigcup_{k\in J}A_k,\quad J\subset\mathbb{N}$$

(iv) for any family $\{\mathcal{F}_t,\ t\in T\}$ of σ -algebras (T arbitrary set)

$$\bigcap_{t\in T}\mathcal{F}$$

is a σ -algebra,

(v) but the union of σ -algebras $\mathcal{F}_1 \cup \mathcal{F}_2$ typically is not a σ -algebra.

Generators

Definition For $\mathcal{G} \subset \mathcal{P}(\Omega)$, the intersection of all σ -algebras (in Ω) containing \mathcal{G} is called the σ -algebra generated by \mathcal{G} , denoted $\sigma(\mathcal{G})$. This is the smallest σ -algebra containing \mathcal{G} .

If $\mathcal{F} = \sigma(\mathcal{G})$ we call $A \in \mathcal{G}$ generators of \mathcal{F} . A σ -algebra admitting a countable family of generators is called *separable*.

Example $\Omega = \{0,1\}^{\infty}$, the 2^k *cylinder* sets

$$A(\epsilon_1,\ldots,\epsilon_n)=\{\omega\in\Omega:\omega_1=\epsilon_1,\ldots,\omega_n=\epsilon_n\}.$$

generate a finite σ -algebra \mathcal{F}_n . We have filtration $\mathcal{F}_1 \subset \mathcal{F}_2 \subset \cdots$ The set $A = \{\omega : (\omega_1 + \cdots + \omega_n)/n \text{ converges as } n \to \infty\}$ is not in $\cup_n \mathcal{F}_n$ but $A \in \mathcal{F}$ for $\mathcal{F} = \sigma(\cup_n \mathcal{F}_n)$.

Borel σ -algebra

The σ -algebra of *Borel* sets in \mathbb{R} , denoted $\mathcal{B}(\mathbb{R})$ is generated by any of the families of sets:

- (i) open sets,
- (ii) closed sets,
- (iii) intervals (a, b], with $a, b \in \mathbb{R}$
- (iv) intervals (a, b] with $a, b \in \mathbb{Q}$ $(\mathcal{B}(\mathbb{R})$ is separable!),
- (v) halflines $(-\infty,b]$, where $b\in\mathbb{R}$ (alternativley, $b\in\mathbb{Q}$)

For topological space \mathcal{X} , the Borel σ -algebra $\mathcal{B}(\mathcal{X})$ is the σ -algebra generated by the family of open sets. Examples are \mathbb{R}^n , \mathbb{R}^∞ , C([a,b]), etc.

Criteria for σ -algebra: monotone class

• Let \mathcal{A} be an algebra (closed under *finite* unions), and *monotone* class: that is for $A_k \in \mathcal{A}$

$$A_1 \subset A_2 \subset \cdots \Rightarrow \bigcup_{k=1}^{\infty} A_k \in \mathcal{A},$$

 $A_1 \supset A_2 \supset \cdots \Rightarrow \bigcup_{k=1}^{\infty} A_k \in \mathcal{A},$

then A is a σ -algebra.

Criteria for σ -algebra: $\pi - \lambda$ system

A family $\mathcal D$ of subsets in Ω is called a π -system, if closed under finite intersections, that is

$$A_1, A_2 \in \mathcal{D} \Rightarrow A_1 \cap A_2 \in \mathcal{D}$$
.

A family \mathcal{D} is called a λ -system if

- (i) $\Omega \in \mathcal{D}$,
- (ii) $A, B \in \mathcal{D}, A \subset B \Rightarrow B \setminus A \in \mathcal{D}$,
- (iii) $A_1 \subset A_2 \subset \cdots, A_n \in \mathcal{D} \Rightarrow \bigcup_{n=1}^{\infty} A_k \in \mathcal{D}.$

[Alternative conditions defining λ -system: (i), (ii') closed under taking complement set and (iii') closed under disjoint countable unions.]

