Advanced machine learning MTH793P 2024

Omer Bobrowski, QMUL

o.bobrowski@qmul.ac.uk

Motivation:

- K-means forces clusters to be "spherical"
- Sometimes it might be desirable to have elliptical clusters

Motivation:

- K-means forces clusters to be "spherical"
- Sometimes it might be desirable to have elliptical clusters

Gaussian mixture models In class 1 or in class 2?

Hard partition: every point is associated with a single cluster (K-means: $z_{ik} \in \{0,1\}$)

(GMM, next)

- Soft partition: for every point and every cluster we have a "score" in [0,1]

n-dimensional Gaussian density:

Gaussian mixture:

$$V(x; \mu_k, \Sigma_k), \quad \rho_k \ge 0, \text{ and } \sum_{k=1}^K \rho_k = 1$$

Interpretation

Every $X \sim p$ can be generated as follows:

2. If Z = k: sample X from $\mathcal{N}(\mu_k, \Sigma_k)$

1. Generate a random value $Z \in \{1, 2, ..., K\}$, using $P(Z = k) = \rho_k$

MTH793P

Gaussian mixture models $p(x) = \sum_{k=1}^{K} \rho_k \mathcal{N}(x; \mu_k, \Sigma_k), \qquad \rho_k \ge 0, \text{ and } \sum_{k=1}^{K} \rho_k = 1$

Likelihood

• Parameters: $\theta = (\mu_1, ..., \mu_K, \Sigma_1, ..., \Sigma_K, \rho_1, ..., \rho_K)$

• Likelihood: $p(x_1, ..., x_n; \theta) = \prod_{k=1}^{n} \sum_{k=1}^{K} \rho_k \mathcal{N}(x_i; \mu_k, \Sigma_k)$ • Log-likelihood: $\log p(x_1, \dots, x_n; \theta) = \sum_{i=1}^n \log \left(\sum_{k=1}^K \rho_k \mathcal{N}(x_i; \mu_k, \Sigma_k) \right)$ *i*=1 k=1

$$\log p(x_1, \dots, x_n; \theta) = \int_{i=1}^{n} d\theta_i$$

Solution (take derivatives, compare to zero):

Define:

$$\gamma_{i,k} = \frac{\rho_k \mathcal{N}(x_i; \mu_k, \Sigma_k)}{\sum_{j=1}^K \rho_j \mathcal{N}(x_i; \mu_j, \Sigma_j)}$$

probability that ith data-point is in kth cluster

Taximum:
$$\rho_k = \frac{n_k}{n}$$
 $\mu_k = \frac{1}{n_k} \sum_{i=1}^n \gamma_{i,k} x_i$ $\Sigma_k = \frac{1}{n_k} \sum_{i=1}^n \gamma_{i,k} (x_i - \mu_k) (x_i - \mu_k)^T$
no explicit solution!

 $\sum_{i=1}^{n} \log \left(\sum_{k=1}^{K} \rho_k \mathcal{N}(x_i; \mu_k, \Sigma_k) \right)$ can we maximize?

$$n_k = \sum_{i=1}^n \gamma_{i,k}$$

total "mass" of kth cluster

Iterative solution (similar to K-means):

Step 1 - associate clusters (soft):

$$\gamma_{i,k} = \frac{\rho_k \mathcal{N}(x_i; \mu_k, \Sigma_k)}{\sum_{j=1}^K \rho_j \mathcal{N}(x_i; \mu_j, \Sigma_j)}, \quad n_k = \sum_{i=1}^n p_i \mathcal{N}(x_i; \mu_j, \Sigma_j)$$

Step 2 - update GMM parameters:

$$\rho_k = \frac{n_k}{n} \quad \mu_k = \frac{1}{n_k} \sum_{i=1}^n \gamma_{i,k} x_i \quad \sum_k = \frac{1}{n_k}$$

 $\gamma_{i,k}$

 $(\rho_k, \mu_k, \Sigma_k \text{ are fixed})$

 $\sum \gamma_{i,k} (x_i - \mu_k) (x_i - \mu_k)^T$ i=1

 $(\gamma_{i,k}, n_k \text{ are fixed})$

Algorithm 1 GMM clustering

Input: $x_1, \ldots, x_n \in \mathbb{R}^d$ **Initialise:** $\theta^0 = (\mu_1^0, \ldots, \mu_K^0, \Sigma_1^0, \ldots, \Sigma_K^0, \rho_1^0, \ldots, \rho_K^0)$

while stopping condition not met do

$$\begin{aligned} & \text{for } i = 1, \dots, n \text{ do} \\ & \text{for } k = 1, \dots, K \text{ do} \\ & \gamma_{i,k}^{t+1} \leftarrow \frac{\rho_k^t \mathcal{N}(x_i; \mu_k^t, \Sigma_k^t)}{\sum_{j=1}^K \rho_j^t \mathcal{N}(x_i; \mu_j^t, \Sigma_j^t)} & n_k^t \\ & \text{end for} \\ & \text{end for} \\ & \text{end for} \end{aligned}$$

$$\begin{aligned} & \text{for } k = 1, \dots, K \text{ do} \\ & \mu_k^{t+1} \leftarrow \frac{1}{n_k^{t+1}} \sum_{i=1}^n \gamma_{i,k}^{t+1} x_i, \\ & \Sigma_k^{t+1} \leftarrow \frac{1}{n_k^{t+1}} \sum_{i=1}^n \gamma_{i,k}^{t+1} (x_i - \mu_k^{t+1}) \\ & \rho_k^{t+1} = \frac{n_k^{t+1}}{n} \\ & \text{end for} \end{aligned}$$

$$t \leftarrow t + 1 \\ & \text{end while} \\ & \text{return } \theta^M \end{aligned}$$

MTH793P

associate clusters (soft)

update GMM parameters

No CHD

A

From Hastie, Tibshirani and Friedman, The Elements of Statistical Learning, 2nd edition, 2009

CHD

Combined

Various Clustering Algorithms IniBatch Meanshift Neanshift Spectral Output of the spectral Output

MiniBatch KMeans	Affinity Propagation	MeanShift	Spectral Clustering	
.01s	3.77s	.11s	.30s	C
.00s	4.32s	.06s	.84s	9
.005	2.335	.15s	.11s	
.01s	1.90s	.11s	.20s	
*	*	*	**	
,01s	* <u>1.83s</u>	. .07s	, <u>18s</u>	+
.01s	1.74s	.12s	.15s	

Taken from scikit-learn python package documentation

MTH793P 2022

Gaussian Mixture

- Allows for more precise clustering
- Heavier computation than K-means
- Takes longer to converge than K-means
- Likelihood increases in every iteration, but may converge to local maximum \bullet
- Common practice:
 - Run K-means
 - Use results to initialise the parameter for the GMM

Comments