Dynkin's Theorem: a π - λ -system is a σ -algebra.

Definition of a measure

Definition A *measure* on a mesurable space (Ω, \mathcal{F}) is a nonnegative function $\mu : \mathcal{F} \to [0, \infty]$ such that

- (i) $\mu(\varnothing) = 0$,
- (iii) for disjoint A_1, A_2, \ldots , with $A_n \in \mathcal{F}$,

$$\mu\left(\bigcup_{n=1}^{\infty}A_n\right)=\sum_{n=1}^{\infty}\mu(A_n).$$

If $\mu(\Omega) < \infty$ the measure is called *finite*. If $\Omega = \bigcup_{k=1}^{\infty} \Omega_k$ where $\mu(\Omega_k) < \infty$, the measure is σ -finite.

If $\mu(\Omega) = 1$ we speak of a *probability measure* and may use notation \mathbb{P} .

Criteria for σ -additivity.

(i) Subadditivity: for A_1, A_2, \ldots , with $A_n \in \mathcal{F}$,

$$\mu\left(\bigcup_{n=1}^{\infty}A_n\right)\leq\sum_{n=1}^{\infty}\mu(A_n).$$

- (iii) Monotonicity (increasing tower): $A_1 \subset A_2 \subset \cdots \Rightarrow \mu(\bigcup_{n=1}^{\infty} A_n) = \lim_{n \to \infty} \mu(A_n)$.
- (iv) Monotonicity (decreasing tower): $A_1 \supset A_2 \supset \cdots \Rightarrow \mu(\bigcap_{n=1}^{\infty} A_n) = \lim_{n \to \infty} \mu(A_n)$.
- (v) Continuity at 'zero': $A_1 \supset A_2 \supset \cdots, \bigcap_{n=1}^{\infty} A_n = \emptyset \Rightarrow \lim_{n \to \infty} \mu(A_n) = 0.$

Uniqueness of measures

Theorem Let (Ω, \mathcal{F}) be a measurable space, where $\mathcal{F} = \sigma(\mathcal{D})$ for a π -system \mathcal{D} . Suppose $\Omega = \cup_k \Omega_k$, where $\Omega_k \in \mathcal{D}$. If two measures μ and ν coincide on \mathcal{D} and $\nu(\Omega_k) = \mu(\Omega_k) < \infty$ then $\mu(A) = \nu(A)$ for all $A \in \mathcal{F}$.

Idea of proof: the collection of A's with $\mu(A) = \nu(A)$ is a λ -system, so Dynkin's theorem applies.

Construction by extension

A σ -additive μ_0 on algebra (or other set family) is called *pre-measure*. For instance, the intervals $I=(a,b]\subset\mathbb{R}$ comprise an algebra, and if $I=\cup_{n=1}^{\infty}I_n$ then $\lambda(I)=\sum_{n=1}^{\infty}\lambda(I_n)$.

Caratheodory Theorem: Suppose μ_0 is a pre-measure on (Ω, \mathcal{A}) , where \mathcal{A} algebra. Then there exists a measure μ on $(\Omega, \sigma(\mathcal{A}))$ such that

$$\mu(A) = \mu_0(A), \quad A \in \mathcal{A}.$$

Such measure μ_0 is unique if for some $\Omega_k \in \mathcal{A}$

$$\Omega = \bigcup_{k=1}^{\infty} \Omega_k, \qquad \Omega_1 \subset \Omega_2 \subset \cdots$$

and $\mu_0(\Omega_k) < \infty, k \in \mathbb{N}$.

Examples of extension

- ullet Lebesgue measure on $\mathcal{B}(\mathbb{R})$ is the extension from the algebra of intervals of the function 'interval length'.
- For c.d.f. F on $\mathbb R$ there is a unique probability measure with $\mu((-\infty,x])=F(x), \quad x\in\mathbb R$. The measure may have no atoms, but have no density function (example: Cantor ladder).
- Lebesgue measure on $\mathcal{B}(\mathbb{R}^n)$ is the extension from the algebra of n-dimensional intervals $(a_1,b_1]\times\cdots\times(a_n,b_n]$. The intervals $(-\infty,b_1]\times\cdots\times(-\infty,b_n]$ comprise a π -system.

• Bernoulli(p) measure on $\{0,1\}$ is the extension from the algebra 'finite-dimensional' cylinders $A(\epsilon_1,\ldots,\epsilon_k)$. The event 'frequency of '1's is p becomes probability 1 (strong Law of Large Numbers).

In the case p = 1/2 the function

$$\omega \mapsto \sum_{k=1}^{\infty} \frac{\omega_k}{2^k}$$

establishes a measure-theoretic isomorphism between $\{0,1\}^\infty$ with Bernoulli(1/2) and [0,1] with λ . In the case $p \neq 1/2$ the pushforward of Bernoulli(p) measure is singular relative to λ , that is supported by a Borel set of zero Lebesgue measure.

Space \mathbb{R}^{∞}

The Borel σ -algebra $\mathcal{B}(\mathbb{R}^{\infty})$ is generated by finite-dimensional cylinders

$$C(B^n) := \{x \in \mathbb{R}^\infty : (x_1, \dots, x_n) \in B^n\}, \quad B^n \in \mathcal{B}(\mathbb{R}^n), \ n \in \mathbb{N},$$

where for B^n 's we can also take n-dim intervals or smaller family $B^n = (-\infty, b_1] \times \cdots \times (-\infty, b_n], b_i \in \mathbb{R}$ (or $b_i \in \mathbb{Q}$).

Probability measures P_n on $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$, $n \in \mathbb{N}$ are called *consistent* if

$$P_{n+1}(B^n \times \mathbb{R}) = P_n(B^n), \quad B^n \in \mathcal{B}(\mathbb{R}^n).$$

Kolmogorov's Extension Theorem: Suppose P_n are consistent probability measures on $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$. Then there exists a unique probability measure \mathbb{P} on $(\mathbb{R}^\infty, \mathcal{B}(\mathbb{R}^\infty))$ such that

$$\mathbb{P}(C(B^n)) = P_n(B^n), \quad B^n \in \mathcal{B}(\mathbb{R}^n), \quad n \in \mathbb{N}.$$

Lebesgue measurable sets

Definition A family of sets $S \subset \mathcal{P}(\Omega)$ is a *semiring* is S is closed under finite intersections and

$$A, B \in \mathcal{S} \Rightarrow A \setminus B = C_1 \cup \cdots \cup C_n,$$

for some n and disjoint $C_k \in \mathcal{S}$.

For pre-measure μ on ${\mathcal S}$ define exterior measure

$$\mu^*(A) = \inf \sum_{n=1}^{\infty} \mu(A_n)$$

where $A \subset \bigcup_n A_n$, and $A_n \in \mathcal{S}$ disjoint.

Clearly, $\mu^*(A) = \mu(A)$ for $A \in \mathcal{S}$.

Set $A \subset \Omega$ is called *Lebesgue-measurable* if for every $\epsilon > 0$ there exists $B \in \mathcal{S}$ such that

$$\mu^*(A\Delta B) < \epsilon$$
.

Denote this family $L(S, \mu)$.

Lebesgue's Theorem: The family $L(S, \mu)$ is a σ -algebra and μ^* is a measure on $L(S, \mu)$.

Example For $\mathcal{S}=\mathcal{B}(\mathbb{R})$ the σ -algebra of Lebesgue-measurable sets is

$$L(\mathcal{B}(\mathbb{R}), \lambda) = \sigma(\mathcal{B}(\mathbb{R}) \cup \mathcal{N}),$$

where \mathcal{N} is the family of *nullsets A*, such that $A \subset B$ for some B Borel set with $\lambda(B) = 0$.

This sort of measure extension by including all nullsets in the system of generators is called *measure completion*.